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The present study aims to develop an efficient dynamic statistical model to describe the daily behavior of boundary layer
ozone in Macau. Four types of Kalman-filter-based models were proposed and applied to model the daily maximum of the
8 hr averaged ozone concentrations within a decade (2000-2009). First, the boundary layer ozone was modelled with the time-
varying autoregressive model of order p, TVAR(p), which is a pure time series model hindcasting the ozone concentration by a
weighted sum of the ozone histories of the previous p days. Then, it was modelled with the time-varying autoregressive model with
linear exogenous input, TVAREX-Lin, which combines the TVAR model and the exogenous input of key meteorological variables
in a linear fashion. Next, the nonlinear TVAREX model (TVAREX-NLin) which assumes the nonlinear influence of individual
meteorological variable on ozone was adopted. Finally, a semiempirical TVAREX model (TVAREX-O3) was proposed to address
the coastal nature of Macau and the interaction between the input variables. It was found that the proposed TVAREX-O5; model
was the most efficient one among the model candidates in terms of the general modelling performance and the capability of

modelling the episode situation.

1. Introduction

The increasing trend of boundary layer ozone concentrations
in the Pearl River Delta (PRD) region was observed in
recent decades due to increasing anthropogenic emissions
of ozone precursors such as oxides of nitrogen (NO,) and
volatile organic compounds (VOCs) [1, 2]. This problem has
been receiving greater attention due to increasing evidences
discovered for the adverse effects of ozone exposure (res-
piratory and ocular damage, crop yield reduction, climate
change, etc.) [3-5]. Therefore, taking actions towards its
proper management is necessary and urgent. Developing
a representative model to investigate the variation of the
ozone concentrations measured in the existing air quality
monitoring network is obviously an initial but essential step.

In the past decade, the statistical models developed to
model the boundary layer ozone behavior of the Pearl River
Delta region are based on offline techniques such as the
artificial neural network and the support vector machine
(4, 6, 7]. These techniques assume that the model coefficients

should be time-invariant after model training. However,
air quality system changes with time, making the offline
models underperform [8]. Therefore, the objective of this
study is to develop a representative dynamic statistical model
to describe the daily behavior of boundary layer ozone of
Macau, a fast developing city in the PRD, for improvement.
A dynamic statistical model differs from a static one with
its time-varying model coefficients. Through changing the
model coefficients at every time step, it is believed that the
model can adapt to the change in the actual system. In
this study, the extended Kalman filter [9, 10] was adopted
to estimate the time-varying model coefficients for the
proposed models. This technique has been implemented
on similar models used to predict the daily averaged PM;q
concentrations of Macau before [8, 11, 12]. Therefore,
the present study only focuses on describing the proposed
models for the ground-level ozone. Detailed procedures
of employing the Kalman filter for the state estimation
of the statistical air quality models can be referred to in
[11].



2. Data and Methodology

2.1. Study Area and Data. Being Asia’s well-known gaming
mecca, Macau has been experiencing rapid economic growth
in the last decade due to the booming of its gaming and
tourism industry. The increasing energy consumption has
caused degradation on the ambient air quality as well as
the indoor one. In view of the public concern, the Macau
Meteorological and Geophysical Bureau has been developing
automatic air quality monitoring network spanning over the
Macau peninsula (urban core), the Taipa Island (suburban
area), and the Coloane Island (rural area) to monitor the
variation of key air pollutants including ozone since 1999.
In this study, the boundary layer ozone concentrations
recorded at the ambient (Taipa) station from January 2000
to December 2009 are studied since this station has the
longest dataset of all the monitoring stations. In addition,
the boundary layer ozone is a more dominant problem in
the Taipa island due to more biogenic emissions of VOCs
and the lack of NO, titration [13—15]. Finally, this station
is located at the peak of the Taipa Grande Hill, which has an
altitude of 110 m above the sea level. Therefore, the ozone
concentrations monitored at this station are expected to
represent the general ambient condition.

2.2. Model Candidates. Four adaptive statistical air quality
models are proposed here. They can be classified into
two major types, namely, the time-varying autoregressive
(TVAR) model and the time-varying autoregressive model
with exogenous inputs (TVAREX). These model candidates
are further described below.

2.2.1. TVAR(p) Model. The first model candidate TVAR(p)
is defined as the time-varying autoregressive model of order
p»> which has the following form:

X = Pri1 X1+ pr1Xk—p + fro1 (1)

In it, the daily maximum of the 8hr averaged ozone
concentration on the kth day xi is predicted by a weighed
combination of the ozone past histories of the previous
p days [8]. The weights are given by the uncertain time-
varying model coefficients ¢;x—1,i = 1,..., p, which can be
estimated by Kalman filter [11]. The last term fx—; denotes
the modelling error which represents the unmodeled system
dynamics that affect the ozone concentration and is modeled
as a Gaussian-independent and identically distributed (i.i.d.)
process with zero mean and the process noise variance af.

