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Accurate prediction of the distribution of shear stress is essential for the numerical investigation
of the interaction between the wind and water waves on ocean surface since the shear stress plays
a key role in this type of interfacial flows. The numerical velocity distribution provided by the
computational fluid dynamics should have high accuracy as the shear stress is computed by the
derivative of the numerically predicted velocity. The recently developed wet/dry areas method
based on the conservative integral form of the Navier-Stokes equations mathematically reveals
that the convection terms in the Navier-Stokes equations should be calculated by the areas exposed
to the water and air. In this paper, an analytical expression for the mass flux in the wet/dry areas
method is derived, the discussion is focused on why this analytical expression should be used for
more accurate numerical simulation of interfacial (free surface) flows.

1. Introduction

In many practical problems the water is under the conditions of fast moving air. The
couplings of air-water in a severe weather is more important than quiet weather for the
designs of shipment, structures on the coastal zone and in the ocean. The coupling processes
between surface gravity waves and adjacent winds and currents are of global significance
for climate. This interaction also plays a significant role in the transportation of sediment,
wave growth,. . . and so forth. Air and water interact through the shear stress and pressure
in fluid, therefore, an accurate prediction of the shear stress and pressure is a necessity for
the various applications. In a CFD simulation, the velocity distribution is predicted by using
numerical algorithms, and the shear stress is computed by the derivative of the velocity. In
order to produce a correct shear stress, a spurious velocity distribution should be avoided in
the numerical simulation since the numerical results with spurious velocity do not provide
correct distributions of the velocity, pressure, and shear stress in the fluid.
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The accuracy of numerical schemes used in the numerical simulations of interfacial
flows has caused concerns in previous study. For example, it was revealed that the simple
average density causes spurious velocities near the interface [1]. Long before that, Rudman
[2] found that it is crucial to accurately calculate the convection terms (mass flux) in the
Navier-Stokes equations. For the staggered grid, his method requires that the surfaces of the
f-control volume are also the surfaces of the u-control and v-control volumes. To achieve
this, the mesh for volume fraction f must be twice as fine. Rudman’s method was extended
to 3D and other recent two-phase flow problems [3–5]. Bussmann et al. [6] pointed out that
when the density ratio is large a careful calculation of the convection terms in the Navier-
Stokes equations is needed. They developed a numerical model based on a collocated mesh
by extending Rudman’s method. For a standard staggered mesh, how to accurately calculate
the mass flux is still a question. Recently, the author in this paper developed a numerical
method for interfacial (free surface) flow on a standard staggered grid [7]. In this paper an
analytical expression for the mass fluxes passing through the surfaces of the u- and v-control
volumes is derived. The analysis in this paper reveals that the analytical formula produces
unique and accurate value for the mass fluxes, whereas the widely used average-density
method produces large error for the mass flux and spurious velocity.

In Section 2 of this paper, the governing equations in the conservative integral form are
presented and discretized by following the standard discretization procedure of the control
volume method. In Section 3, the focus is concentrated on the calculation of the mass fluxes
passing through the surfaces of the control volume and a simple but accurate formula for the
mass flux is derived. In Section 4, the numerical results and comparisons are presented.

2. Governing Equation and Discretization

The governing equations in conservative integral form are given in [8]. For incompressible
fluid and a control volume with fixed shape, Ω, the continuity equation for volume conser-
vation is written as ∫

S

(n · v)dS = 0. (2.1)

The continuity equation for mass conservation is
∫
Ω

∂ρ

∂t
dΩ +

∫
S

(
ρn · v)dS = 0. (2.2)

The momentum equation for u is given by

∫
Ω

∂
(
ρu

)
∂t

dΩ +
∫
S

(
ρn · v)udS = −

∫
S
nxpdS +

∫
S
μ
∂u

∂n
dS (2.3)

and the momentum equation for v is given by

∫
Ω

∂
(
ρv

)
∂t

dΩ +
∫
S

(
ρn · v)vdS = −

∫
S
nypdS +

∫
S
μ
∂v

∂n
dS −mg, (2.4)

wherem =
∫
Ω ρdΩ is the total fluid mass within the control volume.
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Figure 1: (a) Staggered location forU, V , P and f , (b)U-control volume.

