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Localization in Wireless Sensor Networks (WSNs) is an important research topic: readings come from sensors scattered in the
environment, and most of applications assume that the exact position of the sensors is known. Due to power restrictions,
WSN nodes are not usually equipped with a global positioning system—hence, many techniques have been developed in order
to estimate the position of nodes according to some measurements over the radio channel. In this paper, we propose a new
technique to track a moving target by combining distance measurements obtained from both narrowband IEEE 802.15.4 and
Ultrawideband (UWB) radios, and then exploiting a novel speed-based algorithm for bounding the error. This process is applied
to a real dataset collected during a measurement campaign, and its performance is compared against a Kalman filter. Results show
that our algorithm is able to track target path with good accuracy and low computational impact.

1. Introduction

A Wireless Sensor Network (WSN) consists of a number of
autonomous elements spatially distributed in an environ-
ment to monitor physical parameters, detect events, or track
objects. These core elements of a WSN are called nodes,
and each of them has a radio transceiver, a microcontroller,
and a power source like an energy harvester or a battery. In
addition, a node is connected to a number of sensors, and
the acquired values are cooperatively processed and delivered
wirelessly through the network. Size, energy, and cost
constraints of the nodes result in corresponding limits on
the available resources, namely, memory, communications
bandwidth, and computational power—these limits must
always be considered while developing and designing new
algorithms.

The development of WSNs was initially motivated by
military applications, such as battlefield surveillance, and
in the last years they have received considerable attention
from many computer science, electronics, and telecommu-
nications researchers. Nowadays, WSNs are used in many
industrial and consumer applications, such as home automa-
tion, industrial control, structural monitoring, pedestrian
navigation, and assets tracking. In all these applications,

positional information about one or more devices of the
network is a crucial aspect and has motivated a lot of research
efforts. A common approach for estimating the unknown
position of a sensor node is to exploit ranging information
obtained from some fixed-position nodes, hereafter referred
as “anchors” [1, 2].

Distance estimation between two antennas is made
possible by the received radio waves feature, and can be
done in different ways. For example, the strength of the
received signal may be used to estimate distance, assuming
to know the transmitted power and the signal attenuations.
Differently, the travel time of a pulse from a transmitter to
the receiver can provide a distance estimate by exploiting the
propagation speed of the radio signal—this latter method
usually provides accurate range estimations, but requires
precise synchronization among the nodes [3].

The algorithms used to estimate the position from range
measurements—such as Min-Max, Multilaterate, Maxi-
mum Likelihood, and so forth—are very well known and
widely investigated [4]. Unfortunately, many applications
are located in indoor scenarios, where the radio channel is
mainly unpredictable due to signal’s reflections against walls,
floors, and ceilings, which cause multipath phenomena [5].
In scenarios with static or slowly changing node positions,
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this interference leads to stochastic variations of the radio
signal behavior dictated by a path-loss model [6], and these
random effects result in large localization errors [7].

In this paper, we will use two geometrical based local-
ization algorithms—MinMax and Multilateration—in order
to estimate the target position, and we propose two novel
algorithms for fusing efficiently the range information pro-
vided by the narrowband IEEE 802.15.4 radio standard and
an Ultrawideband (UWB) localization system. Furthermore,
we will investigate an effective way to improve localization
accuracy exploiting the estimated target speed. This velocity-
based tracking filter, in opposition to the current research
trends, requires minimal information to be tuned, has min-
imum computational impact, and features enough accuracy
to be employed in a lot of practical, noncritical applications.

The paper is organized as follows: Section 2 shows an
analysis of some related works, while Section 3 describes
the proposed methodology used to estimate the positions.
In Section 4 the experimental setup, tests results, and their
analysis are provided, and in Section 5 conclusions will be
drawn.

2. Related Work

Localization in WSNs is a well-investigated topic, and many
works can be found in literature [2, 3]. Nonetheless, it is
still an open issue: noise and multipath phenomena have a
high impact on low-power radio signals, leading to severe
performance degradation in indoor environments. The
position of a target node can be computed using its distance
from some fixed anchor nodes—radio signal strength or
time of arrival measurements are usually exploited in sensor
networks to obtain an estimation of the amount of space
between two antennas [7]. These measurements feed a
geometry or statistical based algorithm that determine the
final position. Some of these algorithms are very accurate
in finding the position, but might be really computational
intensive—hence, approximated variants algorithms have
been developed to reduce the complexity, representing a
trade-off between accuracy and complexity [2, 6].