2.2.2. TVAREX-Lin Model. The second model candidate
TVAREX-Lin is defined as the time-varying autoregressive
model with linear exogenous inputs:

X = Prk—1Xk—1 + P2k-1X_1 + P3k—15k + Pa—1 Mk + P5 -1k

+ Pok—110k| + d7p—11k + fi1.

(2

Unlike the TVAR(p) model, the TVAREX-Lin model assumes
that the ground-level ozone does not only evolve according to
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its past histories, but is also influenced by other conditions
occurring on the day of prediction. These conditions include
(i) the photochemical reactions that transform the precur-
sors into ozone, (ii) the nature of the replenishing air masses,
and (iii) the dispersion condition. These mechanisms are
reflected by using the linear combination of the influencing
meteorological variables as the exogenous inputs. In this
model, the symbols xx_; and x;_,; denote the daily maximum
of the 8 hr averaged ozone concentration on the (k—1)th day
and the 8 hr averaged ozone concentration measured before
the (k—1)th day, respectively. These two variables are applied
to represent the initial ozone condition. The variable s; is
the solar radiation index which is defined as the product of
the daily sum of the 8 hr averaged solar radiation and the
duration of sunshine on the kth day. It is used to reflect the
amount of energy that propels the photochemical reaction
for ozone formation. The symbol A is the daily average
of the 8 hr averaged relative humidity, and this factor can
limit the ozone generation since high humidity encourages
the chemical reaction of the NO, and the NaCl particles
brought by sea breeze [16] on the kth day. The parameters
ur and |6¢| are the magnitude and the absolute angle of
the resultant wind vector which is calculated by the vector
sum of the 8 hr averaged wind velocity vectors on the kth
day. It is noted that the 8-hr averaged wind velocity vector
is calculated by the vector sum of the hourly wind velocity
vectors of the previous 8 hours. The magnitude u reflects the
dispersion condition, and the absolute angle 60| represents
the leading wind direction which influences the source of
the replenishing air masses on the kth day. For example, a
resultant angle of 0° refers to the prevailing northerly wind,
while 180° indicates the prevailing southerly wind. The input
I is the index of wind reversion on the kth day:

I =m]ax[cos(’6j,1‘) —cos(‘ej’)], (3)

where |0;| is the absolute angle of the resultant wind vector
at the jth hour. This index is positively correlated with
the maximum of the ozone concentration on the day of
prediction. It is defined to capture the sudden reversion
of wind direction which may recirculate the contaminants
and cause ozone enhancement [17]. The symbol ¢;x—; is
the time-varying coefficient for the associated input variable
on the (k — 1)th day. Finally, the term fi_; represents the
modelling error and it is modeled as Gaussian i.i.d. with zero
mean and the process noise variance Ufz‘.

2.2.3. TVAREX-NLin Model. The third model candidate
TVAREX-NLin is defined as the time-varying autoregressive
model with nonlinear exogenous inputs:

X = Pre—10e-1 T+ oo B+ BB
+ Pt hi ™+ s o B (4)

+ Pok—110c 1 + P a1 LT + fro.
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As the formation of ozone is a nonlinear process, it is
attempted to investigate the effect of nonlinearity on the
modelling performance by using the same set of input
variables of the TVAREX-Lin model and modelling the effect
of each input variable with the power law. The symbol gk
denotes the time-varying exponent of the input variable on
the (k — 1)th day.

2.2.4. TVAREX-O3 Model. Although the TVAREX-Lin mod-
el and the TVAREX-NLin model address the important
exogenous inputs which represent the influencing photo-
chemical and physical mechanisms of ozone, their functional
forms are solely empirical and may not completely reflect
the nature of the study area. In addition, these two models
do not account for the interaction between the input
variables. Therefore, the semiempirical TVAREX-O3; model
is proposed below to address the coastal characteristics of
Macau and the interaction of some input variables:

Xk = [¢1,k—1xk—1 + </52,k71x;,(,1
+ @3k 15k exXp(—Pak—1hk — Ps—110k| + Por—-11k) ]

X exp(—¢7r—1uk) + fr-1-
(5)

The first two terms are still used to reflect the background
ozone conditions, while the third term is used to represent
the photochemically formed ozone by the transboundary
ozone precursors within the Pearl River Delta region. Since
Macau is a coastal city located at the southwest of the
PRD, the ozone precursors can be easily transported to
Macau from its upwind cities nearby when the prevailing
winds are blowing from the northerly directions. On the
contrary, Macau is facing the South China Sea located to
its south. It is expected that Macau is less influenced by
the transboundary air pollution from the cities located to
its North when the prevailing wind direction is southerly.
Therefore, the absolute angle in the third term is used to
represent the effect of the replenishing air masses brought
by the prevailing wind on the day of prediction. However,
the concentrations of the precursors in the replenishing air
masses can be also increased when there is a reversion in the
wind direction that causes recirculation and accumulation
due to this momentum swing. On the other hand, the
amount of water present in the replenishing air masses may
affect the concentration of the nitrogen dioxide. Therefore,
the variables hy and Ii also appear in the exponential term
to account for these effects on the ozone precursors. Then,
the solar radiation index s; outside the exponential term
is adopted to represent the available energy to propel the
ozone formation for the precursors present in the incoming
air masses due to the photochemical reactions. After the
photochemical formation process, the original background
concentration together with the photochemically formed
one will be dispersed by wind, and the exponential term
containing the magnitude of the resultant wind velocity
vector is used as a discounting factor on the modelled
ground-level ozone concentration.

3
TABLE 1: General performance of the TVAR(p) models.

p RMSE (ugm~>) MAPE (%) R 1A
1 35.49 44.34 0.48 0.83
2 35.48 45.54 0.48 0.83
3 35.03 45.68 0.48 0.83
4 34.93 45.67 0.49 0.83
5 34.67 45.89 0.49 0.83
6 34.65 46.02 0.49 0.83
7 34.64 46.04 0.50 0.83

3. Results and Discussion

3.1. General Performance of the Proposed Models. In this
section, the proposed models are evaluated based on the
measured daily maximum of the 8-hr averaged ozone con-
centrations recorded at the ambient (Taipa) station between
2001 and 2009. In order to avoid the transient state of
Kalman filter, the data in 2000 are not included in the model
evaluation. First of all, the general (global) performances
of these models are evaluated with some well-known error
indices including the root-mean-square error (RMSE):

N
1 A
RMSE = |— Z (zx — xk\kfl)Z, (6)
N k=1

the mean absolute percentage error (MAPE):

N ~
z |Zk — Xk|k-1 |
Zk

MAPE = E

N X 100%, 7)

k=1

the coefficient of determination (R?):

R — [ St (2 = pe) (it — ) } )
\/Zi\]:l (zk — ”2)2\/221:1 (Xkfk-1 = .”x)z

and the index of agreement (IA):

Si (2 — Rap)’

IA=1-—5 4
Skt (lzk = pe | + | X1 = pie|)

» )

where N, zk, Xkjk-1, x> and p, represent the number
of measured days, the measured daily maximum of the
8-hr averaged ozone concentration on the kth day, the
corresponding hindcast by the model on the kth day, the
averaged value of the modelled concentration time history
and the averaged value of the measured concentration time
history, respectively. Generally, an efficient model associates
with small values of RMSE and MAPE as well as large
values of R? and IA which are close to unity. Table 1 shows
the general performance of the TVAR(p) models, p =
1,...,7. It is noted that the RMSE of the TVAR models
decreases slightly by 2.4%, and the value of R? increases
by 4.2% when p is increased from 1 to 7. However, the
value of IA remains constant, and the MAPE increases by
3.8%. The contradiction of the observed trends for different
error statistics implies that the prediction performance may
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TABLE 2: General performance of the TVAR(1) model and the TVAREX models in different seasons.
Season Model RMSE (ugm™) MAPE (%) R? 1A
TVAR(1) 39.04 46.78 0.37 0.77
. TVAREX-Lin 38.09 41.78 0.46 0.83
Spring )
TVAREX-NLin 38.51 43.63 0.40 0.80
TVAREX-O;3 25.33 34.87 0.50 0.85
TVAR(1) 36.79 45.53 0.42 0.79
TVAREX-Lin 36.28 38.52 0.53 0.86
Summer
TVAREX-NLin 36.81 40.64 0.50 0.81
TVAREX-O; 23.28 30.92 0.65 0.90
TVAR(1) 36.61 45.20 0.45 0.81
TVAREX-Lin 34.56 40.01 0.57 0.87
Autumn
TVAREX-NLin 34.64 40.32 0.50 0.83
TVAREX-O; 22.46 30.88 0.71 091
TVAR(1) 32.26 43.05 0.50 0.84
. TVAREX-Lin 30.51 32.67 0.64 0.89
Winter
TVAREX-NLin 31.21 33.21 0.58 0.86
TVAREX-O; 24.32 31.03 0.60 0.90

not be necessarily improved by using a higher-order TVAR
model. This finding agrees with the short half-life time
of ozone (~12 hours) in the atmosphere. Therefore, the
most parsimonious TVAR(1) model was chosen as the most
plausible model among TVAR(p) model candidates. Table 2
shows the general performance of the TVAR(1) model as
well as the TVAREX models in different seasons. First of
all, it is observed that TVAR(1) model is the least efficient
among four models with the largest RMSE and MAPE as
well as smallest values of R? and IA throughout the years.
It is possibly due to the lack of the information about the
meteorological conditions which may highly influence the
ozone production. In addition, it is interesting to find that
the TVAREX-Lin model generally outperforms the TVAREX-
NLin model. It should be noted that both models share the
set of input variables. The former is a linear model, and
the latter is a nonlinear one with more adjustable time-
varying parameters. However, the extra flexibility given to
the TVAREX-NLin model may be unnecessary and just make
it to be more sensitive to the local fluctuation in the data.
Therefore, this flexibility makes the TVAREX-NLin become
more difficult to tune with the general behavior of the
concentration time history and hence leads to its underper-
formance. On the contrary, the proposed TVAREX-O3 model
is also a nonlinear model which has just the same number of
uncertain parameters as the TVAREX-Lin model. However,
it is more efficient compared to the other two empirical
TVAREX models. Furthermore, it is noted that the degree
of performance improvement of the TVAREX-O3; model
compared to TVAREX-Lin model in Summer and Autumn
is larger than that in Spring and Winter as shown in Table 3,
meaning that TVAREX-O3 model is especially efficient in the
episode seasons. Therefore, this demonstrates that deciding
the relevant input variables before the model construction
is important. However, designing a meaningful functional
form which reflects the correct role played by each input

TABLE 3: Percentage differences of the error statistics between
the TVAREX-O3; model and the TVAREX-Lin model in different
seasons.

Season RMSE MAPE R? 1A

Spring 33.5% 16.5% 8.7% 2.4%
Summer 35.8% 19.7% 22.6% 4.7%
Autumn 35.0% 22.8% 24.6% 4.6%
Winter 20.3% 5.0% 6.3% 1.1%

variable in the model is also the key leading to the success.
Once the global performance of the proposed models has
been evaluated and compared, it is also worthy to investigate
more details from the local modelling performance of the
TVAR models and the TVAREX models. In the following
section, the local modelling performance of each model is
evaluated based on graphical comparisons of the measured
concentrations as well as their hindcasts.

3.2. Local Performance of the Proposed Models. Figure 1(a)
shows the scatter plot of daily maximum values of the 8-
hr averaged ozone concentrations modelled by the TVAR(1)
model against the measurements. A 45° line was also drawn
on the same figure for comparison. When a data point
falls on the 45° line, it means that the hindcast by the
model is exactly equal to the measurement. It is noted that
a large number of points are still lying close to the 45°
line, meaning that the TVAR(1) is capable to capture the
general trend of the time history. For the cases of high
predicted ozone concentrations or high measured ozone
concentrations, those points are far above or below the 45°
line. This is possibly due to the time delay problem, that is,
the modelled time history generally lags behind the measured
one. This problem may cause large modelling error when
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FIGURE 1: Plot of daily maximum of the 8 hr averaged ozone concentrations predicted by (a) TVAR(1), (b) TVAREX-Lin, (c¢) TVAREX-NLin,

and (d) TVAREX-O3; model against the measurement.

there is significant variation in the daily maximum value, and
those points are associated with the onset and retreat of the
ozone episode.

Figures 1(b)-1(d) show the scatter plots of the modelled
daily maximum of the 8-hr averaged ozone concentrations
versus their measurements for TVAREX-Lin, TVAREX-NLin,
and TVAREX-O3 models, respectively. It is obvious to see
that the points in these figures are lying closer to the 45°
line compared to the points in Figure 1(a); hence signifying
the improvement of the time delay problem. By a detailed
comparison of these three figures, it is noted that a portion

of the points in Figures 1(b) and 1(c) are lying far above the
45° line compared to the same region in Figure 1(d).

This indicates that both the TVAREX-Lin and the
TVAREX-NLin models may produce more false alarms
compared to the TVAREX-0O3 model. In addition, it is noted
that the points of TVAREX-03; model are more concentrated
around the 45° line compared to those of the TVAREX-
Lin and TVAREX-NLin models even under the conditions
of high ozone concentrations. Therefore, the TVAREX-O;
model has the most efficient local performance, and this
further supports the observations in the previous subsection.
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F1GURE 2: Variation of (a) PODs and (b) PFAs for the TVAR(1) model and the TVAREX models.

3.3. Episode Capturing Capability of the Proposed Models. As
indicated in the previous graphical comparison of the local
modelling performance, the time-varying model candidates
can have significantly different capabilities of capturing the
pollution episodes. In this section, it is aimed to further
investigate this diversity more quantitatively by using two
more numerical indicators, namely, the probability of detec-
tion (POD) and the probability of false alarm (PFA). The
probability of detection (POD) is defined as the probability
of issuing a successful warning for a given episode day:

POD = P(xk-12 T | zx 2 T), (10)

where T is the threshold concentration of the ozone episode.
High POD value usually indicates that the model is capable
to warn the public for the bad air quality. However, it
should be kept in mind that overestimated predictions of the
model may also associate with a high POD. Therefore, the
probability of false alarm (PFA) is commonly used together
with POD to check the episode capturing capability of a
model. The PFA is defined as the probability of having a
nonepisode day given that a warning has been issued:

PFA = P(zx < T | Xkjk-1 = T). (11)

For example, a perfect model should have a POD of 1 and a
PFA of 0. Figure 2(a) shows the PODs of the TVAR(1) model
and the TVAREX models for different thresholds ranging
from 0 to 160 ug m~>, respectively. It is noted that the PODs
of the TVAR(1) model are significantly lower than those of

the TVAREX models when the threshold T is larger than
80 ugm~>. This implies that the onset of ozone episodes in
Macau is closely linked to the meteorological conditions on
the day of prediction and may explain why the TVAR(1)
model underperforms in this situation. For the TVAREX
models, it is noted that the PODs of the TVAREX-O3
model are slightly higher than those of the TVAREX-Lin
and TVAREX-NLin model when the threshold T is larger
than 120 g m~2. This finding reinforces similar observation
made in the graphical comparison of the local performances
between the TVAR(1) model and the TVAREX models.
Figure 2(b) shows the PFAs of the TVAR(1) model and the
TVAREX models against different threshold concentrations.
First of all, it is noted that the TVAR(1) model produces
more frequent false alarm compared to the TVAREX models.
Since the TVAR(1) model predicts the daily maximum
value of the 8-hr averaged ozone concentration tomorrow
based on the filtered estimate of today only, there is a high
probability of predicting it is an episode day tomorrow given
that today is an ozone episode day. However, the episode
may retreat tomorrow due to the swing of prevailing wind
direction from north to south, or the decrease in the solar
radiation. Therefore, false alarm will be produced by the
TVAR(1) model under this situation. In addition to the
PODs, it is noted that the PFAs of the TVAREX-O3 model
are significantly less than those of the TVAREX-Lin and
TVAREX-NLin models when the threshold concentration is
larger than 100 g m=>. This confirms that the improvement
of the episode capturing capability in the TVAREX-O3; model
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is not done by sacrificing the false alarm rate. Finally, it
should be concluded that the TVAREX-O3 model is the most
efficient model to capture the ozone pollution episodes in
this study.

4. Conclusion

Four types of time-varying statistical models, namely, the
TVAR(p) model, the TVAREX-Lin model, the TVAREX-
NLin model, and the TVAREX-O3; model were proposed
to model the daily maximum of the 8-hr averaged ozone
concentrations observed at the ambient (Taipa) station of
Macau within a decade (2000-2009). Throughout compar-
ing the general performance of the TVAR(p) model with
the order ranging from 1 to 7, it was concluded that the
daily behavior of the ground level ozone system in Macau
has the Markovian property [18], and this coincides with
its short half-life time. Further comparison of the TVAR(1)
model and the TVAREX models in terms of the general
modelling performance, the local modelling performance
and the episode capturing capability indicates that the
TVAR(1) model underperforms. Therefore, it was concluded
that the daily fluctuation of the ozone time history in Macau
is dominated by the meteorological conditions on the day
of prediction. In addition, it was found that the TVAREX-
Lin model outperforms the TVAREX-NLin model, and this
might be due to the unnecessary model parameters of the
TVAREX-NLin model, which makes the model itself become
more difficult to tune with the general behavior of the
data. Therefore, a complex model is not necessarily better
than a simple one. Finally, it was found that the TVAREX-
O3 model, which considers the coastal nature of Macau
and the interaction of the input variables in its functional
form, outperforms the other two empirical TVAREX models.
Therefore, it was concluded that selection of the relevant
input variables during the model construction is important.
However, designing a meaningful functional form which
reflects the correct role played by each input variable in the
model is also the key leading to the success.
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