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We obtain a new fixed point theorem in generalized quasimetric spaces. This result generalizes,
unify, enrich, and extend some theorems of well-known authors frommetric spaces to generalized
quasimetric spaces.

1. Introduction and Preliminaries

The concept of metric space, as an ambient space in fixed point theory, has been generalized
in several directions. Some of such generalizations are quasimetric spaces, generalized metric
spaces, and generalized quasimetric spaces.

The concept of quasimetric spaces is treated differently by many authors. In this paper
our concept is in line with this treated in [1–6], and so forth and the triangular inequality
d(x, y) ≤ d(x, z) + d(z, y) is replaced by quasi-triangular inequality:

d
(
x, y

) ≤ k
[
d(x, z) + d

(
z, y

)]
, k ≥ 1. (1.1)

In 2000 Branciari [7] introduced the concept of generalized metric spaces (gms) (the
triangular inequality d(x, y) ≤ d(x, z)+d(z, y) is replaced by tetrahedral inequality d(x, y) ≤
d(x, z) + d(z,w) + d(w,y)). Starting with the paper of Branciari, some classical metric fixed
point theorems have been transferred to gms (see [8–13]).

Recently L. kikina and k. kikina [14] introduced the concept of generalized quasimetric
space (gqms) on the lines of quasimetric space, where the tetrahedral inequality d(x, y) ≤
d(x, z) + d(z,w) + d(w,y) has been replaced by quasitetrahedral inequality d(x, y) ≤
k[d(x, z)+d(z,w)+d(w,y)]. The well-known fixed point theorems of Banach and of Kannan
have been transferred to such a space.
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The metric spaces are a special case of generalized metric spaces and generalized met-
ric spaces are a special case of generalized quasimetric spaces (for k = 1). Also, every qms is
a gqms, while the converse is not true.

In gqms, contrary to a metric space, the “open” balls B(a, r) = {x ∈ X : d(x, a) < r} are
not always open sets, and consequently, a generalized quasidistance is not always continuous
of its variables. The gqms is not always a Hausdorff space and the convergent sequence (xn)
in gqms is not always a Cauchy sequence (see Example 1.3).

Under this situation, it is reasonable to consider if some well-known fixed point theo-
rems can be obtained in generalized quasimetric space.

The aim of this paper is to generalize, unify, and extend some theorems of well-known
authors such as of Fisher and Popa, from metric spaces to generalized quasimetric spaces.

Let us start with the main definitions.

Definition 1.1 (see [7]). Let X be a set and d : X2 → R+ a mapping such that for all x, y ∈ X
and for all distinct points z,w ∈ X, each of them different from x and y, one has

(a) d(x, y) = 0 if and only if x = y,

(b) d(x, y) = d(y, x),

(c) d(x, y) ≤ d(x, z) + d(z,w) + d(w,y) (tetrahedral inequality).

Then d is called a generalized metric and (X, d) is a generalized metric space (or shortly
gms).

Definition 1.2 (see [14]). Let X be a set. A nonnegative symmetric function d defined on X ·X
is called a generalized quasidistance on X if and only if there exists a constant k ≥ 1 such that
for all x, y ∈ X and for all distinct points z,w ∈ X, each of them different from x and y, the
following conditions hold:

(i) d(x, y) = 0 ⇔ x = y;

(ii) d(x, y) = d(y, x);

(iii) d(x, y) ≤ k[d(x, z) + d(z,w) + d(w,y)].

Inequality (2.7) is often called quasitetrahedral inequality and k is often called the
coefficient of d. A pair (X, d) is called a generalized quasimetric space if X is a set and d is a
generalized quasidistance on X.

The set B(a, r) = {x ∈ X : d(x, a) < r} is called “open” ball with center a ∈ X and
radius r > 0.

The family τ = {Q ⊂ X : ∀a ∈ Q, ∃r > 0, B(a, r) ⊂ Q} is a topology on X and it is called
induced topology by the generalized quasidistance d.

The following example illustrates the existence of the generalized quasimetric space
for an arbitrary constant k ≥ 1.
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Example 1.3 (see [14]). Let X = {1 − (1/n) : n = 1, 2, . . . } ∪ {1, 2}. Define d : X · X → R as
follows:

d
(
x, y

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0, for x = y,

1
n
, for x ∈ {1, 2}, y = 1 − 1

n
or y ∈ {1, 2}, x = 1 − 1

n
, x /=y,

3k, for x, y ∈ {1, 2}, x /=y,

1, otherwise.

(1.2)

Then it is easy to see that (X, d) is a generalized quasimetric space and is not a generalized
metric space (for k > 1).