A way to improve ranging accuracy consists of using
ancillary radio hardware, such as multiple and/or directional
antennas [8], and equipping them with an absorbing plate
in order to bound reflections and multipaths. The results
obtained in [9, 10] have demonstrated that hardware
upgrades can lead to satisfactory results.

Other interesting works focused on channel modeling
and anchor nodes density, showing that an accurate estima-
tion of the target position can be achieved by knowing the
behavior of the radio channel in the specific environment [3,
11]. These solutions are generally more energy demanding
or require dedicated hardware, since more expensive and
complex devices are usually needed. Thus, there is still a
lot of interest in studying how to achieve accurate radio-
based localization without using adhoc hardware or tying the
system to a single environment.

If the target is moving, raw positions coming out from
the localization algorithm can be fed into a dedicated track-
ing procedure. This step is required for filtering out noisy

measurements and follow the actual trajectory of the target
as close as possible. These filters might exploit additional
data coming from different sources, such as inertial sensors
or topological information about the environment. Once
again, some of the proposed tracking filters are very accurate
but exploit sophisticated, time-consuming algorithms that
cannot be easily run over simple sensor nodes [13].

In this work, we want therefore to analyze how it could
be possible to design a low-complexity tracking system for
WSNs. Moreover, it is assumed that UWB radios provide
accurate ranges with an error below a few centimeters,
experimental results show that this is not always the case [14],
due to the presence of walls and time synchronization issues
among the nodes. For this reason, the proposed approach
includes fusion of range information coming from different
radio technologies as a processing step prior to the tracking
routine.

3. System Description

In recent years, there has been a growing attention to
cognitive networks [15]. Differently from traditional devices,
a cognitive node is able to exploit different portions of the
spectrum and different modulation techniques according to
channel conditions. To this aim, special type of radios able
to autoreconfigure their transmitting hardware at software
level have been deeply investigated for the next generation
of mobile devices. This capability is obtained using a special
kind of radio, called Software Defined Radio [15]: in such
devices the behavior of the radio can be adapted on the fly, so
that more than one standard can work over the same device.
This particular radio hardware might be used in WSN too. A
possible application of such hardware might be a sensor node
supporting both narrowband and UWB communications by
switching between the IEEE 802.15.4 and IEEE 802.15.4a
standards when needed.

For this reasons, a node able to communicate using
different radio frequencies might obtain distance informa-
tion in more than one way, such as through the ToA of
an UWB signal and the RSSI value of an IEEE 802.15.4
transceiver. The outcome would be a set of estimates having
different accuracies and time resolutions. Hence, in this
work we propose a method to fuse measurements coming
from multiple radio sources. Specifically, we considered
Time of Arrival (ToA) values from UWB radios and the
Received Signal Strength Indicator (RSSI) provided by IEEE
802.15.4 narrowband RF modules, although this method is
technology-agnostic and could be applied to other ranging
techniques. We also want to show the benefits of a simple
algorithm to improve positioning accuracy in a radio-hybrid
WSN tracking system without increasing the computational
complexity. To this aim, we implement a novel velocity
algorithm, which relies on the speed of the target node to
bound the positional error.

3.1. Radio Ranging. Nowadays, most of existing hardware
platforms for wireless sensor networks use radio modules
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complying with the IEEE 802.15.4 standard. This stan-
dard was designed specifically for low-power and low-data
rate communications in Wireless Personal Area Networks
(WPAN), and it defines the Physical (PHY) and the Medium
Access Control (MAC) layers [3].

The original IEEE 802.15.4 standard was released in
2003 and later revised in 2006, and it operates in three
possible unlicensed frequency bands: 868 MHz (Europe),
915 MHz (North America), and 2.4 GHz worldwide. The
original version of the standard uses a physical layer
based on Direct Sequence Spread Spectrum (DSSS) tech-
nique, having data rates from 20 kbps up to 250 kbps.
Coexistence of multiple networks is enabled by frequency
multiplexing, which divides each band in channels. The
2006 revision has improved the data rates for the lowest
bands, although 250 kb/s is still the maximum achievable
bandwidth, and additional modulation schemes has been
defined. The majority of commercially available off-the-shelf
radio modules operates in the 2.4 GHz band, relies on DSSS
modulation, and transmits at 250 kb/s over 2 MHz wide
channels.

