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Tuberculosis, an airborne disease affecting almost a third of the world’s population remains one of the major public health burdens
globally, and the resurgence of multidrug-resistant tuberculosis in some parts of sub-Saharan Africa calls for concern. To gain
insight into its qualitative dynamics at the population level, mathematical modeling which require as inputs key demographic
and epidemiological information can fill in gaps where field and lab data are not readily available. A deterministic model for the
transmission dynamics of multi-drug resistant tuberculosis to assess the impact of diagnosis, treatment, and health education is
formulated. The model assumes that exposed individuals develop active tuberculosis due to endogenous activation and exogenous
re-infection. Treatment is offered to all infected individuals except those latently infected with multi-drug resistant tuberculosis.
Qualitative analysis using the theory of dynamical systems shows that, in addition to the disease-free equilibrium, there exists a
unique dominant locally asymptotically stable equilibrium corresponding to each strain. Numerical simulations suggest that, at
the current level of control strategies (with Malawi as a case study), the drug-sensitive tuberculosis can be completely eliminated

from the population, thereby reducing multi-drug resistant tuberculosis.

1. Introduction

Tuberculosis (TB) is a bacterial infection that is fatal if
untreated timely [1]. It is an airborne disease caused by the
mycobacterium tuberculosis and primarily affects the lungs
(it can also affect the central nervous system, the lymphatic
system, the brain, spine, and the kidneys). Approximately
one-third of the world’s population is affected [2]. In 1993,
concerned with the rising cases of deaths and the new
infection rate which were occurring at one per second,
the World Health Organization (WHO) declared TB as a
global emergency. This resurgence has been closely linked
with environmental and social changes that compromised
people’s immune system [3]. Out of the 1.7 billion people
estimated to be infected with TB, 1.3 billion lived in
developing countries [2].

Active TB individuals can infect on average 10-15 other
people per year if left untreated [12]. TB progression from

inactive (latent) infection to active infection varies from
one person to another. People suffering from AIDS have a
greater risk of developing active TB with about 50% chance
of developing active TB within 2 months and a 5 to 10%
chance of developing active TB each year thereafter [1].
TB is treatable and curable if it is diagnosed and treated
before it becomes severe [13]. WHO stresses that treatment
for TB should not be undertaken unless the diagnosis is
confirmed [14]. Currently five drugs are available: isoniazid,
rifampicin, pyrazinamide, ethambutol, and streptomycin
[13]. A combination of these drugs is required to prevent
the development of drug-resistance, requiring 69 months
of continued treatment to be effective [15].
Multidrug-resistant tuberculosis (MDR-TB) is a form
of TB that is resistant to at least the two main first-line
anti-TB drugs, isoniazid and rifampicin [1]. There were an
estimated 0.5 million cases of MDR-TB in 2007 worldwide
[14]. Drug-resistant strains are far more difficult but not



impossible to treat, despite being too expensive [12]. The
most important factor in preventing drug-resistant TB is
to ensure full compliance with anti-TB treatment [1]. It is
recommended that patients take the pills in the presence of a
medical professional, an approach referred to as the directly
observed therapy strategy (DOTS).

Given the scarcity of complete data, partial data obtained
from the Malawi National TB Control Program [4] will
be used for numerical simulations. Other parameter values
are from the literature or simply assumed for the purpose
of illustration. Malawi which endorsed the DOTS program
since 1984 is a landlocked country in Central-Southern
Africa, sharing common borders with Tanzania, Zambia, and
Mozambique. The country has an estimated total population
of 12.8 million and has a surface area of 118,480km?, a
quarter of which is occupied by Lake Malawi [4]. In July
2007, there was a commitment to treat all known MDR-
TB cases in Malawi. By October 2007, some patients were
identified, retested and a recommendation was made to start
them on second-line treatment under DOTS. However, the
effectiveness of the whole exercise is yet to be established
as field and lab data are not yet available. Even when
available, the data may not reflect the true picture because
some hospitals do not collect monthly sputum specimens
for checking conversion to negativity [4]. According to the
2007 tuberculosis case finding statistics, 26,299 cases were
reported countrywide [4]. This is 3% less than the cases
that were reported in 2006. For 2007/2008, WHO estimates
that TB case detection rate for Malawi was 46%. Since TB-
infected people progress faster to active TB if they are HIV
positive, all TB patients are tested for HIV. Out of the 26,299
TB patients registered for anti-TB treatment, 22,744 (86%)
were tested for HIV and 15,491 (68%) were found to be HIV
positive [4].

