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Changes in radial growth have been used to estimate tree decline probability since they may indicate tree responses to long- and
short-term stressors. We used visual assessments of crown defoliation, an indicator of decline, and retrospective tree-ring analyses
to determine whether climate-growth sensitivity and tree growth rates may be used as predictors of tree die-off probability in
Abies alba (silver fir) at the Spanish Pyrenees. We used climatic data to calculate standardized temperature and precipitation data
and drought indexes. Basal area increment was measured for declining (defoliation > 50%) and nondeclining (defoliation < 50%)
silver firs in stands with contrasting defoliation. Logistic regressions were applied to predict tree die-off. Since the early 1980s, a
synchronised reduction in basal area increment was observed in declining trees. The basal area increment trend correctly classified
64% of declining trees and 94% of nondeclining trees. The growth sensitivity to water deficit, temperature, and a drought index
also significantly predicted silver fir decline, but providing underestimated predictions. Our findings underscore the idea that
long-term climatic warming seems to be a major driver of growth decline in silver fir. Ongoing growth reduction and enhanced
mortality may promote vegetation shifts in declining Pyrenean A. alba forests.

1. Introduction

Declining trends of tree radial growth are considered as
reliable indicators of long-term stress and may be an
additional risk factor for drought-induced mortality [1–3].
Individual tree decline and death often occur as a result of the
combined effects of different long-and short-term stressors
[4, 5]. Radial growth, used here as a proxy of whole plant
carbon gain [6], may be used to identify those trees with
the highest probabilities of death [3, 7]. Indeed, several
studies have shown that mortality rates are to some extent
inversely related to radial growth trends [8–11]. However, the
potential use of both growth trends and climate sensitivity,
as surrogates for evaluating the vulnerability of tree species
to climate change, has received less attention [3, 12–14].

Dendrochronological assessments of changing trends of
radial growth may be useful to understand decline processes

[15, 16]. Usually, reduced wood formation occurs prior to
visual symptoms of decline such as crown defoliation. Thus,
dendrochronology may be useful to forecast the impending
decline of particular trees and forests [3, 16]. Moreover,
tree decline may result of the combined effects of several
stressors acting at different time scales on growth. Therefore,
including information from both long and short-term stres-
sors should improve our knowledge of decline mechanisms
taking also into account specific traits of tree species (e.g.,
drought tolerance).

To evaluate the contributing effects on tree decline of
tree growth trend (i.e., contrasting growth patterns obtained
in trees subjected to the same regional climate) and climate
responsiveness, we used crown defoliation, an indicator
of tree decline, and retrospective tree-ring analyses. We
focused on declining silver fir (Abies alba Mill.) stands from
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Figure 1: Distribution of A. alba in Europe and study sites in the
Aragón Pyrenees, northeastern Spain.

the Spanish Pyrenees [17, 18]. We hypothesized that silver fir
decline is a combined response to climatic stressors, acting
at short-and long-term scales, and changes in growth trends,
respectively. Thus, an assessment of the effects of both types
of stressors on growth should provide improved models of
tree decline. We also hypothesized that declining growth
trends reduce the capacity of trees to adapt to drier climatic
conditions. Our specific aims were to (i) quantify growth pat-
terns in declining and nondeclining A. alba trees, (ii) provide
predictors of silver fir decline at the individual level based on
growth patterns and growth sensitivity to climate variability.

2. Materials and Methods

2.1. Study Species and Field Sampling. The Pyrenees con-
stitute a transitional area between more humid conditions
in their northern margin and drier conditions southwards
where Mediterranean vegetation becomes dominant [19].
The studied A. alba populations are located in the Aragón
Pyrenees, northeastern Spain (Figure 1), where silver fir
stands are usually found at humid sites on north-facing
slopes forming pure or mixed stands with Fagus sylvatica L.
or Pinus sylvestris L. Most studied stands are located on marls
and limestones, which generate basic soils, or on moraine
deposits with rocky but deep soils. The most used method
of timber harvesting in the study area was diameter limit
cutting, which mostly affected fast-growing and big trees.
According to historical data, logging intensity during the
20th century in the Pyrenees was greatest in the 1950s but no
data are available on how widespread was in this region [20].

Since the 1980s silver fir growth decline in the Aragón
Pyrenees was characterized by high defoliation levels and
increased mortality rates (Figure 2), mainly at low-elevation
sites [21]. Since we were interested in comparing A. alba
stands with different decline symptoms, we performed an
extensive field survey, visiting at least one site in all 10 km2

grids where silver fir formed forests across the study area.

Figure 2: View of a declining silver fir stand in the Spanish Pyre-
nees.

Based on this extensive field survey, we selected representa-
tive stands within the coordinates 42◦42′–42◦45′N, 0◦38′–
0◦52′W; 1000–1300 m a.s.l., with about 30% of declining
trees (see below the definition of declining and nondeclining
trees; detailed study site characteristics can be found in
[18]). A total of 62 dominant trees (28 declining and 34
nondeclining silver firs; ∼40 cm diameter from the base,
∼20 m height) were selected for sampling within a 500 m
long and 20 m wide transect randomly located within the
stands.

Tree decline symptoms were assessed by a semiquantita-
tive scale, based on the percentage of crown defoliation [22]:
class 0, 0–10% defoliation (healthy tree); 1, 11–25% (slightly
damaged tree); 2, 26–50% (moderately damaged tree); 3,
51–75% (severely damaged tree); 4, 76–90% (dying tree); 5,
standing dead trees with >90% defoliation or only retaining
red needles. Since estimates of percent crown defoliation may
vary among observers and places, we used as a reference
a tree with the maximum amount of foliage at each site
[3]. Declining trees were considered as those with crown
defoliation greater than 50%.

2.2. Climate Data. We used local climatic records to study
the spatiotemporal variation of climatic conditions in the
study area (detailed characteristics of climate data can be
found in [23]). To estimate the missing data for each meteo-
rological station and to obtain a regional climatic record we
used the program MET from the Dendrochronology Program
Library [24]. The annual water budget (named as drought
index thereafter; P-ETP) was obtained from the sum of the
differences between monthly data of precipitation (P) and
potential evapotranspiration (ETP), and the last variable was
estimated by a modified version of the Thornthwaite method
[25].

To obtain the regional climatic mean local climate data
were standardized to give each station the same relative
weight. Mean temperature and P-ETP were standardized by
subtracting the mean and dividing by the standard deviation:

Zi = (xi − x)
σ

, (1)

where Zi is the xi score distance from the x average (x) in
standard deviation units (σ).
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To determine the severity and the statistical rarity of
extreme drought events, precipitation data was standardized
by calculating the standardized precipitation index (SPI)
for each meteorological station. The spatial and temporal
dimensions of drought events create problems in generating
a drought index because not only must an anomaly be
normalized with respect to location, but the anomaly must
also be normalized in time if it is to produce a meaningful
estimate of drought. The SPI accomplishes both. The SPI
is normalized to a station location because it accounts for
the frequency distribution of precipitation as well as the
accompanying variation at the station. Additionally, the SPI
is normalized in time because it can be computed at any
number of time scales, depending upon the impacts of
interest to the analyst. Conceptually, the SPI represents a
z-score, or the number of standard deviations above or
below that an event is from the mean, as it is expressed
in (1). However, the SPI performs a preadjustment to
this standard formulation due to precipitation is typically
positively skewed. To adjust for this mathematical rainfall
feature, the precipitation data is transformed to a more
normal distribution by applying the gamma function [26–
28]. The gamma distribution is defined by its frequency or
probability density function:

g(x) =
{

1

βαΓ(α)
xα−1 e−x/β, for x > 0, (2)

where α > 0, is a shape parameter; β > 0, is a scale parameter;
x > 0, is the precipitation amount; Γ(α) is the gamma
function:

Γ(α) =
∫∞

0
yα−1e−ydy. (3)

Computation of the SPI involves fitting a gamma probability
density function to a given frequency distribution of precip-
itation totals for a station. The alpha and beta parameters
of the gamma probability density function are estimated
for each station, for each time scale of interest (seasonal,
annual, etc.), and for each month of the year. The maximum
likelihood solutions are used to optimally estimate α and β as
follows:

α̂ = 1
4A

⎛
⎝1 +

√
1 +

4A
3

⎞
⎠,

β̂ = x

α̂
,

(4)

where

A = ln(x)−
∑

ln(x)
n

, (5)

where n = number of precipitation observations.
The resulting parameters are then used to find the

cumulative probability of an observed precipitation event for
the given month and time scale for the station in question.
The cumulative probability is given by:

G(x) =
∫ x

0
g(x)dx = 1

β̂α̂Γ(α̂)

∫ x

0
xα̂−1e−x/β̂dx. (6)

Letting t = x/β̂, this equation becomes the incomplete gam-
ma function:

G(x) = 1
Γ(α̂)

∫ x

0
tα̂−1e−tdx. (7)

Since the gamma function is undefined for x = 0 and a
precipitation distribution may contain zeros, the cumulative
probability becomes:

H(x) = q +
(
1− q

)
G(x), (8)

where q is the probability of a zero. If m is the number of
zeros in a precipitation time series, q can be estimated by
m/n. The cumulative probability, H(x), is then transformed
to the standard normal random variable Z with mean zero
and variance of one (see (1)) as follows:

Z = SPI =−
(
t − c0 + c1 + c2t2

1 + d1t + d2t2 + d3t3

)
,

for 0 < H(x) ≤ 0.5,

Z = SPI = +

(
t − c0 + c1 + c2t2

1 + d1t + d2t2 + d3t3

)
,

for 0.5 < H(x) < 1.0,

(9)

where

t =
√√√√ln

(
1

(H(x))2

)
, for 0 < H(x) ≤ 0.5,

t =
√√√√ln

(
1

(1.0−H(x))2

)
, for 0.5 < H(x) < 1.0

(10)

c0 = 2.515517, c1 = 0.802853, c2 = 0.010328, d1 = 1.432788,
d2 = 0.189269, and d3 = 0.001308.

2.3. Dendrochronological Methods. Dendrochronological
sampling was performed in the 62 trees selected following
standard methods [29]. Two or three cores were taken from
each tree at breast height (1.3 m) using an increment borer.
The wood samples were air-dried and polished with a series
of successively finer sand-paper grits until tree rings were
clearly visible. Then, the wood samples were visually cross-
dated. Tree rings were measured to the nearest 0.001 mm
using a binocular scope and a LINTAB measuring device
(Rinntech, Heidelberg, Germany). The visual cross-dating
of the tree-rings was checked using the program COFECHA
[30]. The trend due to the geometrical constraint of adding
a volume of wood to a stem of increasing radius was
corrected by converting tree-ring widths into basal area
increments (BAI) [31]. We calculated mean BAI values
and trends separately for declining (defoliation > 50%)
and nondeclining (defoliation < 50%) trees. Trends values
were calculated as the slope of the time series, estimated by
least squares regression. Growth reduction percentage was
calculated as GRP = 100 × ((mean BAI of the last decade
included in the compute) − (mean BAI of the first decade
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Table 1: Basal area increment (BAI) mean values and trends measured in declining (defoliation > 50%) and non-declining (defoliation <
50%) trees in the studied stands. Trends values are calculated as the slope of the time series, estimated by least squares regression. Growth
reduction percentage is calculated as GRP = 100 × ((mean BAI of the last decade included in the compute) − (mean BAI of the first decade
included in the compute))/(mean BAI of the first decade included in the compute). The coefficient of variation (CV) is defined as the ratio
of the standard deviation to the mean multiplied by 100. Different letters indicate significant differences based on for one-way ANOVAs.

Tree type 1960–1999 BAI (cm2) 1960–1999 trend (cm2 yr −1) 1960–1999 GRP (%) 1960–1999 CV (%)

Nondeclining trees 19.25 ± 1.91 b 0.12 ± 0.11 b 39.11 ± 15.07 b 43.53 ± 2.31 a

Declining trees 15.59 ± 1.79 b −0.47 ± 0.09 a −40.74 ± 11.96 a 48.07 ± 3.02 b

included in the compute))/(mean BAI of the first decade
included in the compute). The coefficient of variation (CV)
was defined as the ratio of the standard deviation to the
mean multiplied by 100 (Table 1).

BAI data were also standardized, following the same
procedure described above for climate data [31]. Growth
sensitivity to climate was estimated, for each individual tree,
as the determination coefficient between standardized basal
area increment and annual climatic variables (mean annual
temperature, annual SPI, and annual water budget).

2.4. Logistic Regression Models of Silver Fir Decline. We
applied logistic regression to predict the decline probability
P(Yi,t = 1 | Xi,t) of tree i at a given time t [32]:

P
(
Yi,t = 1 | Xi,t

) = exp
(
Xi,tβ

)
1 + exp

(
Xi,tβ

) , (11)

where Yi,t = 1 indicates that tree i is declining at time
t (correspondingly, Yi,t = 0 indicates that tree i is nonde-
clining at time t). The matrix Xi,t contains the independent
variables of tree i at time t and β is a vector containing the
regression coefficients. The predictors used corresponded to
three groups of variables related to growth level, growth
trends, and growth sensitivity to climate. The assessed
variables were the mean tree BAI for the periods 1960–
1999, 1960–1979, and 1970–1999; the BAI trend of each
tree computed as the time/BAI slope from least squares
linear regression, for the same periods mentioned before; the
coefficient of variation of BAI for each tree also calculated for
the same periods as above; the growth sensitivity to changes
in temperature, precipitation, and drought (P-ETP). Logistic
regressions based on generalized linear models for binomial
data were fitted by maximum log-likelihood estimation using
the R software [33]. The P value and the odds ratio were used
during the model selection procedure to assess the goodness-
of-fit of the models [34, 35].

3. Results

Standardized mean annual temperature yielded systemati-
cally above average values after 1981, with extreme warm
years in the following periods 1937-1938, 1986–1990, and
1997-1998 (Figure 3). The coldest periods recorded for the
twentieth century in the study area were 1917, 1955-1956,
and 1963. The standardized precipitation index (SPI) yielded
minimum rainfall values in 1933, 1934, 1937, and 1949,
whereas the wettest years were 1960, 1966, 1977, and 1979.
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Figure 3: Regional standardized mean temperature (T), standar-
dized precipitation index (SPI), standardized total precipitation
minus evapotranspiration (P-ETP; difference between precipita-
tion—P—and potential evapotranspiration—ETP), and standard-
ized basal area increment chronologies of declining and nondeclin-
ing silver firs. Pearson correlation coefficients (r) for the relation-
ships between standardized basal area increment and the annual
climatic variables are also displayed with their significance levels
(∗P < 0.05; ∗∗P < 0.01).

The standardized drought index (P-ETP) yielded extreme
drought events with pronounced water deficit in 1933, 1937,
1949, and 1989, while years with high water availability were
the same that those estimated using the SPI.

The standardized BAI were significantly correlated to
standardized climate series for both nondeclining and declin-
ing trees (Figure 3). The highest correlation coefficient was
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Table 2: Logistic regression models for declining (n = 28) and non-declining (n = 34) silver firs. The effects of growth characteristics
(mean, trends, and coefficient of variation—CV) and growth sensitivity to climate (estimated as the determination coefficient between basal
area increment—BAI—and annual climatic variables). The annual water budget (P-ETP) was the differences between precipitation (P) and
potential evapotranspiration (ETP). The relative maximum likelihood is calculated as the percentage of maximum likelihood value obtained.
Nonsignificant models are indicated by ns.

Model Maximum likelihood Relative maximum likelihood P
Percent correct

Full model Nondeclining trees Declining trees

1980–1999 BAI trend 12.55 1.00 <0.01 86.67 94.12 63.64

P-ETP sensitivity 18.26 0.69 <0.01 80.00 91.18 45.45

Temperature sensitivity 18.73 0.67 <0.01 73.33 88.25 27.27

1960–1999 BAI trend 21.10 0.59 0.01 73.33 91.18 18.18

SPI sensitivity 21.38 0.59 0.01 80.00 97.06 27.27

1980–1999 BAI CV 22.12 0.57 0.02 73.33 91.18 18.18

1980–1999 mean BAI 23.46 0.54 0.08 ns ns ns

1960–1999 BAI CV 24.38 0.51 0.25 ns ns ns

1960–1979 mean BAI 24.44 0.51 0.28 ns ns ns

1960–1979 BAI trend 24.83 0.51 0.43 ns ns ns

1960–1979 BAI CV 24.91 0.50 0.63 ns ns ns

1960–1999 mean BAI 24.97 0.50 0.74 ns ns ns

obtained between standardized mean annual temperature
and BAI (r = −0.41 and r = −0.34 for declining and non-
declining trees, resp.), followed by those obtained between
the standardized mean drought index and BAI (r = 0.27 and
r = 0.23 for declining and nondeclining trees, resp.). The
standardized BAI was also related to the extreme drought
events recorded by the SPI series, in the case of declining
trees. In the 1950s and late 1970s, higher water availability
was related to positive standardized BAI, especially in the case
of nondeclining trees. Contrastingly, in 1986 all trees showed
a sudden growth decline (Figure 3). However, only declining
trees showed negative standardized BAI between 1995 and
1999.

The combination of two or more independent variables
increased the probability and the likelihood values of logistic
regression models of silver fir decline, but it did not improve
the percentage of correctly assigned trees to the declining
and non-declining classes (data not shown). The best decline
predictor was the BAI trend for the period 1980–1999,
followed by growth sensitivity to drought (Table 2; Figures
4 and 5). The BAI trend calculated for the period 1960–
1999, as well as the BAI coefficient of variation estimated
for the period 1980–1999, also obtained substantial support.
The BAI trend calculated for the period 1980–1999 correctly
classified 64% and 94% of declining and non-declining
firs, respectively. The sensitivities of growth to changes
in drought, temperature, and precipitation resulted in an
underestimation of correctly classified declining trees (46%,
27%, and 27%, respectively; Table 2 and Figure 4).

4. Discussion

Logistic regression modelling showed a relatively high accu-
racy to predict silver fir decline using the trend in basal area
increment as predictor. Logistic regression models based on
the slope of the basal area increment of the five years before

tree death also showed high predictive ability of competition-
mediated mortality of Norway spruce (Picea abies) in the
Swiss Alps [32]. In another study [16] decline and crown
defoliation in silver firs from Slovenia was modelled, showing
that declining trees had a higher probability to die than non-
declining trees.

Defoliated trees followed diminishing growth trends up
two decades before presenting external decline symptoms
as abundant needle loss, which agrees with other studies
[36–38], and suggest that responses of trees to climatic
stress can be predicted based on characteristics growth
patterns [5, 32, 39]. We were able to detect a significant
difference between long-term growth patterns of healthy and
declining silver firs. Moreover, in many cases, declining trees
showed negative growth trends, and high growth sensitivity
to climate. Abrupt declines in growth or strongly negative
growth trends may indicate a rapid physiological adaptation
to changing environmental conditions [3].