Note that the sequence (xn) = (1 − (1/n)) converges to both 1 and 2 and it is not a
Cauchy sequence:

d(xn, xm) = d

(
1 − 1

n
, 1 − 1

m

)
= 1, ∀n,m ∈ N. (1.3)

Since B(1, r) ∩ B(2, r)/=φ for all r > 0, the (X, d) is non-Hausdorff generalized metric
space.

The function d is not continuous: 1 = limn→∞d(1 − (1/n), 1/2)/=d(1, 1/2) = 1/2.
In [14] the following is proved.

Proposition 1.4. If (X, d) is a quasimetric space, then (X, d) is a generalized quasimetric space. The
converse proposition does not hold true.

Definition 1.5. A sequence {xn} in a generalized quasimetric space (X, d) is called Cauchy
sequence if limn,m→∞d(xn, xm) = 0.

Definition 1.6. Let (X, d) be a generalized quasimetric space. Then one has the following.

(1) A sequence {xn} in X is said to be convergent to a point x ∈ X (denoted by
limn→∞xn = x) if limn→∞d(xn, x) = 0.

(2) It is called compact if every sequence contains a convergent subsequence.

Definition 1.7. A generalized quasimetric space (X, d) is called complete, if every Cauchy
sequence is convergent.

Definition 1.8. Let (X, d) be a gqms and the coefficient of d is k.
A map T : X → X is called contraction if there exists 0 < c < 1/k such that

d
(
Tx, Ty

) ≤ cd
(
x, y

) ∀x, y ∈ X. (1.4)

Definition 1.9. Let T : X → X be a mapping where X is a gqms. For each x ∈ X, let

O(x) =
{
x, Tx, T2x, . . .

}
, (1.5)
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which will be called the orbit of T at x. The space X is said to be T -orbitally complete if and
only if every Cauchy sequence which is contained in O(x) converges to a point in X.

Definition 1.10. The set of all upper semicontinuous functions with 3 variables f : R3
+ → R

satisfying the following properties:

(a) f is nondecreasing in respect to each variable,

(b) f(t, t, t) ≤ t, t ∈ R+

will be noted by F3 and every such function will be called an F3-function. Some examples of
F3-function are as follows:

(1) f(t1, t2, t3) = max{t1, t2, t3},

(2) f(t1, t2, t3) = [max{t1t2, t2t3, t3t1}]1/2,

(3) f(t1, t2, t3) = [max{tp1 , t
p

2 , t
p

3}]1/p, p > 0,

(4) f(t1, t2, t3) = (at1t2 + bt2t3 + ct3t1)
1/2, where a, b, c ≥ 0 and a + b + c < 1.

2. Main Result

We state the following lemma which we will use for the proof of the main theorem.

Lemma 2.1. Let (X, d) be a generalized quasimetric space and {xn} is a sequence of distinct point
(xn /=xm for all n/=m) in X. If d(xn, xn+1) ≤ cnl, 0 ≤ c < 1/k < 1, for all n ∈ N and
limn→∞d(xn, xn+2) = 0, then {xn} is a Cauchy sequence.

Proof. If m > 2 is odd, then writing m = 2p + 1, p ≥ 1, by quasitetrahedral inequality, we can
easily show that

d(xn, xn+m) ≤ k[d(xn, xn+1) + d(xn+1, xn+2) + d(xn+2, xn+m)]

≤ kd(xn, xn+1) + k2d(xn+1, xn+2) + k2d(xn+2, xn+m)

≤ kcnl + k2cn+1l + k2d(xn+2, xn+m) ≤ · · ·

≤ kcnl + k2cn+1l + k3cn+2l + · · · + km−1cn+m−2l + km−1cn+m−1l

≤ kcnl + k2cn+1l + k3cn+2l + · · · + km−1cn+m−2l + kmcn+m−1l

≤ kcnl
[
1 + kc + · · · + (kc)m−1

]
= kcnl

1 − (kc)m

1 − kc
< kcnl

1
1 − kc

.

(2.1)

Therefore, limn→∞d(xn, xn+m) = 0.
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If m > 2 is even, then writing m = 2p, p ≥ 2 and using the same arguments as before
we can get

d(xn, xn+m) ≤ k[d(xn, xn+2) + d(xn+2, xn+3) + d(xn+3, xn+m)]

≤ kd(xn, xn+2) + kcn+2l + kd(xn+3, xn+m)

≤ kd(xn, xn+2) + kcn+2l + k2[d(xn+3, xn+4) + d(xn+4, xn+5) + d(xn+5, xn+m)] ≤ · · ·

≤ kd(xn, xn+2) + kcn+2l + k2cn+3l + · · · + km−2cn+m−1l

= kd(xn, xn+2) + kcn+2l
[
1 + kc + · · · + (kc)m−3

]

= kd(xn, xn+2) + kcn+2l
1 − (kc)m−2

1 − kc

< kd(xn, xn+2) + kcn+2l
1

1 − kc
.