Two-strain TB models that considered different inter-
ventions have been developed [5, 16, 17]. There are funda-
mental differences with this study. In addition to treatment,
individuals are further classified based on their knowledge
about health information (education) on the importance
of completing their TB dosage. Also, infectious drug-
sensitive individuals are diagnosed for any development of
drug-resistance. Since much remains unknown about the
transmission of drug-resistant TB strains, another novelty
of this study is the consideration of two cases whereby an
individual can get infected with MDR-TB. The first case is
when latently infected individuals with drug sensitive TB
come into adequate contact with an infectious MDR-TB
individual and transmission takes place. The second one is
when a drug sensitive TB individual can be reinfected with
MDR-TB, which might also be due to incomplete treatment.
Furthermore, fast and slow progression to active TB as well
as endogenous re-activation and exogenous re-infection for
both drug sensitive and resistant strains is accounted for.

This paper is organized as follows. In Section 2, we
formulate and analyze the model. The potential impact of
the various control strategies is numerically investigated in
Section 3. In Section 4, we discuss the relevance of the results
and possible future work.
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2. Model Construction and Analysis

We consider a two-strain TB model with three interventions.
The model is defined as a set of nonlinear ordinary differen-
tial equations based upon specific biological and intervention
assumptions about the transmission dynamics of MDR-
TB. The host population is subdivided into various classes
according to their disease status: susceptible individuals (S),
individuals exposed to drug sensitive TB only (E;), infectious
individuals with drug sensitive TB (I;), individuals exposed
to MDR-TB (E,), infectious individuals with MDR-TB (I,),
and individuals who have recovered from the disease (R).
Susceptible individuals are recruited at a constant rate, A.
These individuals will be infected with the tubercle bacillus
if they come into effective contact with an active TB case
at a rate A;, where the subscript i = s,7 denotes sensitive
and MDR strains, respectively. The force of infection A; is
defined as A; = (¢fil;)/N, where f; is the probability that an
individual is infected by one infectious individual, and ¢ is
the percapita contact rate.

Progression from respective exposed classes to infectious
classes is due to exogenous re-infection and endogenous
reactivation. Thus, due to exogenous re-infection, individ-
uals in E; and E, classes progress to active TB classes, I;
and I, at the rate y;A; and y,A,, respectively (y, is the re-
infection rate of exposed individuals with MDR-TB y; is
similarly defined). Latently infected individuals with drug
sensitive and MDR-TB strains will progress to active classes I
and I, at the rates k; and k;, respectively, due to endogenous
reactivation. Individuals in I, and I, classes are treated at
the rate ¢ and ¢,, respectively (realistically, it is possible
that ¢; = ¢,). They then progress to recovered class, R, if
successfully treated. However, some individuals in I, class
will recover naturally at a rate ¢ and move to R class. Also,
exposed individuals in Es and infectious individuals in I; can
acquire MDR-TB if they are in contact with infectious MDR-
TB individuals at a rate A, and will then enter I, class.

Infectious individuals in I; class receive treatment at a
rate ¢,, a proportion p of which responds positively to the
treatment, whereas a proportion g partially responds to the
treatment and as such they go back to E; class. The remaining
proportion (1 — (p + q)) will not complete the treatment
which may result in the development of MDR-TB and these
individuals move to E, class. In addition, health education is
offered to infectious individuals with drug sensitive strains
only at a rate a. This is due to the nature of the disease,
that is, one is diagnosed with drug sensitive TB (at a rate ¢
in this case) which later progress to MDR-TB if treatment
compliance is disregarded [13]. Both ¢, and o also describe a
consequence of incomplete treatment, and as such, treatment
rate ¢, is also a result of a diagnosis.

Susceptible individuals who become infected progress
faster to active drug sensitive TB, that is, from S to I class
at a rate p; and to resistant strain class I,, at a rate p,; this
might be due to other immunocompromised factors such as
HIV and malaria that weakens individuals’ immune systems
leaving them very vulnerable to TB attack. Thus, (1 — ps) and
(1 — p,) denote slow progression to active drug sensitive and
MDR strains, respectively. We assume that recovery is non
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Figure 1: Compartmental diagram and flows for a two-strain tuberculosis transmission model with diagnosis, treatment, and health

education.

permanent and as such recovered individuals are infected
with drug sensitive TB at a rate A;, move to E; class where
they become infected with MDR-TB at a rate A, to move into
the E, class. Furthermore, infectious individuals in I, class
die due to the disease at a rate d; and those in I, class die at a
rate d,. All individuals in different subgroups die naturally
at a rate y. A schematic diagram of the model is depicted
in Figure 1, and the associated parameters are described in
Table 1.

With the pervious assumptions, terminology and inter-
relations between the parameters and variables as described
by Figure 1, the dynamics of the MDR-TB model can be
described by the following deterministic system of nonlinear
ordinary differential equations:

S'(t) = A — (A +A,)S — S,

E{(t) = (1 = ps) S+ R)As = (pehs + A1) E;
— (¢s + k1 + ) Es + q¢. I,

I(8) = pAS + (pshs + k1) Es — AL
—(ds+apd: + s+ 0+,

E(t) = (1 = p)S+R)A + (1= (p+9q)) ¢ L
- A+ y A+ ko +W)E,s,
I(t) = p: XS+ (As + yeAr + ko) Er + A Es
+ M +ol— (d + o+ +u),,
R (1) = (ap¢r + 9oL+ $Es + (¢ + 9o )1,
— (A +A)R — R,
(1)

where the force of infection A; = ¢f(I/N), A, = ¢f3,(I,/N).
The initial conditions are S(0) = S° E;(0) = E%I,(0) =
I9,E.(0) = E%,I,(0) = I?,R(0) = RO. The total population
N (say) of system (1) is givenby N = S+ E;+ I, + E, + I, + R.
Model system (1) monitors a human population; therefore,
all its associated parameters and state variables are assumed
to be nonnegative for all £ > 0. Thus, the feasible solutions of
system (1) are well-defined in

I'= {(S(t))Es(t))Is(t)’Er(t)alr(t)aR(t)) ER{: N =< 2}
(2)



which is positively invariant and attracting and it is sufficient
to consider solutions in I' [18]. Furthermore, existence,
uniqueness, and continuation of results for system (1) hold
in this region. Also, all solutions of model system (1) starting
in I remain in T for all ¢ > 0.

2.1. The Disease-Free Equilibrium and Its Stability. In the
absence of infection (i.e., Ef = Ef = [ = [} = 0), model
system (1) has a disease-free equilibrium E, given by

Ey = (8% E% 10, E%, 1%, R%) = (2,0,0,0,0,0). (3)

The potential intensity of transmission and the dynamics of
a disease are often investigated in terms of the reproductive
number, which represents the mean number of secondary
cases a typical single infected individual will generate in
a totally naive/susceptible population during his/her entire
period of infectiousness. The linear stability of the disease-
free equilibrium Ej is investigated using the next generation
matrix for system (1) [19]. To this effect, we compute the
effective reproduction number R,, the threshold for endemic
persistence and epidemic spread of the disease. This is an
important nondimensional quantity in epidemiology as it
sets the threshold for predicting a disease outbreak and
for evaluating its control strategies [20]. Therefore, whether
a disease becomes persistent or dies out in a community
depends on the size of this threshold parameter. Mathemat-
ically, R, is the spectral radius of the next-generation matrix
[19]. The next-generation matrix calculation (see details in
Appendix A) shows that the effective reproduction number
(or epidemic threshold) is

Re = max {Rsa Rr}: (4)
where
R = Cﬁs (‘MPS + ