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Wireless capsule endoscopy (WCE) enables a physician to diagnose a patient’s digestive system without surgical procedures.
However, it takes 1-2 hours for a gastroenterologist to examine the video. To speed up the review process, a number of analysis
techniques based on machine vision have been proposed by computer science researchers. In order to train a machine to
understand the semantics of an image, the image contents need to be translated into numerical form first. The numerical form
of the image is known as image abstraction. The process of selecting relevant image features is often determined by the modality
of medical images and the nature of the diagnoses. For example, there are radiographic projection-based images (e.g., X-rays and
PET scans), tomography-based images (e.g., MRT and CT scans), and photography-based images (e.g., endoscopy, dermatology,
and microscopic histology). Each modality imposes unique image-dependent restrictions for automatic and medically meaningful
image abstraction processes. In this paper, we review the current development of machine-vision-based analysis of WCE video,
focusing on the research that identifies specific gastrointestinal (GI) pathology and methods of shot boundary detection.

1. Introduction

Wireless capsule endoscopy (WCE) is a technology break-
through that allows the noninvasive visualization of the
entire small intestine. It was made possible because of the
recent advances in low-power and low-cost of miniaturized
image sensors, application-specific integrated circuits, wire-
less transmission technology, and light emitted diodes. This
swallowable capsule technology enables the investigation of
the small intestine without pain or need for sedation, thus
encouraging patients to undergo GI track examinations. The
first WCE was launched by Given Imaging (PillCam SB;
Yokneam, Israel) in 2001. The successful launch of WCE
encourages several other capsule manufacturers to develop
their own products. Table 1 is a list of commercially available
capsule specifications. According to Given Imaging, more
than 1,200,000 patients worldwide have benefited from their
PillCam endoscopy.

Although WCE allows access to the small intestine non-
invasively, the average viewing time ranges between 1 and 2
hours, depending on the experience of the gastroenterologist.
In order to assist the gastroenterologist to speed up the

review session, machine vision researchers have proposed
various systems, including automatic video summarization,
general abnormality detection, specific pathology identifica-
tion, shot boundary detection, and topographic video seg-
mentation. In this paper, we review the current development
of machine vision-based analysis of WCE video, focusing
on the research of specific GI pathology detection and shot
boundary detection. A review of current capsule endoscopy
hardware development is available to the interested reader
in [1]; the review of machine vision-based analysis for
push enteroscopy, intraoperative enteroscopy, push-and-pull
enteroscopy, and radiographic methods is beyond the scope
of this paper.

2. Image Features for Abstraction

A color WCE image is a snapshot of the digestive tract at a
given time. However, in a computer-aided diagnosis system,
the image content semantics needs to be translated in
numerical ways for interpretation. There are several ways
to represent the numerical form of an image known as
image abstraction. Among WCE applications, there are three
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Table 1: Technical specifications of commercially available small intestine capsules.

Company Given imaging Inc. Olympus IntroMedic Jinshan

Capsule PillCam SB/SB2 EndoCapsule MiroCam OMOM

Size (diameter × length) 11 mm × 26 mm 11 mm × 26 mm 11 mm × 24 mm 13 mm × 27.9 mm

Image Sensor CMOS CCD CMOS CCD

Resolution 256 × 256 NA 320×320 640 × 480

Field of View 140◦/156◦ 145◦ 150◦ 140 ± 10◦

Image Capture Rate 2 fps 2 fps 3 fps 0.5–2 fps

Illumination 6 LEDs 6 LEDs 6 LEDs 6 LEDs

Battery Life 8 hr 8+ hr 11+ hr 8 ± 1 hr

Communication RF RF HBC RF

Approval FDA 2001/2011 FDA 2007 FDA 2012 PRC FDA 2004

CMOS: complementary metal oxide semiconductor, CCD: charge-coupled device, LED: light-emitting diode, RF: radio frequency, HBC: human body
communications, NA: not available.

(a) Esophagus (b) Stomach (c) Small Intestine (d) Colon

Figure 1: Typical images captured by WCE at different organs.

popular features for image abstraction: (1) color, (2) texture,
and (3) shape features. Color images produced by WCE
contain much useful color information and hence can be
used as effective cue to suggest the topographic location of
the current image.