The equation for volume fraction is given by

∫
Ω

∂f

∂t
dΩ +

∫
S

(n · v)fdS = 0, (2.5)

where v = ui+vj is the velocity vector, n = nxi+nyj is the unit vector outward from the surface
of control volume, p is the pressure, ρ is the density, μ is the viscosity, g is the gravitational
acceleration, S is the surface of control volume, Ω is the volume of control volume, and f is
the volume fraction of water.

The staggered grid arrangement for u, v, p, and f are shown in Figure 1(a). The control
volume for the velocity component u is shown in Figure 1(b) and for this control volume,
(2.2) takes the following form:

∂m

∂t
+
∫
Ae

ρudS −
∫
Aw

ρudS +
∫
An

ρvdS −
∫
As

ρvdS = 0, (2.6)

where Ae, Aw, An, and As are the areas of the faces of the control volume shown in
Figure 1(b).

Momentum equation (2.3) leads to

∂(uPm)
∂t

+
∫
Ae

(
ρu

)
udS −

∫
Aw

(
ρu

)
udS +

∫
An

(
ρv

)
udS −

∫
As

(
ρv

)
udS

=
∫
Aw

pdS −
∫
Ae

pdS

+
∫
Ae

μ
∂u

∂x
dS −

∫
Aw

μ
∂u

∂x
dS +

∫
An

μ
∂u

∂y
dS −

∫
As

μ
∂u

∂y
dS.

(2.7)
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If the surface tension is not included, velocity u, pressure p, and shear stress μ(∂u/∂n) are
continuous functions in the solution domain and on the interface, and then they may be
assumed to be constants on each face of the control volume.

Following the calculations described in Patankar [9] and Shyy [10], we subtract (2.6)
multiplied by uP from the left-hand side of (2.7), and we finally get the algebraic equation for
the velocity u as follows:

aPuP = aEuE + aWuW + aNuN + aSuS + pwAw − peAe +
m0

Δt
(uP )0 + ub, (2.8)

where subscripts 0 and −1 represent the solutions at time levels n and n − 1, respectively, and
other symbols represent the solution at time level n + 1 and the coefficients are written as

aE = De + [−Fe, 0], aW = Dw + [Fw, 0],

aN = Dn + [−Fn, 0], as = Ds + [Fs, 0],

De = μe
Ae

Δxe
, Dw = μw

Aw

Δxw
,

Dn = μn
An

Δyn
, Ds = μs

As

Δys
,

aP =
m0

Δt
+ aE + aW + aN + aS =

m0

Δt
+ Σanb,

(2.9)

where [a, b] represents the maximum of the two operands a and b, and Fe, Fw, Fn and Fs are
the fluid fluxes passing through surfaces Ae,Aw,An and As at time level n + 1 and they are
given by

Fe =
∫
Ae

ρudS, Fw =
∫
Aw

ρudS,

Fn =
∫
An

ρvdS, Fs =
∫
As

ρvdS.

(2.10)

Term ub contains the terms from the high-order scheme for the convection terms, if ub is zero
then we have the first-order upwind scheme. Similarly applying momentum equation (2.4)
and continuity equation (2.2) to the v-control volume we have the algebraic equation for
velocity v as follows:

aPvP = aEvE + aWvW + aNvN + aSvS + psAs − pnAn +
m0

Δt
(vP )0 −mg + vb. (2.11)
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Figure 2: Northern face is exposed to the water and air.

3. The Wet/Dry Areas Method

Now we have to calculate the mass fluxes Fe, Fw, Fn, and Fs given by (2.10). In order to
illustrate numerical method, we now focus on the mass flux on the northern face shown in
Figure 2. It is a common practice that the mass flux on face An is calculated by

Fn =
∫
An

ρvdS = ρnvnΔx, (3.1)

where ρn is the average density on face An, Δx is the area of face An. When the staggered
grid is used, the interpolation techniques have been used to calculate the average density ρn,
but different interpolation methods may produce different values for the average density ρn.
Thus the question is how the mass flux on the surface of control volume can be accurately
calculated. This question is answered by the following analysis.

In order to accurately calculate the mass flux we go further to write (3.1) as

Fn =
∫
An

(
ρv

)
dS = vn

∫
Lw+La

ρdS

= vn

(∫
Lw

ρwdS +
∫
La

ρadS

)
= vn

(
ρwLw + ρaLa

)
,

(3.2)

where ρw is the density of the water, ρa is the density of the air, La is the dry area exposed to
the air, Lw is the wet area exposed to the water, and Δx is the area of face An.

Equation (3.2) is an analytical, therefore accurate, expression for the mass flux passing
through northern face of the control volume. It reveals an important principle that the mass
flux passing through the faces of control volume should be calculated by the area exposed to
the water (wet area) and the area exposed to the air (dry area). We also see that the density
used in (3.2) should be the density of water ρw and the density of air ρa not the average
density ρn in (3.1). Figure 2 and the integration in (3.2) also reveal that when the whole area
of An is exposed to the air, we have La = Δx, Lw = 0; when the whole area of An is exposed
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Figure 3: The wet and dry areas when face An is exposed the the air.

to the water, we have Lw = Δx, La = 0; when a part of An is exposed to the water and
another part is exposed to the air then neither Lw nor La is zero but Lw + La = Δx. In a
two-dimensional problems Lw and La are the lengths on the edges of the control volume,
for a three-dimensional problem, they are the areas on the surfaces of the control volume.
Equation (3.2)was obtained by a slightly different approach in [7].

It must be emphasised that (3.2) is mathematically accurate since term (ρwLw + ρaLa)
in that equation is naturally produced by the conservative integral form of the governing
equations, and most importantly (3.2) states that the wet and dry areas should be calculated
in the numerical discretization process and the densities in these equations are known water
and air densities which are very different from the average-density ρn in (3.1).

It should be also emphasised that (3.1) and (3.2) produce very different values for the
mass flux. For example, in the case shown in Figure 3, if f1 = 0.9, f2 = 0, the air density ρa = 1
and the water density ρw = 1000, then the average volume fraction f = 0.5(f1 + f2) = 0.45
and the average density ρn = fρw + (1 − f)ρa = 0.45 × 1000 + (1 − 0.45) × 1 = 450.55, the mass
flux Fn = 450.5vnΔx; whereas using the wet/dry areas method we have Lw = 0 and La = Δx,
thus from (3.2) the mass flux Fn= vnΔx. From this example we have seen that the difference
between the mass fluxes produced by the average density method and the wet/dry areas
method is very large and clearly that the average density method has produced too large
error for the mass flux. From (2.7), we can see that the time rate of change of the momentum
on the control volume and the total momentum fluxes on the surfaces of control volume (on
the left hand of the equation) are balanced by the total pressure forces and total shear stresses
acting on the surfaces of the control volume (on the right hand of the equation). Therefore,
the large discretization error inmass flux is fed intomomentum equation (2.7) and this causes
large errors in the pressure and shear stress. The numerical example next section will show
this large error introduced in the average density method inevitably causes spurious velocity
distribution near the interface.

When applying the wet/dry areas method we have to calculate the areas Lw and
La. For a two-dimensional problem, the formula for Lw and La were derived in [7] by
reconstructing the interface based on the solution of the volume fraction f . The SIMPLEC
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Figure 4: Flow pattern of progressive wave in the ocean surface.

algorithm is applied to obtain the velocity and pressure distribution. The solution of the
volume fraction f in (2.5) is obtained by a high-resolution scheme CICSAM (Compressive
Interface Capturing Scheme for Arbitrary Meshes) [11].

4. Application to the Progressive Waves in Two-Layer Viscous Fluids

In order to validate the numerical method, the wet/dry areas method is applied to the
numerical simulation of the progressive wave of the air-water flow when the wind speed
is zero shown in Figure 4.

4.1. Initial and Boundary Conditions

Although the solution of the linear wave is not the solution of the Navier-Stokes equations, it
produces a reasonable approximation to the problem. In the solution of a linear progressive
wave in a two-layer inviscid fluid [12], the surface elevation, η, of the wave travelling in the
x-direction is

η = a sin(kx − σt), (4.1)

The velocity components, pressure, and volume fraction in the air are given by

u = U − Baakc sin(kx − σt) cosh k(y − h′), (4.2)

v = Baakc cos(kx − σt) sinh k(y − h′), (4.3)

p = −ρa
[
akc2Ba cosh k

(
y − h′) sin(kx − σt) + u2 + v2

2
+ gy

]
, (4.4)

f = 0. (4.5)
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In the water they are given by

u = Bwakc sin(kx − σt) cosh k(y + h
)
, (4.6)

v = −Bwakc cos(kx − σt) sinh k(y + h
)
, (4.7)

p = −ρw
[
akc2Bw cosh k

(
y + h

)
sin(kx − σt) + u2 + v2

2
+ gy

]
, (4.8)

f = 1, (4.9)

where

Ba =
(1 −U/c)
sinh kh′

, Bw =
1

sinh kh
. (4.10)

The dispersion equation takes the following form:

ρwσ
2 coth kh + ρa(σ − kU)2 coth kh′ =

(
ρw − ρa

)
gk (4.11)

or

ρwc
2 coth kh + ρa(c −U)2 coth kh′ =

(
ρw − ρa

)
g

k
. (4.12)

The initial surface elevation of the water wave, velocity distributions in the air and water
and volume fraction f are evaluated by substituting t = 0 into (4.1)–(4.9). When t > 0, the
location of the interface, the velocity for the water and air and volume fraction f at the inlet
are calculated by substituting x = 0 into (4.1)–(4.3), (4.5), (4.6)-(4.7), and (4.9). At the top of
the domain, a symmetric condition for the velocity is applied. At the bottom and on the step
beach, a no-slip wall condition is applied. At the outlet, the normal derivative of velocity is
set to be zero.

4.2. Simulation Parameters

The numerical simulations are performed for an air-water system on a laboratory scale. The
water and air depth was set at h = 0.12m and h′ = 0.78m, respectively. The wavelength for
the water wave is set at L = 0.2m, wave amplitude a = 0.006m which leads to a deep water
wave with h/L = 0.6 and a large wave steepness 2a/L = 0.06 (ak = 0.1885). The wave phase
speed, c, is calculated by (4.11). The length of the computational domain is 4m and the length
of the main test domain is 3m. The length of step-shape beach is 0.65m with an average
slope of 1/20. The values of the parameters used in the simulation are g = 9.8m/s2, water
viscosity μw = 1.0 × 10−3 Ns/m2, air viscosity μa = 1.0 × 10−5 Ns/m2, ρw = 1000 kg/m3, and
ρa = 1.0 kg/m3.

A rectangular nonuniform Cartesian mesh is used in the whole solution domain. In
order to resolve the boundary layer at the bed Δy = 0.0001, 0.0003, and 0.0005m were tested
for the first grid size. It is found that Δy = 0.0001 and 0.0003m produce accurate solution,
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Figure 5: Velocity distribution produced by the potential flow, the wind speedU = 0.
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Figure 6: Velocity distribution produced by the wet/dry areas method, the wind speedU = 0.

then Δy = 0.0003m is used. Above the first grid, the grid size increases to the middle of
the water wave where the grid size starts to decrease. Near the wave, uniform grids with
8, 12, 16 and 20 grid points were tested to cover the wave height. It was found that both 12
and 16 grid points are sufficient to produce accurate results and, therefore, 16 grid points
are distributed vertically around the wave height. Above the peak of the wave, the grid
size gradually increases to the top of the domain. A total of 60, 90, and 120 grid points in
y direction were tested, and 90 grid points was found to be sufficient to produce accurate
results. In the horizontal direction, a uniformmesh is usedwith the grid size ofΔx = 3Δywave,
whereΔywave is the grid size in the wave height. The time of numerical simulations lasts until
the wave generated at the inlet at t = 0 propagates to the middle of the beach. The time step
varies from 0.00002 s to 0.00005 s when the wind speed is increased from U = 0 to U = c. It
was found that further increase of the wind speed leads to difficulties in convergence, and
the time step has to be reduced, leading to expensive calculations.

4.3. Results and Discussion

When the wind speed U = 0, Figures 5, 6, and 7 show the profiles of the surfaces of water
waves and velocity vectors produced by the potential flow, the wet/dry areas method and
the average density method in one typical wave length. In the solution of the potential
flow shown in Figure 5 the velocity distribution in the water and air is the classic orbiting
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Figure 7: Velocity distribution produced by the average method, the wind speedU = 0.
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Figure 8: u-velocity profile along the y-axis direction produced by the potential flow (dotted lines), the
wet/dry areas method (solid lines) and the average density method (dashed lines) at location x/L = 0.25
(wave crest).

velocity of potential flow. In the solution of the viscous fluid shown in Figure 6, the velocity
distribution produced by the wet/dry areas method is very similar to that of the potential
flow in most of the solution domain, especially in the water. The major difference between
the solutions of the potential flow and the viscous flow takes place in the air near the water
surface where the wet/dry method produces two re-circulations, one is just above the wave
peak, another is just above the wave trough. However, the velocity distribution produced by
the average density method shown in Figure 7 is very different from those in Figures 5 and
6. Most difference is that the average density method produces a strong jet flow just above
the wave trough and a recirculation just under the wave trough. The recirculation under the
wave trough is a spurious velocity distribution since it is impossible for the water to rotate
when the wind speed is zero.

In order to quantitatively compare the results the u-velocity varying with the y-
coordinate shown is plotted at different locations x/L = 0.25 and 0.5. At the wave peak,
x/L = 0.25, Figure 8 shows that the positive u-velocities of the potential and the viscous
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Figure 9: u-velocity profile along the y-axis direction produced by the potential flow (dotted lines), the
wet/dry areas method (solid lines), and the average density method (dashed lines) at location x/L = 0.75
(wave trough).

flows increase to maximum from the bed to the water surface. Near the water surface of the
wave peak the water velocity of the viscous flow is slightly higher than the potential flow.
Across the interface, the u-velocity of the potential flow switches to a negative maximum
within a distance of zero because of the absence of viscosity. In contract, the u-velocity of the
viscous flow is continuous but rapidly decreases to zero from the interface to the centre of the
recirculation in the air and reaches a negative maximum at the position above the centre of
the recirculation. Above this, the u-velocity produced by the potential flow and viscous flow
decrease to small values. A remarkable feature is that over most of the profiles the difference
between the velocity magnitudes of the potential and viscous flows is less than 1%. However,
just above the wave peak, the average density method produces very strong jet flow with
large positive velocity which is several times higher than those produced by the potential
flow and the wet/dry areas method.

At the wave trough, x/L = 0.75, Figure 9 shows that both potential flow and wet/dry
method produce negative u-velocities in the water. The negative u-velocities increase to a
maximum on the water surface. In contrast, the average density method produces a positive
u-velocity under the water surface because of the recirculation under the water surface.
On the air side of the interface the u-velocity of the potential flow switches to a positive
maximum from a negative maximum, whereas the u-velocity produced by th wet/dry areas
method changes continuously from the negative maximum to a positive maximum at the
position above the centre of the recirculation in the air. The difference between the potential
and viscous flows is also small over most of the profiles. Again the average density method
produces very large velocity just above the water.