The IEEE 802.15.4 standard requires the PHY layer
to provide an 8-bit integer value as a linear estimate of
the received signal power, expressed in dB—this value is
commonly known as the Received Signal Strength Indicator
(RSSI). The idea behind this indicator is that the trans-
mission power at the sender directly affects the received
strength—hence, according to Friis free space path loss law,
RSSI decreases quadratically with the distance [6]. However,
in real-world deployment the ideal distribution is not always
applicable: the radio signal is affected by a lot of degrading
effects, such as multipath and shadowing. All these phenom-
ena deeply impact the accuracy of RSSI measurements, often
resulting in inaccuracies in the estimated distance [8].

In recent years, Ultrawideband (UWB) technologies
have emerged as a viable solution for short-range wireless
communications in Personal Area Networks. Compared to
narrowband modulations, like the one used in IEEE 802.15.4,
UWB increases significantly the robustness of the transmis-
sions spreading the signal over a very large bandwidth—
usually 500 MHz. In addition, due to the large bandwidth
operations, UWB signals feature very fine-grained time
resolutions. Robustness and high time resolution are key
factors for a precise localization, and this has motivated the
definition of an UWB-based physical layer for wireless sensor
network alternative the IEEE 802.15.4, called IEEE 802.15.4a.

The IEEE 802.15.4a standard has been released in 2007.
Its UWB physical layer exploits an Impulse-Radio approach
to transmit short pulses and to provide accurate ranging
capabilities [3]. Specifically, it provides primitives for preci-
sion ranging using Time of Arrival (ToA): the travel time of
the signal from the transmitter to the receiving node is used
to measure the distance between the two antennas. The UWB
physical layer of IEEE 802.15.4a allocates frequencies in three
ranges: a sub 1 GHz band, a band between 3 and 5 GHz, and a
third band between 6 and 10 GHz. All these bands are divided
into channels having a bandwidth of 500 MHz or more,
providing a minimum data rate of 850 Kbit/s and range esti-
mation errors below 1 meter under line-of-sight conditions.

Hence, while RSSI in IEEE 802.15.4 is greatly affected by
multipath fading and channel variability, TOA-based ranging
with UWB is more robust but has strict requirements in
terms of clock synchronization and processing time.

3.2. Hybrid Positioning. Range measurements coming from
the radios, regardless the way they are obtained, may be
used as inputs for algorithms, which compute the position
of the target node. These algorithms can be based either
on geometry considerations or statistical methods. We chose
two simple geometric techniques: Multilateration and Min-
Max. Their selection was driven by their wide use in literature
because of their low complexity and good performances
[3, 8].

Min-Max is a deterministic localization algorithm char-
acterized by a low-computational complexity—it estimates
the position of the target within an area delimited by
maximum and minimum distances from the known anchors.
Range measurements of relative distances between the agent
and the anchor nodes are considered, and these distances
are used to create squares surrounding the anchors. The
estimated target position is the center of the intersection of
these bounding boxes—this point can be easily computed
by finding the maximum of all the lowest values of the
coordinates and the minimum of all maximum values.

Multilateration is a simple range-based, decentralized
localization algorithm based on geometry principles. An
unknown node has position (x, y), and ranges are defined
as the estimated distances—obtained for example by TOA
or RSS measurements—between the unknown node and
N anchor nodes at known coordinates (xi, yi), where i =
1, 2, . . . ,N . In presence of error-free distance estimations,
the ith anchor defines a circle centered in (xi, yi), with
radius di, and having the target point (x, y) belonging to the
circumference. The intersection of three circles is sufficient
to determine the position of the target node. However,
the intersections can be zero or more than one if range
measurements are affected by errors, and some geometrical
rules must be used to cope with this issue [8, 16].

Both localization algorithms need at least three mea-
surements to produce an estimate. However, increasing the
number of anchors does not continuously improve the
accuracy. On the contrary, adding noisy values may degrade
the output [6, 8]. Hence, our system uses only the 6 smallest
range data and discards the other values at each step. The
assumption underlying this choice is that higher distances are
less accurate: this is consistent with the exponential path-loss
model. Additionally, this assumption makes perfect sense
in an indoor environment, where higher distances might
increase the probability of having walls and other obstacles
between the anchors and the node.

Once the best data for each source have been selected, the
measurements need be fused. We have identified two possible
techniques for combining the different data coming from
our cognitive device: the first method is called Partial-mix
(hereafter P-mix) while the second will be referred to as F-
mix, which stands for Full-mix.

In P-mix the localization algorithm is executed indepen-
dently for the two sets of range measurement, resulting a set
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of two points. The fused estimated position is the barycenter
of these points—this approach may be generalized to an
arbitrary number of measurement sets. In our case, we have
only a pair of radio source, and the final position is the
intermediate point between the two positions.

In F-mix, all the measurements available are combined
together, regardless the source—then, according to our
criteria, the values are sorted and the best 6 values are used
to produce a single estimation.

P-mix can be extended to include weights in the calculus
of the barycenter, for example, to give more credit to
one range system if we know that it will always be more
accurate than the others in some areas of the environment.
On the contrary, F-mix is more flexible and can be used
with no variations in presence of range technologies that
provides value with different frequencies. Moreover, F-mix
is more robust: if all the anchors belonging to one source are
really distant and unreliable, their results are automatically
discarded while better values are used.

3.3. Velocity-Based Tracking. Multipath phenomena or issues
in the leading-edge detection method on UWB signals may
impact the ranging process, reducing the accuracy of the
estimation. Similarly, walls or other obstacles may change
the path-loss model used to infer range from RSSI data.
Hence, the estimated trajectory of a moving target, defined
as the temporal sequence of positions provided by any
localization algorithm, is likely to be affected by some degree
of uncertainty.

To cope with this problem, a proper tracking algorithm is
often employed to predict the path of the target and to cancel
out noisy estimations [2]. This activity presents a number
of challenges, for example, multimodal sensing, signal pro-
cessing, and data fusion in real-time. Belief Propagation,
Kalman, and Bayesian/Particle filters are the most used types
of schemes for tracking in WSNs, but they not always meet
the limitations imposed by technology in terms of energy
and computational capability [17, 18]. This motivated our
quest for a low-complexity algorithm, based on simple
mathematical operations and able to track a target node
without requiring any information about the surrounding
environment or additional data exchange among anchors.

Our tracking technique relies on the history of move-
ments and a linear prediction model of the speed. The
current position computed by our method is a function
of the current coordinates and the previous N values of
the velocity. In addition, it responds as an all-pass filter
to decelerations, while it has the typical low-pass behavior
of a finite impulse response filter to increases the speed.
The latter feature is used to bound the movement of the
target, reducing the impact of noisy positions significantly far
away from the real ones. This filter has only one parameter,
which is the amount N of past positions that are used in
combination with the current estimation. The higher the
value of N is, the more important the past history will be. We
set all the weights of the window to the same value, although
the filter could be easily modified to give more importance to
recent estimations than the older ones.

A possible scenario for this approach is, as example,
pedestrian tracking. A walking person may have an average
speed constant over time or can constantly accelerate, thus
linearly varying his/her speed. The window size N should be
kept small if the target is expected to vary frequently its speed,
such as while visiting an exposition, while the window might
be increased if the person is doing jogging in a park and has a
constant speed. We also accept that the person can suddenly
stop for some reasons: in this case, since the position does
not change, the algorithm ignores previous speed estimations
and sets the last coordinates as the actual ones.

The estimation of the current position proceeds as
follows: implementing a moving window of size N, a buffer
stores the latest N estimated target positions Pi, and their
corresponding time interval ti. A first velocity guess can be
obtained by exploiting these values according to

v̂(i) =
∑N

j=1

∥

∥

∥Pi− j+1 − Pi− j

∥

∥

∥

∑N
j=1 ti− j

, (1)

After having estimated the velocity v (i), we constrain the
maximum displacement to a circle centered in xi with radius
ri = v(i)×(Ti+1−Ti). A refined guess of the subsequent target
location is obtained according to

(x − xi)
2 − (y − yi

)2 = r2
i . (2)

The estimation is eventually obtained through a com-
parison of the raw position provided by the localization
algorithm and the bound provided by (2).

As shown in Figure 1, two situations are possible: if the
estimated point falls inside the bound, it is assumed that this
new position is accurate and it is taken as it is. On the other
side, if the newest estimation falls outside the bound, then
the measure might be affected by noise: the actual position
is assumed to be along the direction of estimated point, but
over the bound and not farther.

