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We consider a Cauchy problem for the Helmholtz equation at a fixed frequency. The problem is
severely ill posed in the sense that the solution (if it exists) does not depend continuously on the
data.We present awavelet method to stabilize the problem. Some error estimates between the exact
solution and its approximation are given, and numerical tests verify the efficiency and accuracy of
the proposed method.

1. Introduction

The Helmholtz equation is often used to approximate model wave propagation in inhomo-
geneous media. The demand for reliable numerical solutions to such type of problems is
frequently encountered in geophysical and optoelectronic applications [1, 2]. In geophysical
applications, for example, wave propagation simulations are used for the development of
acoustic imaging techniques for gaining knowledge about geophysical structures deep
within the Earth’s subsurface [3]. In optoelectronics, the determination of a radiation field
surrounding a source of radiation (e.g., a light emitting diode) is also a frequently occurring
problem [4]. In many engineering problems, the boundary conditions are often incomplete,
either in the form of underspecified and overspecified boundary conditions on different
parts of the boundary or the solution is prescribed at some internal points in the domain.
These so-called Cauchy problems are inverse problems, and it is well known that they are
generally ill posed in the sense of Hadamard [5]. However, the Cauchy problem suffers from
the nonexistence and instability of the solution.
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In this paper we consider the Cauchy problem for the Helmholtz equation in a “strip”
0 < x < 1 as follows:

Δu
(
x, y

)
+ k2u

(
x, y

)
= 0, x ∈ (0, 1), y ∈ R

n, n ≥ 1,

u
(
0, y

)
= g

(
y
)
, y ∈ R

n,

ux
(
0, y

)
= 0, y ∈ R

n,

(1.1)

where Δ = ∂2/∂x2 +
∑n

i=1∂
2/∂y2

i is an n + 1 dimensional Laplace operator. We want to
determine the solution u(x, y) for 0 < x ≤ 1 from the data g(y). Due to the importance
of its application, this problem has been studied by many researchers, for example, DeLillo
et al. [6, 7], Jin and Zheng [8], Johansson and Martin [9], and Marin et al. [10–14].

Let S be the Schwartz space over R
n, and let S′ be its dual (the space of tempered

distributions). Let f̂ denote the Fourier transform of function f(y) ∈ S defined by

f̂(ξ) =
1

(2π)n/2

∫

Rn

e−iξ·yf
(
y
)
dy, ξ = (ξ1, . . . , ξn), y =

(
y1, . . . , yn

)
, (1.2)

while the Fourier transform of a tempered distribution f ∈ S′ is defined by

(
f̂ , φ

)
=
(
f, φ̂

)
, ∀φ ∈ S. (1.3)

In this paper, we will consider functions depending on the variables x ∈ [0, 1], y ∈ R
n.

For s ∈ R, the Sobolev space Hs(Rn) consists of all tempered distributions f(y) ∈ S′,
for which f̂(ξ)(1 + |ξ|2)s/2 is a function in L2(Rn). The norm on this space is given by

∥∥f
∥∥
Hs :=

(∫

Rn

∣∣∣f̂(ξ)
∣∣∣
2
(1 + |ξ|2)sdξ

)1/2

. (1.4)

We assume there exists a unique solution u(x, y) of problem (1.1), which satisfies the
problem in the classical sense and g(·), u(x, ·) ∈ L2(Rn). Applying the Fourier transform
technique to problem (1.1) with respect to the variable y yields the following problem in the
frequency space:

ûxx(x, ξ) +
(
k2 − |ξ|2

)
û(x, ξ) = 0, x ∈ (0, 1), ξ ∈ R

n, n ≥ 1,

û(0, ξ) = ĝ(ξ), ξ ∈ R
n,

ûx(0, ξ) = 0, ξ ∈ R
n.

(1.5)

It is easy to obtain the solution of problem (1.5) (if exists) has the form

û(x, ξ) = cosh
(
x
√
|ξ|2 − k2

)
ĝ(ξ), (1.6)
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or equivalently, the solution of problem (1.1) has the representation

u
(
x, y

)
=

1

(2π)n/2

∫

Rn

eiξ·y cosh
(
x
√
|ξ|2 − k2

)
ĝ(ξ)dξ. (1.7)

Since cosh(x
√
|ξ|2 − k2) increases rapidly with exponential order as |ξ| → ∞, the Fourier

transform of the exact data g(y) must decay rapidly. However, in practice, the data at x = 0
is often obtained on the basis of reading of physical instrument which is denoted by gm. We
assume that g(·) and gm(·) satisfy

∥
∥g(·) − gm(·)

∥
∥
Hr ≤ δ. (1.8)

Since gm(·) belong to L2(Rn) ⊂ Hr(Rn) for r ≤ 0, r should not be positive. A small
perturbation in the data g(y) may cause a dramatically large error in the solution u(x, y)
for 0 < x ≤ 1. Hence problem (1.1) is severely ill posed and its numerical simulation is very
difficult. It is obvious that the ill-posedness of the problem is caused by the perturbation of
high frequencies.