In order to compare the analytical solution of the potential flow with the solution of
the viscous flow produced by the wet/dry areas method the streamlines defined by ψ/(ack)
are plotted in Figure 10. It is observed that these two solutions have almost identical flow
patterns in the water, but the streamlines of the viscous flow are centred inside the air near
the peak and trough, whereas the streamlines of the potential flow are centred on the interface
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Figure 10: Streamlines produced by the potential flow (dotted lines) and theWet/Dry AreasMethod (solid
lines), the wind speedU = 0.
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Figure 11: Velocity distribution and streamlines produced by the average density method at the trough of
wave.

at the peak and trough. A remarkable difference between the potential flow and viscous flow
is that there is no recirculation in the potential flows but there are two recirculations in the
air above the peak and trough of water wave. Figure 11 shows the streamlines and velocity
vectors produced by the average density method. It shows that the strong jet above the water
surface is very different from the velocities produced by the potential flow and the wet/dry
areas method, especially the recirculation under the water surface is clearly visible, indicating
the spurious flow pattern.

The nondimensional vorticity is defined by

ω =

(
∂v/∂x − ∂u/∂y)

(2akσ)
. (4.13)

The vorticity distribution in the water and air is presented in Figure 12. It is observed that the
magnitude of the positive and negative vorticity is much larger in the air than in the water.
At the peak of the water wave the vorticity has its maximum at the centre of the recirculation
in the air due to the anti-clockwise rotation revealed in Figure 6, whilst at the trough of the
water wave the vorticity has its minimum at the centre of the recirculation in the air due to
clockwise rotation revealed in Figure 6. Along the vertical direction up into air and down into
water the vorticity reduces to zero in a oscillatory manner. This oscillatory variation can be
clearly observed in the air where there is a band of yellow colour (positive vorticity) area and
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Figure 12: Vorticity distribution of the viscous flow.
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Figure 13: Shear stress distributions of the viscous flow.

a band of green colour (negative vorticity) area. In the water, this oscillatory variation was
recently revealed in [13].

The nondimensional shear stress is defined by

τ =
μ
(
∂u/∂y + ∂v/∂x

)
(
μw2akσ

) , (4.14)

where μ is computed by the harmonic mean of the viscosity of water μw and the viscosity of
air μa.

Figure 13 shows the distribution of the shear stress in the water and air. The shear
stress under water is positive under the peak of water wave and negative under the tough
of water wave. The maximum positive and negative shear stresses are just under the water
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surface. The future of the shear stress distribution under the water is very similar to that
revealed in [13], but the shear stress in the air is much smaller than in the water and the
distribution of the shear stress in the air is more complicated than in the water. Well above
the water wave, there are two regions: the region above the wave peak has positive shear
stress, whilst the region above the wave trough has positive shear stress.

5. Conclusions

An analytical, therefore accurate, expression for the mass flux passing through the faces of
control volume is derived in this paper based on the conservative integral form of the Navier-
Stokes equations. This expression produces unique and correct mass flux passing through the
surface of control volume. It can be used to check any numerical algorithm. If an algorithm
produces different mass flux, then the algorithm contains error. Since the convection terms
in the Navier-Stokes equations are accurately computed, the spurious velocity is avoided.
The theoretical analysis and numerical example in this paper reveal that the average density
method produces an average density with very large error. This error in the density leads to
large error in the mass fluxes on the surfaces of the u- and v-control volumes, consequently,
the spurious velocity around the interface is produced. The analysis in this paper reveals why
the average density method is not accurate and the numerical results confirm the spurious
velocity phenomenon revealed by Wemmenhove et al. [1]. The wet/dry areas method has
been validated by various problems [7] and the accuracy, mesh dependence, robustness
and efficiency have been tested in [7]. The wet/dry areas method is a two-phase fluid
model, its all equations are derived with generality, therefore, the method can be applied to
general interfacial (free surface) flows. The results of the water-air flow with wind are under
preparation for publication.
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