Our results suggest that silver firs reacted to warming-
induced drought in the 1980s by reducing their carbon
allocation to stem growth, while needle production and ret-
ention may not have been so affected by this stressing event.
However, allocation to shoot formation and perhaps root
growth had likely been lowering thereafter, until the tem-
perature rise in 1997 and 1998, which resulted in increased
crown defoliation, massive decline, and enhanced mortality
since 1999. Decreasing growth trends are among the most
obvious growth-related characteristics of declining and dying
trees [40]. The process of tree dying may take decades [13,
41], and it is driven by a sequence of multiple stress factors
[3, 4, 42, 43].

Growth decline generally started several decades before
tree death in the Norway spruce Swiss stands studied by [44].
Recurring drought, as judged by an objective drought-stress
indicator, correlated well with modelled mortality probabil-
ity for Scots pines (Pinus sylvestris) in a dry inner-alpine
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Figure 4: Best predictors of silver fir decline obtained by logistic regression models. Variables are plotted for declining and non-declining
trees. The growth sensitivity to climate was estimated as the determination coefficient between basal area increment (BAI) and annual
climatic variables (SPI, standardized precipitation index; P-ETP, annual values of the difference between precipitation—P—and potential
evapotranspiration—ETP). The percentages displayed near the boxes indicate the frequency of declining (trees with percentage of crown
defoliation above 50%) and non-declining trees which were correctly classified. In the box plots, error bars represent the 5th/95th percentiles,
boxes indicate the standard errors, solid lines are the medians, dashed lines are the means, and points are outliers.

Swiss valley [39]. Furthermore, these authors concluded
that a variable describing the most recent growth trend is
needed to adequately predict tree mortality risk. The growth
trends of old Pinus nigra subsp. salzmannii trees, subjected
to dry climatic conditions in south-eastern Spain forests,
were mostly negative over the past century [45]. Declining
Slovenian silver firs showed also decreasing growth trends for
about fifty years [16, 46]. The growth curves of dead and liv-
ing Scots pine trees at three different sites in the Swiss Valais
started to diverge between ten and twenty prior to death
[39]. Similar results were obtained for dying and living Abies
pinsapo trees at low-elevation sites in southern Spain [13].

Silver fir growth is negatively affected by high temper-
ature conditions of the growing season and the previous
fall [47, 48]. Therefore, warming-induced drought stress

is likely more related to silver fir decline than changes in
precipitation, since no year with extremely low precipitation
was recorded in our study area since 1960. By opposite,
annual temperature yielded systematically above average
values since 1981. Rising temperatures increase the vapour-
pressure deficit and evaporation, resulting in greater water
loss through transpiration [49]. Moreover, temperature rises
may affect negatively carbon storage in silver fir because both
the rates of carbohydrate consumption and respiration are
strongly linked to temperature [50].

We conclude that the uncertainty on predicting forest
vulnerability to climate warming depends on the different
individual growth responses to climatic stress which may
selectively alter species dynamics in sites with contrasting
conditions or past successional trajectories. Our findings
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Figure 5: Recent trends in basal area increment (BAI) and growth sensitivity to drought (P-ETP, difference between precipitation and
evapotranspiration) for silver firs with contrasting defoliation degree; in the logistic regression declining trees correspond to the last category
(trees with percentage of crown defoliation above 50%). In the box plots, error bars represent the 5th/95th percentiles; boxes represent the
standard errors; solid lines represent the median; dashed lines are the mean values; and points are outliers.

emphasize the links between tree defoliation and growth sen-
sitivity to warming-induced drought stress in water-limited
populations near the southern distribution limit of Abies alba
in the Spanish Pyrenees. We suggest that increasing growth
sensitivity to rising air temperatures will likely portray
widespread and severe, in terms of defoliation and mortality,
decline episodes in drought-prone areas under a warmer
climatic scenario.
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