By (1.6)we know

û(1, ξ) = cosh
(√

|ξ|2 − k2
)
ĝ(ξ). (1.9)

Since the convergence rates can only be given under a priori assumptions on the exact
solution [15], we will formulate such an a priori assumption in terms of the exact solution
at x = 1 by considering

‖u(1, ·)‖Hs ≤ E. (1.10)

Meyer wavelets are special because, unlike most other wavelets, they have compact
support in the frequency domain but not in the time domain (however, they decay very fast).
The wavelet methods have been used to solve one-dimensional heat conduction problems
[16, 17] and noncharacteristic Cauchy problem for parabolic equation in one-dimensional
[18] andmultidimensional [19] cases, and so forth. In this paper we propose a similar wavelet
method as suggested in [19] to the problem (1.1).

The paper is organized as follows. In Section 2 we describe the Meyer wavelets and
discuss the properties that make them useful for solving ill-posed problems. Some error
estimates between the exact solution and its approximation as well as the choice of the
regularization parameter are given in Section 3. Finally, in Section 4 numerical tests verify
the efficiency and accuracy of the proposed method.

2. The Meyer Wavelets

In the present paper let Φ be Meyer’s orthonormal scaling function in n dimensions. This
function is constructed from the one-dimensional scaling functions in the following way. Let
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φ(x) and ψ(x) be the Meyer scaling and wavelet function in one dimension defined by their
Fourier transform in [20] which satisfy

supp φ̂ =
[
−4
3
π,

4
3
π

]
,

supp ψ̂ =
[
−8
3
π,−2

3
π

]
∪
[
2
3
,
8
3
π

]
.

(2.1)

It can be proved (cf. [20]) that the set of functions

ψjk(x) = 2j/2ψ
(
2jx − k

)
, j, k ∈ Z, (2.2)

is an orthonormal basis of L2(R). Consequently, the MRA {Vj}j∈Z
of Meyer is generated by

Vj = {φjk, k ∈ Z}, φjk := 2j/2φ
(
2jx − k

)
, j, k ∈ Z,

supp
(
φ̂jk

)
=
{
ξ; |ξ| ≤ 4

3
π2j

}
.

(2.3)

For the construction of an n-dimensional MRA, we take tensor products of the spaces
Vj (see [21, 22]). Then the scaling function Φ is given by

Φ(x) =
n∏

k=1

φ(xk), x ∈ R
n, (2.4)

and any basis function Ψ inWJ can be written in the form

Ψ(x) = 2nJ/2ψ
(
2Jxi − ki

)
·
∏

m/= i

θm
(
2Jxm − km

)
, x ∈ R

n, (2.5)

where k ∈ Z
n, and for any m ∈ {1, . . . , n}, θm stands for φ or ψ. Hence we obtain from (2.1)

that

supp
(
Φ̂
)
=
[
−4
3
π,

4
3
π

]n
, (2.6)

f̂(ξ) = 0 for ‖ξ‖∞ ≤ 2
3
π2J , f ∈WJ, J ∈ N. (2.7)

The orthogonal projection on the space VJ is defined by

PJf :=
∑

k∈Zn

(
f,ΦJ,k

)
ΦJ,k, (2.8)
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while QJf denotes the orthogonal projection of a function f on the wavelet space WJ with
VJ+1 = VJ ⊕ WJ . (In many contexts one will find more than one detailed space WJ , that
is, VJ+1 = VJ ⊕ W1,J ⊕ W2,J ⊕ · · · . Here, the space WJ is simply defined as the orthogonal
complement of VJ in VJ+1).

Let

ΩJ := 2J
[
−2
3
π,

2
3
π

]n
. (2.9)

Setting ΓJ := R
n \ΩJ , together with (2.6), it follows for J ∈ N that

P̂Jf(ξ) = 0 for ξ ∈ ΓJ+1,

((
I − PJ

)
f
)̂(ξ) = Q̂Jf(ξ) for ξ ∈ ΩJ+1.

(2.10)

We introduce the operatorMJ which is defined by the equation

M̂Jf :=
(
1 − χJ

)
f̂ , J ∈ N, (2.11)

where χJ denotes the characteristic function of the cube ΩJ . From (2.7) it follows that any
basis function Ψ inWj , j ≥ J , satisfies

Ψ̂(ξ) = 0, ξ ∈ ΩJ , (2.12)

and we obtain

(
f,Ψ

)
=
(
f̂ , Ψ̂

)
=
((

1 − χJ
)
f̂ , Ψ̂

)
=
(
MJf,Ψ

)
. (2.13)

And it follows for J ∈ N that

QJ = QJMJ,

I − PJ =
(
I − PJ

)
MJ.

(2.14)

3. Wavelet Regularization and Error Estimates

We list the following two lemmas given in [19, 23] which are useful to our proof.

Lemma 3.1 (see [19, 23]). Let {VJ}J∈Z
be an m-regular MRA, and let r, s ∈ R be such that −m <

r < s < m. Then for each function f ∈ Hs(Rn) and J ∈ N, the following inequality holds:

∥∥f − PJf
∥∥
Hr ≤ C12−J(s−r)

∥∥f
∥∥
Hr . (3.1)
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(a) (b)

Figure 1: (a) Exact solution u(1, ·); (b) unregularized solution reconstructed from gm for x = 1.

Lemma 3.2 (see [19]). Let {VJ}J∈Z
be Meyer’s (tensor-) MRA, and suppose J ∈ N, r ∈ R. Then for

all f ∈ VJ , one has

∥∥∥∥∥
∂l

∂xli
f

∥∥∥∥∥
Hr

≤ C22(J−1)l
∥∥f

∥∥
Hr , i = 1, . . . , n, l ∈ N. (3.2)

Define an operator Tx : g(y) → u(x, y) by (1.6), that is,

Txg = u
(
x, y

)
, 0 < x ≤ 1, (3.3)

or equivalently,

T̂xg(ξ) = cosh
(
x
√
|ξ|2 − k2

)
ĝ(ξ), 0 < x ≤ 1. (3.4)

Then we have

Theorem 3.3. Let {VJ}J∈Z
be Meyer’s MRA and suppose r ∈ R and J ∈ N which satisfies 2J > k,

0 ≤ x ≤ 1. Then for all f ∈ VJ , one has

∥∥Txf
∥∥
Hr ≤

(
C5e

x
√

22(J−1)−k2 + 1
)∥∥f

∥∥
Hr . (3.5)
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Proof. For f ∈ VJ , by definition (1.4) and formula (3.4), from Lemma 3.2, we have

∥
∥Txf

∥
∥
Hr =

(∫

Rn

∣
∣
∣
∣cosh(x

√
|ξ|2 − k2)f̂

∣
∣
∣
∣

2(
1 + |ξ|2

)r
dξ

)1/2

≤

⎛

⎜
⎜
⎜
⎝

∫

|ξ|>k

∣
∣
∣
∣
∣
∣
∣
∣

cosh
(
x
√
|ξ|2 − k2

)

cosh(x|ξ|) cosh(x|ξ|)f̂

∣
∣
∣
∣
∣
∣
∣
∣

2

(
1 + |ξ|2

)r
dξ

⎞

⎟
⎟
⎟
⎠

1/2

+

(∫

|ξ|≤k

∣
∣
∣
∣cos

(
x
√
k2 − |ξ|2

)
f̂

∣
∣
∣
∣

2(
1 + |ξ|2

)r
dξ

)1/2

≤ sup
ξ∈ΩJ+1

∣∣∣∣∣∣∣∣

cosh
(
x
√
|ξ|2 − k2

)

cosh(x|ξ|)

∣∣∣∣∣∣∣∣

(∫

|ξ|>k

∣∣∣cosh(x|ξ|)f̂
∣∣∣
2(
1 + |ξ|2

)r
dξ

)1/2

+
∥∥f

∥∥
Hr

≤ 2 sup
ξ∈ΩJ+1

ex(
√

|ξ|2−k2−|ξ|)

⎛

⎝
∫

|ξ|>k

∣∣∣∣∣

∞∑

l=0

x2l

(2l)!
|ξ|2lf̂

∣∣∣∣∣

2(
1 + |ξ|2

)r
dξ

⎞

⎠

1/2

+
∥∥f

∥∥
Hr

≤ 2C3e
x(
√

22(J−1)−k2−2J−1)
∞∑

l=0

x2l

(2l)!