(2.2)

And so limn→∞d(xn, xn+m) = 0. It implies that {xn} is a Cauchy sequence inX. This completes
the proof of the lemma.

We state the following theorem.

Theorem 2.2. Let (X, d) and (Y, ρ) be two generalized quasimetric spaces with coefficients k1 and
k2, respectively. Let T be a mapping of X into Y and S a mapping of Y into X satisfying the following
inequalities:

d
(
Sy, STx

) ≤ cf1
{
d
(
x, Sy

)
, d(x, STx), ρ

(
y, Tx

)}
,

ρ
(
Tx, TSy

) ≤ cf2
{
ρ
(
y, Tx

)
, ρ
(
y, TSy

)
, d

(
x, Sy

)}
,

(2.3)

for all x ∈ X and y ∈ Y , where 0 < c < 1/k ≤ 1, k = max{k1, k2}, f1, f2 ∈ F3. If there exists x0 ∈ X
such that O(x0) is ST -orbitally complete in X and O(Tx0) is TS-orbitally complete in Y , then ST
has a unique fixed point α in X and TS has a unique fixed point β in Y . Further, Tα = β and Sβ = α.

Proof. Let x0 be an arbitrary point in X. Define the sequences (xn) and (yn) inductively as
follows:

xn = Syn = (ST)nx0, y1 = Tx0, yn+1 = Txn = (TS)ny1, n ≥ 1. (2.4)

Denote

dn = d(xn, xn+1), ρn = ρ
(
yn, yn+1

)
, n = 1, 2, . . . . (2.5)
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Using the inequality (2) we get

ρn = ρ
(
yn, yn+1

)
= ρ

(
Txn−1, TSyn

)

≤ cf2
(
ρ
(
yn, yn

)
, ρ
(
yn, yn+1

)
, d(xn−1, xn)

)
= cf2

(
0, ρn, dn−1

)
.

(2.6)

By this inequality and properties of f2, it follows that

ρn ≤ cdn−1. (2.7)

Using the inequality (2.3) we have

dn = d(xn, xn+1) = d
(
Syn, STxn

)

≤ cf1
(
d(xn, xn), d(xn, xn+1), ρ

(
yn, yn+1

))
= cf1

(
0, dn, ρn

)
,

(2.8)

and so dn ≤ cρn. By this inequality and (2.7) we obtain

dn ≤ c2dn−1 ≤ cdn−1. (2.9)

Using the mathematical induction, by the inequalities (2.7) and (2.9), we get

dn ≤ cnd(x0, x1), ρn ≤ cnd(x0, x1). (2.10)

So

lim
n→∞

d(xn, xn+1) = lim
n→∞

ρ
(
yn, yn+1

)
= 0. (2.11)

Applying the inequality (2), we get

ρ
(
yn, yn+2

)
= ρ

(
Txn−1, TSyn+1

)

≤ cf2
(
ρ
(
yn+1, yn

)
, ρ
(
yn+1, yn+2

)
, d(xn−1, xn+1)

)

= cf2
(
ρn, ρn+1, d(xn−1, xn+1)

) ≤ cmax{cnd(x0, x1), d(xn−1, xn+1)},
(2.12)

and so

ρ
(
yn, yn+2

) ≤ max{cnd(x0, x1), cd(xn−1, xn+1)}. (2.13)

Similarly, using (2.3), we obtain

d(xn, xn+2) ≤ max{cnd(x0, x1), cd(xn−1, xn+1)}. (2.14)
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Using the mathematical induction, we get

d(xn, xn+2) ≤ max{cnd(x0, x1), cd(xn−1, xn+1)} ≤ max
{
cnd(x0, x1), c2d(xn−2, xn)

}

≤ · · · ≤ max{cnd(x0, x1), cnd(x0, x2)} = cn max{d(x0, x1), d(x0, x2)} = cnl,

(2.15)

and so

d(xn, xn+2) ≤ cnl, similarly ρ
(
yn, yn+2

) ≤ cnl, (2.16)

where l = max{d(x0, x1), d(x0, x2)}.
We divide the proof into two cases.

Case 1. Suppose xp = xq for some p, q ∈ N, p /= q. Let p > q. Then (ST)px0 = (ST)p−q(ST)qx0 =
(ST)qx0; that is, (ST)

nα = αwhere n = p−q and (ST)qx0 = α. Now if n > 1, by (2.10), we have

d(α, STα) = d
[
(ST)nα, (ST)n+1α

]
≤ cnd(α, STα). (2.17)

Since 0 < c < 1, d(α, STα) = 0. So STα = α and hence α is a fixed point of ST .
By the equality xp = xq it follows that yp+1 = yq+1. We take β = (TS)qTx0 and, in similar

way, we prove that β is a fixed point of TS.

Case 2. Assume that xn /=xm for all n/=m. Then, from (2.10), (2.16), and Lemma 2.1 is derived
that {xn} is a Cauchy sequence in X. Since O(x0) is ST-orbitally complete, there exists α ∈ X
such that limn→∞xn = α. In the same way, we show that the sequence (yn) is a Cauchy
sequence and there exists a β ∈ Y such that limn→∞yn = β.

We now prove that the limits α and β are unique. Suppose, to the contrary, that α′ /=α
is also limn→∞xn. Since xn /=xm for all n/=m, there exists a subsequence (xnk) of (xn) such
that xnk /=α and xnk /=α′ for all k ∈ N. Without loss of generality, assume that (xn) is this
subsequence. Then by Tetrahedral property of Definition 1.1 we obtain

d
(
α, α′) ≤ k

[
d(α, xn) + d(xn, xn+1) + d

(
xn+1, α

′)]. (2.18)

Letting n tend to infinity we get d(α, α′) = 0 and so α = α′, in the same way for β.
Let us prove now that α is a fixed point of ST . First we prove that β = Tα. In contrary,

if β /= Tα, the sequence (yn) does not converge to Tα and there exists a subsequence (ynq) of
(yn) such that ynq /= Tα for all q ∈ N. Then by Tetrahedral property of Definition 1.1 we obtain

ρ
(
β, Tα

) ≤ k
[
ρ
(
β, ynq−1

)
+ ρ

(
ynq−1 , ynq

)
+ ρ

(
ynq , Tα

)]
. (2.19)

Then if q → ∞, we get

ρ
(
β, Tα

) ≤ k lim
q→∞

ρ
(
ynq , Tα

)
. (2.20)
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Using the inequality (2), for x = α and y = yn−1 we obtain

ρ
(
Tα, yn

)
= ρ

(
Tα, TSyn−1

) ≤ cf2
(
ρ
(
yn−1, Tα

)
, ρ
(
yn−1, TSyn−1

)
, d

(
α, Syn−1

))

= cf2
(
ρ
(
yn−1, Tα

)
, ρ
(
yn−1, yn

)
, d(α, xn−1)

)
.

(2.21)

Letting n tend to infinity we get

lim
n→∞

ρ
(
Tα, yn

) ≤ cf2

(
lim
n→∞

ρ
(
yn−1, Tα

)
, 0, 0

)
. (2.22)

And so,

lim
n→∞

ρ
(
Tα, yn

)
= 0. (2.23)

Since limq→∞ ρ(ynq , Tα) ≤limn→∞ ρ(Tα, yn), by (2.23) and (2.20), we have ρ(β, Tα) = 0 and
so

Tα = β. (2.24)

It follows similarly that

Sβ = α. (2.25)

By (2.24) and (2.25)we obtain

STα = Sβ = α, TSβ = Tα = β. (2.26)

Thus, we proved that the points α and β are fixed points of ST and TS, respectively.
Let us prove now the uniqueness (for Cases 1 and 2 in the same time). Assume that

α′ /=α is also a fixed point of ST . By (2.3) for x = α′ and y = β we get

d
(
α, α′) = d

(
Sβ, STα′) ≤ cf1

(
d
(
α′, α

)
, 0, ρ

(
Tα, Tα′)). (2.27)

And so,we have

d
(
α, α′) ≤ cρ

(
Tα, Tα′). (2.28)

If Tα/= Tα′, in similar way by (2) for x = STα and y = Tα′, we have

ρ
(
Tα, Tα′) ≤ cd

(
α, α′). (2.29)

By (2.28) and (2.29) we get d(α, α′) = 0. Thus, we have again α = α′. The uniqueness of β
follows similarly. This completes the proof of the theorem.
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3. Corollaries

(1) If k1 = k2 = 1, then by Theorem 2.2 we obtain [12, Theorem 2.1], that generalize
and extend the well-known Fisher fixed point theorem [15] from metric space to
generalized metric spaces.

For different expressions of f1 and f2 in Theorem 2.2 we get different theorems.

(2) For f1 = f2 = f , where f(t1, t2, t3) = max{t1, t2, t3} we have an extension of Fisher’s
theorem [15] in generalized quasimetric spaces.

(3) For f1 = f2 = f , where f(t1, t2, t3) = [max{t1t2, t2t3, t3t1}]1/2, we have an extension
of Popa’s theorem [13] in generalized quasimetric spaces.

(4) For f1(t1, t2, t3) = (a1t1t2+b1t2t3+c1t3t1)
1/2 and f2(t1, t2, t3) = (a2t1t2+b2t2t3+c2t3t1)

1/2

we obtain an extension of Popa’s Corollary [13] in generalized quasimetric spaces.

Remark 3.1. We can obtain many other similar results for different f .
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