A formal description in polar coordinates of the algo-
rithm that provides the new position P at the step i might
be

̂Pi = (l, θ), (3)

where θ and l are defined, respectively, as

θ = atan2

(

yi − ŷi−1

xi − x̂i−1

)

, (4)

l =
⎧

⎨

⎩

∥

∥

∥Pi − ̂Pi−1

∥

∥

∥, l < Rb

Rb, l ≥ Rb,
(5)

and value Rb of the bounding radius is

Rb = vi,i−N · ti = ti ·
∑N

j=1 li
∑N

j=1 ti− j

. (6)

4. Experimental Results

To validate the performance of the whole hybrid tracking
algorithm, it was applied to a database of measurements
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Figure 1: The new estimated point is taken as is if it falls inside the bound (a), while it is moved over the circular bound if it is outside (b).

1 m

Figure 2: The measurement scenario, where the green line defines
the target path. Red and blue marks represent UWB and ZigBee
anchor locations, respectively [12].

collected by researchers of University of Cesena in 2009. All
the data come from a real sensor network [12] deployed
inside a building of the faculty of Computer Science during
an acquisition campaign made within the Newcom++
project.

As shown in Figure 2, a total of 21 IEEE 802.15.4-based
anchors and 12 UWB devices were scattered in a 450 m2

floor at known locations, while the target device was a robot
moving along a corridor on a 25 m rail—this set-up allows to
know the exact position of the mobile node at each instant.
Range measurements retrieved by the target device are used
as inputs to the proposed approach, and the output of our
system is eventually compared to the one obtained by a
Kalman filter [19].

Please note that a preliminary filter was employed in
order to remove all UWB measures affected by system and
software issues, as suggested in [12].

4.1. Hybrid Positioning. Since the moving target is equipped
with different radios based on IEEE 802.15.4 and UWB
transceivers, two different sets of range measurements for
target position were collected.

First, the datasets were considered separately. Local-
ization performances were evaluated using narrowband or
UWB data by Min-Max and Multilateration algorithms.
Then, the two sets were combined using either the
Partial-mix (P-mix) or Full-mix (F-mix) method previously
described in Section 3.2.

Table 1 shows the RMSE (Root Mean Squared Error) for
each of the four resulting situations. Analyzing the data, it is
clear that the fusion of different range sources provides better
results than using single source measurements. In particular,
F-mix is the algorithm that best estimates the actual target
position.

4.2. Velocity-Based Tracking. Since positions estimated with
a localization algorithm are not error free, an algorithm
to improve the accuracy of the moving target must be
employed. As described in Section 3.3, a velocity-based
tracking algorithm has been implemented.

In this algorithm, the average speed is computed over a
window of previous positions, and the estimated speed is
used to constrain the maximum displacement of the next
position estimate, in order to bound the errors. After many
tests where the size of the window was changed, we found
that the optimal value of N is 6, which corresponds to
about 3 s. We made two test sets on velocity-based tracking
algorithm: the former was done using raw positions coming
from localization algorithms, while in the latter we used P-
mix or F-mix to fuse range measures. Table 2 summarizes the
results of these tests.

It stands out that the use of the velocity-based tracking
algorithm reduces the localization RMSE over the whole
track. In particular, the combination of velocity algorithm
and F-mix allows reaching the minimum RMSE.
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In addition, apparently Min-Max is both the simplest and
more accurate localization method. For this reason, we will
use Min-Max only for further analysis and to compare our
tracking algorithm against a Kalman filter.

As already mentioned, filters like Kalman Filter, Par-
ticle Filters, and Belief Propagation are used for tracking
purposes. Some of them are very accurate but have high
complexity—Particle Filters—while others, like Kalman Fil-
ters, have lower accuracy but are less complex. Since our
aim is to design a low complexity algorithm able to be
implemented in WSN nodes, we selected the latter for
comparisons. In Kalman filter, the estimated velocity value
is included into status equations to guess next target position
as follows:

xk = xk−1 + K(zk −Hxk−1), (7)

xk = Axk−1 + wk−1, (8)

zk = Hzk−1 + vk−1, (9)

where the 2 × 2 matrix A relates the states to the previous
time step, while H is a 2 elements vector related to the
measurements vector zk. The random vectors wk and vk
model the process and measurement noise, respectively, and
are both independent and Gaussian. Finally, to make the filter
adaptive, the Kalman gain K in (7) is computed each time a
new measurement coming from a localization algorithm is
ready through a series of standard equations. For a complete
discussion on this topic refer to [13, 18, 19] and references
within.

In our implementation, zk is populated with the position
estimates coming from Min-Max or using Multilateration
algorithms, while the velocity algorithm provides speed
estimates; xk represents then position and speed estimation
according to the physical model described by (4).

Test results are shown in Table 3, while Figure 3 graph-
ically shows the movement tracked by both velocity-based
and Kalman Filters when using Min-Max plus the F-mix
fusion method.

Results show that velocity Algorithm and Kalman Filter
have similar accuracies even if the complexity of the filters
is different. To make the comparison among the two
approaches more significant, it may be useful to investigate
the computational effort required by the two methodologies.
The velocity algorithm is based on scalar additions, products,
and divisions of real numbers, and the square root and
trigonometric operation can be efficiently implemented
by using a lookup-table or one of the existing low-level
mathematical libraries. On the other hand, Kalman filter
requires matrix operations iteratively, and we expect that the
computational effort is considerably higher with respect to
our proposed method.

In order to experimentally evaluate their different com-
putational demands, both algorithms have been imple-
mented on a StrongArm SA-110 running at 200 MHz, over
the real-time Operating System VxWorks 5.1. More specif-
ically, a quantitative analysis has been made by averaging
the time needed to perform 1000 iterations. Results show
that Kalman filtering requires an average time of 72 ms

Table 1: RMSE (in m) for the localization process using different
combinations of algorithms and datasets.

802.15.4
only

UWB
only

UWB + 802.15.4
(P-mix)

UWB + 802.15.4
(F-mix)

Min-max 1.15 1.45 1.15 1.05

Multilateration 1.25 1.51 1.21 1.19

Table 2: RMSE (in m) of the velocity-based tracking algorithm.

802.15.4
only

UWB
only

UWB + 802.15.4
(P-mix)

UWB + 802.15.4
(F-mix)

Min-max 0.75 0.80 0.74 0.72

Multilateration 0.80 0.91 0.76 0.75

Table 3: Comparison of the RMSE (in meters) obtained using our
novel technique or a Kalman filter.

802.15.4
only

UWB
only

UWB + 802.15.4
(P-mix)

UWB + 802.15.4
(F-mix)

Velocity-based 0.75 0.81 0.74 0.72

Kalman 0.62 0.87 0.57 0.58

to compute the next position estimate, while the velocity-
tracking approach requires only 12 ms. Hence, requiring less
processor time for each tracking iteration, velocity algorithm
and limits energy consumption. Moreover, assuming a
sampling time of 50 ms (which is the case for our best data
set), the Kalman filter will be too slow, while the velocity
algorithm, although less precise, is suitable for real-time
filtering.

5. Conclusions

In this paper we compared the behavior of different localiza-
tion algorithms for WSNs, such as Min-Max and Multilatera-
tion as well as more complex estimation procedure involving
a velocity estimate and filtering. The peculiarity of this
work is the joint exploitation of two sets of measurements
from different wireless transmission systems for the same
target, one using narrowband modulation and thus allowing
localization using RSSI measurements, while the other
exploiting UWB technology, where range measurements
are based on ToA. We tested localization algorithms using
both data streams, either separately or fused with proper
algorithms. Results show that joint use of both datasets
with the so-called F-mix algorithm improves the localization
accuracy. As expected, the fusion of range measurements
coming from different sources can help in better estimating
target position.

Moreover, a novel lightweight velocity-based tracking
algorithm has been used to bound positioning errors, and
tests revealed that the accuracy is improved again. If com-
pared with standard Kalman Filter, our method performs
slightly worse as far as the accuracy is concerned. However,
Kalman is more complex and computational demanding.
Hence, our novel velocity-based algorithm may be suitable
if a localization system with tracking capability must be
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Figure 3: Graphical comparison of the actual path, the estimated
path using velocity-based filter, and the path computed when
filtering with Kalman.

implemented over a cheap and low-power sensor node, with
limited computational power.

In future works, other radio standards, such as IEEE
802.11 or IEEE 802.15.1, will be used as additional sources
of range measurements in order to test the data fusion
algorithm with more than two datasets. This will help
to understand in which conditions localization accuracy
improvements can be achieved.
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