∥∥∥(Δy)
lf
∥∥∥
Hr

+
∥∥f

∥∥
Hr

≤
(

C4e
x(
√

22(J−1)−k2−2J−1)
∞∑

l=0

x2l

(2l)!
· n22(J−1)l + 1

)
∥∥f

∥∥
Hr

≤
(
C5e

x(
√

22(J−1)−k2−2J−1) cosh
(
x2J−1

)
+ 1

)∥∥f
∥∥
Hr

≤
(
C5e

x
√

22(J−1)−k2 + 1
)∥∥f

∥∥
Hr .

(3.6)

Since the Cauchy data are given inexactly by gm, we need a stable algorithm to
approximate the solution of (1.1). Our method is as follows. Consider the operator

Tx,J := PJTxPJ , (3.7)

and show that it approximates Tx in a stable way for an appropriate choice for J ∈ N

depending on δ and E. By the triangle inequality we know

∥∥Txg − Tx,Jgm
∥∥
Hr ≤

∥∥(Tx − Tx,J)g
∥∥
Hr +

∥∥Tx,J
(
g − gm

)∥∥
Hr . (3.8)
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From (1.8) and Theorem 3.3, the second term on the right-hand side of (3.8) satisfies

∥
∥Tx,J

(
g − gm

)∥∥
Hr =

∥
∥PJTxPJ

(
g − gm

)∥∥
Hr ≤

∥
∥TxPJ(g − gm)

∥
∥
Hr

≤
(
C5e

x
√

22(J−1)−k2 + 1
)
δ.

(3.9)

For the first one we have

∥
∥(Tx − Tx,J

)
g
∥
∥
Hr ≤

∥
∥(I − PJ

)
Txg

∥
∥
Hr +

∥
∥PJTx

(
I − PJ

)
g
∥
∥
Hr . (3.10)

By Lemma 3.1, (1.9), (1.10), (2.14), and (3.4), we get

∥∥(I − PJ
)
Txg

∥∥
Hr =

∥∥(I − PJ
)
MJTxg

∥∥
Hr ≤ C12−J(s−r)

∥∥MJTxg
∥∥
Hs

= C12−J(s−r)

⎛

⎜⎜⎜
⎝

∫

ΓJ

∣∣∣∣∣∣∣∣

cosh
(
x
√
|ξ|2 − k2

)

cosh
(√

|ξ|2 − k2
) u(1, ·)

∣∣∣∣∣∣∣∣

2

(
1 + |ξ|2

)s

⎞

⎟⎟⎟
⎠

1/2

≤ C12−J(s−r)sup
ξ∈ΓJ

∣∣∣∣∣∣∣∣

cosh
(
x
√
|ξ|2 − k2

)

cosh
(√

|ξ|2 − k2
)

∣∣∣∣∣∣∣∣

· ‖u(1, ·)‖Hs

≤ 2C1

((
3
2
π2J

)2

− k2
)−(s−r)/2

e−(1−x)
√

((2/3)π2J )2−k2E

≤ 2C1

(
22J − k2

)−(s−r)/2
e−(1−x)

√
22J−k2E.

(3.11)

On the other hand, due to (2.10), we know

∥∥PJTx
(
I − PJ

)
g
∥∥
Hr ≤

∥∥Tx
(
I − PJ

)
g
∥∥
Hr

≤
(∫

ΩJ+1

∣∣∣∣cosh
(
x
√
|ξ|2 − k2

)
(
QJg

)̂(ξ)
∣∣∣∣

2(
1 + |ξ|2

)r
dξ

)1/2

+

(∫

ΓJ+1

∣∣∣∣cosh
(
x
√
|ξ|2 − k2

)
ĝ(ξ)

∣∣∣∣

2(
1 + |ξ|2

)r
dξ

)1/2

=: I1 + I2.

(3.12)
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We estimate the two parts at the right-hand side of (3.12) separately. For I2 we have

I2 =

(∫

ΓJ+1

∣∣
∣
∣cosh

(
x
√
|ξ|2 − k2

)
ĝ(ξ)

∣∣
∣
∣

2(
1 + |ξ|2

)r
dξ

)1/2

=

⎛

⎜
⎜
⎜
⎝

∫

ΓJ+1

∣
∣
∣
∣
∣
∣
∣
∣

cosh
(
x
√
|ξ|2 − k2

)

cosh
(√

|ξ|2 − k2
) u(1, ·)

∣
∣
∣
∣
∣
∣
∣
∣

2

(
1 + |ξ|2

)r
dξ

⎞

⎟
⎟
⎟
⎠

1/2

≤ sup
ξ∈ΓJ+1

∣
∣
∣
∣
∣
∣
∣
∣

cosh
(
x
√
|ξ|2 − k2

)

cosh
(√

|ξ|2 − k2
)

1
(
1 + |ξ|2

)(s−r)/2

∣
∣
∣
∣
∣
∣
∣
∣

×
(∫

ΓJ+1

∣
∣
∣
∣u(1, ·)

(
1 + |ξ|2

)s/2∣∣
∣
∣

2

dξ

)1/2

≤ 2 ·
(
4
3
π2J

)−(s−r)
e−(1−x)

√
n((4/3)π2J )2−k2 · ‖u(1, ·)‖Hs

≤ 2 · (22J − k2)−(s−r)/2e−(1−x)
√
22J−k2E.

(3.13)

Now we turn to I1. There holds

I1 =

(∫

ΩJ+1

∣∣∣∣cosh
(
x
√
|ξ|2 − k2

)
(
QJg

)̂(ξ)
∣∣∣∣

2(
1 + |ξ|2

)r
dξ

)1/2

≤ ∥∥TxQJg
∥∥
Hr ≤

(
C5e

x
√
22J−k2 + 1

)∥∥QJg
∥∥
Hr ,

(3.14)

since QJg ∈ VJ+1. Furthermore, from (2.14), it follows that

∥∥QJg
∥∥
Hr =

∥∥QJMJg
∥∥
Hr ≤

∥∥MJg
∥∥
Hr

=

(∫

ΓJ

∣∣ĝ(ξ)
∣∣2
(
1 + |ξ|2

)r
dξ

)1/2

=

⎛

⎜⎜
⎝

∫

ΓJ

∣∣∣∣∣∣∣∣

û(1, ξ)

cosh
(√

|ξ|2 − k2
)

∣∣∣∣∣∣∣∣

2

(
1 + |ξ|2

)r
dξ

⎞

⎟⎟
⎠

1/2

≤ 2 · 2−J(s−r)e−
√
n((2/3)π2J )2−k2‖u(1, ·)‖Hs

≤ 2 · (22J − k2)−(s−r)/2e−
√
22J−k2E.

(3.15)
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Therefore,

∥
∥PJTx(I − PJ)g

∥
∥
Hr ≤ 2(1 + C5)

(
22J − k2

)−(s−r)/2
e−(1−x)

√
22J−k2E

+ 2
(
22J − k2

)−(s−r)/2
e−

√
22J−k2E.

(3.16)

Combining (3.11) and (3.16)with (3.10), we have

∥
∥(Tx − Tx,J)g

∥
∥
Hr ≤ 2(C1 + 1 + C5)

(
22J − k2

)−(s−r)/2
e−(1−x)

√
22J−k2E

+ 2
(
22J − k2

)−(s−r)/2
e−

√
22J−k2E.

(3.17)

Then from (3.9) and (3.17) we finally arrive at

∥∥Txg − Tx,Jgm
∥∥
Hr ≤

(
C5e

x
√

22(J−1)−k2 + 1
)
δ + 2

(
22J − k2

)−(s−r)/2
e−

√
22J−k2E

+ 2(C1 + 1 + C5)
(
22J − k2

)−(s−r)/2
e−(1−x)

√
22J−k2E.

(3.18)

In order to show some stability estimates of the Hölder type for our method using
(3.18), we use the following lemma which appeared in [24] for choosing a proper regulariza-
tion parameter J .

Lemma 3.4. Let the function f(λ) : [0, a] → R be given by

f(λ) = λb
(
d ln

1
λ

)−c
(3.19)

with a constant c ∈ R and positive constants a < 1, b, and d. Then for the inverse function f−1(λ),
one has

f−1(λ) = λ1/b
(
d

b
ln

1
λ

)c/b

(1 + o(1)) for λ −→ 0. (3.20)

Based on this lemma, we can choose the regularization parameter J by minimizing the
right-hand side of (3.18).