Figure 1 shows typical images taken from each organ. In
this figure, the stomach looks pinkish, the small intestine
is yellowish due to the slightly straw-color of the bile, and
the colon is often yellowish or greenish due to the contam-
ination of the liquid form of faeces. Another popular image
abstraction feature in medical-imaging-related applications
is the texture feature [2]. In WCE applications, a unique
texture pattern called “villi” can be used to distinguish the
small intestine from other organs. In addition, abnormality
in WCE video can be discriminated by comparing the texture
patterns between normal and abnormal mucosa regions,
making texture pattern a popular feature for image abstrac-
tion. Shape feature is another commonly used abstraction
approach for machine vision applications. Object shapes
provide strong clues to object identity, and humans can
recognize objects solely on their shapes. In the following
subsections, we provide a high level survey of these features
along with some popular implementations.

2.1. Color. Color is a way the human visual system used to
measure a range of the electromagnetic spectrum, which is
approximately between 300 and 830 nm. The human visual

system only recognizes certain combinations of the visible
spectrum and associates these spectra into color. Today, a
number of color models (e.g., RGB, HSI/HSV, CIE Lab, YUV,
CMYK, and Luv) are available. Among all, the most popular
color models in WCE applications are the RGB and HSI/HSV
color models.

The RGB color model is probably best known. Most
image-capturing devices use the RGB model, and the color
images are stored in forms of two-dimensional array of
triplets made of red, blue, and green. There are a couple
of characteristics that make the RGB model the basic color
space: (1) existing methods to calibrate the image capturing
devices and (2) multiple ways to transform the RGB model
into a linear, perceptually uniform color model. On the other
hand, the main disadvantage of RGB-based natural images
is the high degree of correlation between their components,
meaning that if the intensity changes, all three components
will change accordingly [5].

The HSI/HSV color model is another commonly used
model in machine vision applications. Three components,
hue, saturation, and intensity (or value), can be obtained
through simple transformations of the RGB model. Hue
specifies the base color, saturation specifies the purity of a
color, and intensity shows how bright the color should be.
Although the HSI/HSV model carries the same shortcomings
as the RGB model, Gevers et al. show that HSI model is
invariant to viewing orientation, illumination direction, and
illumination intensity [23]. This outstanding property has
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made HSI/HSV model much less sensitive to illumination
changes, which is a common problem of the WCE image as
the battery of the capsule weakens over time.

2.2. Texture. Texture is a fundamental property of surfaces. It
can be seen almost anywhere (e.g., tree bark, grass, sand, wall,
etc.). Some examples of texture analysis applications are
industrial surface inspection, biomedical image analysis, and
face and facial expression recognition. A common approach
for discriminating WCE images is to extract mucosa texture
and then classify the feature with trained classifiers. Texture
feature extraction in WCE imaging is difficult because:
(1) WCE images are taken by a miniature camera which
has a limited range of luminance and hence suffer from
illumination variations; (2) as a tiny capsule travels down
the GI tract via digestive peristalsis, the moving or spinning
motion of the capsule contributes to uneven illumination;
(3) the battery life weakens over time; and (4) the uncertainty
of a functioning digestive tract such as food residue,
bubbles, faeces, and so forth is encountered. Because of these
challenges, the most popular textural features are the multi-
resolution and gray scale texture features.

In general, the characteristics of texture are measured by
variations in the image’s intensity or color. The differences
between the gray level value of a reference pixel and its
neighboring pixels have been used for analyzing textural
properties. Local Binary Pattern (LBP) operator, proposed
by Ojala et al. in [24], is one of the texture features that are
invariant against gray scale transformation and rotation, yet
computationally simple. In order to compute the texture
model of a specific surface, an LBP code is computed for each
pixel of this surface by comparing its gray level against those
of its neighboring pixels. The final histogram of LBP codes
is the texture model that represents this surface. Figure 2
is an example of a texture model that utilizes a joint LBP
histogram to represent the mucosa of different organs.

Another well-known texture feature called Gray Level
Co-occurrence Matrices (GLCM) was introduced by Haralick
et al. in the 1970s [25, 26]. It belongs to the second-order
statistics methods that describe spatial relationships between
the reference and neighbor pixels within a local neigh-
borhood. In this approach, texture is characterized by the
spatial distribution of gray levels (or gray scale intensities)
in a neighborhood. A cooccurrence matrix is defined to
represent the distance and angular spatial relationship over
subregion of a gray-scale image. It is calculated to show
how often the pixel with gray level value occurs horizontally,
vertically, or diagonally to adjacent pixels. Once the GLCMs
are created, the similarity of texture pattern can be measured
using the formulas as described in [25, 26].

As the size of lesion may vary in size, it is desirable to
analyze the lesion and its mucosa in multiple resolutions.
Wavelet theory has been commonly used in multiresolution
analysis. In this method, an image is analyzed at various
frequencies under various resolutions. Wavelet transform
provides powerful insight to the spatial and frequency char-
acteristics of an image. In image processing, the transform
could be achieved using Discrete Wavelet Transform (DWT)
by decomposing an image into four subbands: LL1, LH1,

HL1, and HH1 (Figure 3(a)). The LL1 subband is referred
to as the approximation component while the remaining
subbands are referred to as the detail components. Subband
LL1 could be further decomposed to result in a two-
level wavelet decomposition (Figure 3(b)). By repeating this
process with subband LL2, we can obtain the three-level
wavelet decomposition. This process can be repeated on the
approximation component until the desired scale is reached.
The coefficients in the approximation and detail components
are the essential features for DWT based texture analysis and
discrimination.

2.3. Shape. In WCE imaging, shape-based features are emp-
loyed mostly in polyp and tumor detection. In this category,
the most common process is to detect the edges first, fol-
lowed by region segmentation. Geometric rules are applied
to the segmented regions to construct the shape information
of these regions. Although most of the objects in the real
world are three-dimensional, image and video processing
usually deals with two-dimensional projections of real world
objects. Good descriptors should capture shape character-
istics in a concise manner, and they should be invariant to
scaling, rotation, translation, and various types of distor-
tions. In addition, they should be able to handle nonrigid
deformations caused by perspective transformation of two-
dimensional shapes.

In machine vision, moments describe image content with
respect to its axes. For example, the width of a set of points
in one dimension or the shape of a cloud of points in a
higher dimension can be measured by computing the second
moment of these points. Since moments describe image con-
tent with respect to its axes, the global and detailed geometric
information of an image can be captured by moments.

Gabor filters have been widely used for edge detection.
Gabor filters are defined by harmonic functions modulated
by a Gaussian distribution. Since frequency and orientation
representations of Gabor filters are similar to those of the
human visual system, a set of Gabor filters with different
frequencies and orientations are found to be useful for
texture-based region segmentation of an image [27]. In [28],
Field introduces Log-Gabor filters and suggests that natural
images are better coded by filters that have Gaussian transfer
functions when viewed on the logarithmic frequency scale.
Unlike Gabor filters that suffer from bandwidth limitation,
Log-Gabor filters can be constructed with arbitrary band-
width and hence can be optimized to produce a filter with
minimal spatial extent.

3. Computer-Aided Diagnosis Systems

Figure 4 is an illustration of the general process flowchart of a
typical WCE machine vision analysis system. It is a common
practice that each image is preprocessed to enhance the accu-
racy of feature extraction, followed by feature refinement.
The output of the feature refinement is a concise form of the
image abstraction for the final classification, and the classi-
fiers may be artificial intelligent based or rule based. In gen-
eral, artificial-intelligent-based classifiers need to be trained
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Figure 2: Mucosa representations based on a joint histogram of LBP operator (LBPriu2
P,R ) and local gray level variance (VARP,R).

before use, whereas rule-based classifiers utilize “if. . . then. . .”
rules for classification which requires no training.

3.1. Shot Boundary Detection and Video Segmentation. Tem-
poral video segmentation is usually the first step towards
automatic annotation of image sequences. It divides a video
stream into a set of meaningful segments called shots for
indexing. In conventional video segmentation, there are two
types of shot transitions: abrupt and gradual. Abrupt tran-
sition is easier to detect because it occurs when the camera
is stopped and restarted [29]; however, the detection of
gradual transition is more difficult because it is caused by

camera operations such as zoom, tilt, and pan. Although
there are algorithms for shot transition detection, these are
not suitable for WCE. WCE video is created without any
stops; therefore, these algorithms do not work well in WCE.
Instead of modeling shot boundary detection by camera
operations, it is preferred that shots are modeled by similar
semantic content or by the digestive organ.

In order to provide the gastroenterologist with a quick
glance of the video contents, WCE researchers utilize
digestive peristalses and image analysis techniques for shot
boundary detection and organ boundary detection. Vu
et al. proposed a coherent three-stage procedure to detect
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Figure 3: Image decomposition using DWT where (a) represents a one-level wavelet decomposition and (b) represents a two-level wavelet
decomposition.

Patient preparation

Image acquisition
Patient resumes daily 

routine

Download images
Physician downloads 

data from receiver

Feature 
extraction

Computer-aided diagnosis system

Refined 
features

Classification

Computer aided 
diagnosis system

Physician review results 

Patient fasts for 12 hours

Preprocessing

Postprocessing

Sensor pads and 
capsule ingestion
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(CAD) system where gray boxes may be optional.

intestinal contractions in [30]. They utilized changes in
intestinal edge structure of the intestinal folds for contraction
assessment. The output is contraction-based shots. Another
shot detection proposed by Iakovidis et al. was based
on nonnegative matrix factorization (NMF) [31]. A full
length of WCE video was uniformly sampled to generate
consecutive nonoverlapping video segments followed by a
dimensionality reduction algorithm. Fuzzy C-means was
applied for extraction of most representative frames and the
results were enhanced by applying symmetric NMF to the
symmetric matrices. The final cluster indicators (or shots)
were obtained using nonnegative Lagrangian relaxation.
Another shot detection scheme based on organ was proposed
by Mackiewicz et al. in [32]. The authors utilized three-
dimension LBP operator, color histogram, and motion

HFC
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Figure 5: A shot detection scheme based on event boundary detec-
tion approach as described in [3].

vector to classify every 10th image of the video. The final
classification result was assessed using a 4-state hidden
Markov model for topographical segmentation. In [3], two
color vectors that were created with hue and saturation
components of HSI model were used to represent the
entire video. Spectrum analysis was applied to detect sudden
changes in the peristalsis pattern. Chen et al. assumed that
each organ has a different peristalsis pattern and hence,
any change in the pattern may suggest an event in which a
gastroenterologist may be interested (see Figure 5). Energy
and High Frequency Content (HFC) functions are used to
identify such change while two other specialized features aim
to enhance the detections of duodenum and cecum.

3.2. Significant Medical Event Detection. The primary use
of capsule endoscopy is to find the source of bleeding and
abnormality in the small intestine. Shot boundary detection
may help to speed up the review by grouping images with
similar semantics, but it may not detect medical significant
events other than acute bleeding. A common trait of afore-
mentioned algorithms is to group images by global features
such as the distribution of color; however detail features such
as patches of mucosa deficiency are often neglected. Most of
medical significant events of WCE only account for a handful
of images of the entire video, lesions in these images may not
result in significant shifts in the global features and hence
cannot be detected by shot boundary detection algorithms.
Acute bleeding that lasts for several dozens of consecutive
images may be bundled into one shot, since a vast amount
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(a) (b)

Figure 6: A bleeding detection scheme as described in [3].

of fresh blood may cause noticeable shifts among the global
feature distribution. In order to detect significant medical
events that contain little or no temporal relationship with
their consecutive image frames (e.g., ulcers, polyps, tumors,
etc.), imagewise semantic analysis is inevitable. In this
subsection, we review the machine vision analysis literature
on specific GI pathology identification, namely, bleeding,
ulcer, polyp, and tumor.

The visual appearance of bleeding images is bright red.
However, depending on the lifetime of blood, it could be
black or tarry. Lau and Correia proposed a two-step system
that discriminates bleeding and nonbleeding images under
the HSV color model [6]. The classification is rule-based
with certain combinations between color luminance and
saturation. Their system classifies images into one of the fol-
lowing categories: (1) nonbleeding, (2) low-intensity bleed-
ing, (3) bleeding, and (4) high-intensity bleeding. Another
system proposed by Liu and Yuan [7] uses Support Vector
Machines (SVMs) to classify images using color features
extracted in the RGB color model. In [9], Penna et al. utilize
a Reed-Xiaoli detector for bleeding regions and normal
mucosa region discrimination. Karargyris and Bourbakis
[10] propose a mechanism that combines Karhunen-Loeve
color transformation, fuzzy region segmentation, and local-
global graphs. Li and Meng [11] adopt neural network clas-
sifiers for bleeding imaging classification. The feature vector
consists of color texture feature and statistical measures.
The color texture feature is obtained from chrominance
moment, while the statistical measures were obtained from
the uniform LBP histogram.

The physician usually observes GI bleeding based on a
set of medical criteria such as potential causes or sources of
bleeding, bleeding frequency, and amount of blood loss. To
mimic this process, Chen et al. [3] use a macro-micro hybrid
approach for bleeding detection (see Figure 6). Unlike a
binary classification approach, their system shows a potential
bleeding distribution. In the macroapproach, each potential
bleeding area is extracted using pyramid segmentation.
Depending on the angle of the hue component, each sus-
picious bleeding segment is assigned with various weights
for bleeding assessment. In the microapproach, each image
is divided into 7 × 7 blocks and each block is validated
against specific ranges of hue and saturation components
for bleeding detection. Each image is analyzed using the two

approaches and the final bleeding distribution is the average
score of the two approaches.

With regard to polyp detection, Karargyris et al. [17]
suggest a rule-based classification system that utilizes log
Gabor filters and SUSAN edge detectors. In [18], Li and
Meng conduct a comparative study between two-shape
features, MPEG-7 region based shape descriptor and Zernik
Moments. The classifier is based on multilayer perceptron
(MLP) neural networks. The authors conclude that Zernik
Moments are superior to MPEG-7 region based shape
descriptors.

With regard to tumor detection, Karkanis et al. [21]
utilize a texture feature for tumor discrimination and the
classifier is a multilayer feed forward neural networks
(MFNNs). In [22], Li and Meng propose a feature vector con-
sisting of LBP and DWT. The experiment result shows that
their proposed feature outperforms both original rotation
invariant LBP and color wavelet covariance texture features.

For ulcer detection, Li and Meng [13, 14] propose a
feature vector that consists of curvelet transformation and
uniform LBP. However, this approach performs an exhaus-
tive comparison regardless of the unique visual appearance
of an ulcer and hence, the performance could be slow.
On the other hand, Karargyris and Bourbakis [15] present
a segmentation scheme utilizing log Gabor filters, color
texture features, and an SVM classifier. Although the authors
considered the unique visual appearance of ulcers, the HSV
color model they chose suffers the same shortcoming as the
RGB color model. Chen and Lee [4] propose a four-step
detection scheme (see Figure 7). The first step is to create
a saliency map emphasizing the ulcerated mucosa, followed
by initial saliency segmentation. Second, Gabor filters are
applied to find the contour for saliency region refinement.
When the saliency region is refined and extracted, a feature
vector is formed using LBP and six statistical measurements
along the region contour. Finally, the feature vector is
validated by an SVM classifier for ulcer detection.

4. Discussion

Human beings are capable of interpreting images at different
levels. For example, we can interpret images based on low
level features such as color, shape, texture, or based on
high level semantics such as events or abstract objects. A
computer only interprets images based on low level features
and thus, choosing the right image feature becomes critical
for computer-aided diagnosis systems. Generally, feature
selection for image abstraction is modeled to mimic a
human’s understanding of visual content. For example, the
dominant color of fresh blood is red, hence it is desirable to
use the color feature for bleeding detection. The color and
amount of blood are important cues for bleeding detection;
however, color alone does not always discriminate images
correctly. According to experiment results from [3, 6–9, 11,
12], the accuracy of bleeding detection ranges from the lower
70% to the upper 90%. Bleeding image detection based
on predefined threshold values is especially difficult since
the image quality is susceptible to illumination and camera
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Figure 7: Ulcer detection scheme described in [4].

motion and also due to the fact that visual color appearance
of an organ varies from person to person.

Currently, detection rate for ulcer, polyp, and tumor is
also not perfect. According to [12–15], the ulcer detection
accuracy for image-based experiments ranges from 90% to
96%. The detection rate for polyp, as published in [16–18],
ranges from 73% to 89%. As for tumor detection, the detec-
tion rate ranges from 96% to 98% [19–22]. Today, the image
quality of WCE imaging is considered low when compared
to conventional endoscopes. Commercially available WCEs
have very limited flexibility in terms of capsule control. The
hardware design limitation of WCE (e.g., battery life, no
manual operation support, etc.) and uncertainty operating
inside a functioning digestive tract (e.g., food residue, faeces,
contraction, etc.) make developing an efficient computer
aided diagnosis system a challenging task. Although inno-
vative approaches are introduced to enhance the quality of
WCE images, the accuracy of detection remains low when
compared to other image processing applications such as
motion detection in surveillance video or industrial surface
inspection.

Meanwhile, the experimental results show a wide vari-
ance in accuracy, one possible cause could be the size of
image collection. Although a full length WCE video contains
at least 55,000 images, most of the experimental results
that claim high accuracy were tested with less than 1,000
images (Table 2). Among the literature in this paper, only
[3, 8, 32] used full-length videos, other works were validated
against privately selected image set. The aforementioned
hardware limitation of WCE coupled with the lack of
publicly accessible WCE video database makes it difficult for
researchers to measure their work against some baseline. In
addition, the fact that only a handful of significant images
observed in each video also makes it difficult to effectively
characterize the visual appearance for pathology assessment.

The research of effective image retrieval from an image
or video database has been active since 1970s. However, a
robust image understanding at the machine level remains
an open issue. In the 1970s, the most popular method was
text-based search. In this approach, only images that are

annotated with text are retrieved. If there were any error in
the annotation, the result could be erroneous. In the 1990s,
content-based image retrieval (CBIR) was introduced as an
alternative to text search. Low level features such as color,
texture, and shape features are extracted to search images
with similar visual features. Although there are sophisticated
algorithms to describe color, texture, and shape features,
these low level features cannot be compared to the human
cognitive concept of visual content. The gap between human
and computational ability to recognize visual content has
been termed the semantic gap [33]. Semantic-based image
retrieval was introduced in 2000s to create semantic content
representation for images. This method allows users to
perform a text query based on the semantic they have in
mind for image retrieval. However, to be able to describe
an image in semantic terms as identified by users remains
an open issue in the image processing world. In particular,
we are yet to see any work that offers semantic-based image
retrieval tool for physicians to query WCE videos.

5. Conclusion

WCE technology is fairly new and is originally intended for
the detection of obscure GI bleeding. However, GI specialists
are still uncovering other potential uses of WCE for abnormal
indications. Nevertheless, the need for automatic GI pathol-
ogy identification is in strong demand. In this paper, we
reviewed a variety of works that are related to shot boundary
detection and GI abnormality detection. The main image
abstraction approaches for WCE video can be classified
into three image features: color, texture, and shape features.
Depending on the visual characteristics of each pathology
targeted, a suitable feature form is selected for image abstrac-
tion. Currently, most bleeding-related applications utilize
color-based features, while other GI disorders utilize texture
and shape features. Among the surveyed literature, we focus
on the research that identifies specific GI pathology. This
way we can learn the relationships between GI pathology
and machine vision. Despite the effort that researchers
put for abnormality detection, it is almost impossible to
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Table 2: Summary of abnormality types, features and claimed experimental results.

Paper
Pathology Feature Experiment results

Bleeding Polyp Tumor Ulcer Color Texture Shape Image count Sensitivity Specificity

Chen et al. [3]
√ √

1,857,657 71.54% N/A

Lau and Correia [6]
√ √

1,705 88.30% N/A

Liu and Yuan [7]
√ √

800 99.73% 98.89%

Giritharan et al. [8]
√ √

275,000 83.1% 93.6%

Penna et al. [9]
√ √

1,111 92% 88%

Karargyris and Bourbakis [10]
√ √

N/A N/A N/A

Li and Meng [11, 12]
√ √ √

200 92.6% 91%

Li and Meng [13, 14]
√ √

100 93.28% 91.46%

Karargyris and Bourbakis [15]
√ √

50 100% 67.5%

Iakovidis et al. [16]
√ √

4,000 87.5% N/A

Karargyris and Bourbakis [17]
√ √

50 75% 73.3%

Li et al. [18]
√ √

300 89.8% 82.5%

Barbosa et al. [19]
√ √

192 98.7% 96.6%

Barbosa et al. [20]
√ √

600 97.4% 97.5%

Karkanis et al. [21]
√ √

N/A N/A N/A

Li and Meng [22]
√ √

300 97.33% 96%

Sensitivity = Number of True Postives/(Number of True Postives + Number of False Negatives). Sensitivity of 100% means no positives are incorrectly marked
as negative. In other words, the test recognizes all positives.
Specificity = Number of True Negatives/(Number of True Negatives + Number of False Postives). Specificity of 100% means no negatives are incorrectly
marked as positive. In other words, the test recognizes all negatives.
N/A: data is not available.

compare the performance of different implementations due
to the lack of a publicly accessible WCE video database.
Consequently, machine vision researchers are forced to test
their implementation against relatively small image sets and
thus slows down the development of commercially available
tools for WCE video review sessions.
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