Denote

e−
√
22J−k2 = λ ∈ (0, 1), (3.21)

and let C = C5/2(1 + C1 + C5) and

Cλ−xδ = λ1−x
(
ln

1
λ

)−(s−r)
E, (3.22)
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that is,

Cδ

E
= λ

(
ln

1
λ

)−(s−r)
. (3.23)

Then by Lemma 3.4 we obtain that

λ =
Cδ

E

(
ln

1
Cδ/E

)s−r
(1 + o(1)) for

Cδ

E
−→ 0

=
Cδ

E

(
ln

E

Cδ

)s−r
(1 + o(1)) for δ −→ 0.

(3.24)

Taking the principal part of λ, we get

J∗ =
1
2
log2

(

ln2

(
E

Cδ

(
ln

E

Cδ

)−(s−r))

+ k2
)

, (3.25)

due to (3.21). Now, summarizing above inference process, we obtain the main result of the
present paper.

Theorem 3.5. For s ≥ r, suppose that conditions (1.8) and (1.10) hold. If one takes

J∗∗ = [J∗], (3.26)

where J∗ was defined in (3.25), [a] with square bracket denotes the largest integer less than or equal
to a ∈ R. Then there holds the following stability estimate:

∥∥Txg − Tx,Jgm
∥∥ ≤ (2(C1 + 1 + C5)E)x(C5δ)

1−x
(
ln

E

Cδ

)−(s−r)x

×
(

1 +

(
lnE/Cδ

lnE/Cδ + ln (lnE/Cδ)−(s−r)

)s−r)

+

(

1 + 2C

(
lnE/Cδ

lnE/Cδ + ln (lnE/Cδ)−(s−r)

)s−r)

δ

= (2(C1 + 1 + C5)E)x(C5δ)
1−x

(
ln

E

Cδ

)−(s−r)x
(1 + o(1)),

(3.27)

for δ → 0.
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Figure 2: (a) The regularized solution at x = 1; (b) difference between the regularization and the exact
solution; (1), (2), (3) correspond to J� = 3, 4, 5, respectively.

Remark 3.6. In general, the a priori bound E and the coefficients C1-C5 and C are not exactly
known in practice. In this case, with

J� =

[
1
2
log2

(

ln2

(
1
δ

(
ln

1
δ

)−(s−r))

+ k2
)]

, (3.28)
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it holds that

∥
∥Txg − Tx,Jgm

∥
∥≤ δ1−x

(
ln

1
δ

)−(s−r)x(

C5 + 2(C1 + 1 + C5)E

(
ln 1/δ

ln 1/δ + ln (ln 1/δ)−(s−r)

)s−r)

+

(

C5 + 2E

(
ln 1/δ

ln 1/δ + ln (ln 1/δ)−(s−r)

)s−r)

δ

= δ1−x
(
ln

1
δ

)−(s−r)x
(1 + o(1)),

(3.29)

for δ → 0.

Remark 3.7. The proposed wavelet method can also be used to solve the following Cauchy
problem for the modified Helmholtz equation (i.e., the Yukawa equation [25])

Δv
(
x, y

)
+ k2v

(
x, y

)
= 0, x ∈ (0, 1), y ∈ R

n, n ≥ 1,

v
(
0, y

)
= g

(
y
)
, y ∈ R

n,

vx
(
0, y

)
= 0, y ∈ R

n,

(3.30)

where Δ = ∂2/∂x2 +
∑n

i=1∂
2/Δy2

i is the same as in (1.1).
It is easy to know that the exact solution of problem (3.30) is

v
(
x, y

)
=

1

(2π)n/2

∫

Rn

eiξ·y cosh
(
x
√
|ξ|2 + k2

)
ĝ(ξ)dξ. (3.31)

Define an operator T̃x : g(y) → v(x, y) such that

̂̃Txg(ξ) = cosh
(
x
√
|ξ|2 + k2

)
ĝ(ξ), 0 < x ≤ 1, (3.32)

and the approximate solution is

vδJ = T̃x,Jgm, (3.33)

where g and gm satisfy (1.8), and T̃x,J = PJT̃xPJ . If we select the regularization parameter

J† =

[
1
2
log2

(

ln2

(
1
δ

(
ln

1
δ

)−(s−r))

− k2
)]

, (3.34)
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then there holds

∥
∥
∥v(x, ·) − vδJ (x, ·)

∥
∥
∥ ≤ δ1−x

(
ln

1
δ

)−(s−r)x

×
(

C5 + 2(C1 + 1 + C5)E

(
ln 1/δ

ln 1/δ + ln (ln 1/δ)−(s−r)

)s−r)

+

(

C5 + 2E

(
ln 1/δ

ln 1/δ + ln (ln 1/δ)−(s−r)

)s−r)

δ

= δ1−x
(
ln

1
δ

)−(s−r)x
(1 + (o(1))),

(3.35)

for δ → 0.

4. Numerical Aspect

4.1. Numerical Implementation

We want to discuss some numerical aspects of the proposed method in this section.
We consider the case when n = 2. Supposing that the sequence {g(y1,i, y2,j)}Ni,j=1

represents samples from the function g(y1, y2) on an equidistant grid in the square [a, b]2,
and N is even, then we add a random uniformly distributed perturbation to each data and
obtain the perturbation data

gm = g + μ randn
(
size

(
g
))
. (4.1)

Then the total noise δ can be measured in the sense of root mean square error according to

δ :=
∥∥gm − g∥∥l2 =

√√√
√ 1
N2

N∑

i=1

N∑

j=1

(
gm

(
y1,i, y2,j

) − g(y1,i, y2,j
))2

, (4.2)

where “randn(·)” is a normally distributed random variable with zero mean and unit
standard deviation and ε dictates the level of noise. “randn(size(g))” returns an array of
random entries that is the same size as g.

For the function gm(y1, y2), we have

uδJ
(
x, y

)
= Tx,Jgm = PJTxPJgm. (4.3)

Hence, by using it with J� being given in (3.28), we can obtain the approximate solution.
We will use DMT as a short form of the “discrete Meyer (wavelet) transform.” Algo-

rithms for discretely implementing the Meyer wavelet transform are described in [21]. These
algorithms are based on the fast Fourier transform (FFT), and computing the DMT of a vector
in R requires O(Nlog22N) operations.
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Figure 3: (a) and (b) correspond to k = 5 and k = 100, respectively; (1), (2), (3) correspond to the exact
solution, the regularized solution and the difference between the regularization and the exact solution,
respectively.

4.2. Numerical Tests

In this section some numerical tests are presented to demonstrate the usefulness of the
approach. The tests were performed using Matlab and the wavelet package WaveLab 850,
which was downloaded from http://www-stat.stanford.edu/∼wavelab/. Throughout this
section, we set μ = 10−3, a = −5, b = 5, andN = 26.
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(a) (b)

(c) (d)

Figure 4: (a) Exact solution v(1, ·); (b) unregularized solution reconstructed from gm for x = 1; (c)
regularized solution reconstructed from gm for x = 1 and J† = 4; (d) the difference between the reg-
ularization and the exact solution.

Example 4.1. Take n = 2 and g(y) = e−y
2 ∈ S(R2), where y = (y1, y2) and S(R2) denotes the

Schwartz function space.
Since ĝ(ξ) ∈ S(R2), ξ = (ξ1, ξ2) decays rapidly, and the formula (1.7) can be used to

calculate u(x, y) with exact data directly, that is,

u
(
x, y

)
=

1
2π

∫

R2
ei(ξ1y1+ξ2y2) cosh

(
x
√
ξ21 + ξ

2
2 − k2

)
ĝ(ξ1, ξ2)dξ1dξ2. (4.4)

In Figure 1we give the exact solution at x = 1, that is, u(1, y1, y2), and the reconstructed
solution uδ(1, y1, y2) from the noisy data gm(y1, y2) without regularization. We see that uδ

does not approximate the solution and some regularization procedure is necessary.
Letting k = 1, the regularized solutions and the corresponding errors u−uδJ� defined by

the regularization parameter J� = 3, 4, 5 are illustrated in Figure 2. We can see that in V3 the
approximation is very poor since the frequencies are cut off excessively by the projection
P3. If J� is taken to be too large, the noise in the function gm is not damped enough by
PJ� , and thus the high frequencies of ĝm are so extremely magnified that they destroy the
approximated solution. The approximation parameter J� = 4 seems to be the optimal choice
for this example.
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In Figure 3 we display the exact solution, its approximation, and corresponding errors
for k = 5 and 100, respectively. We see that the proposed method is useful for different wave
number k.

Figure 4 shows that the proposed method for the Cauchy problem for the modified
Helmholtz equation is also effective.
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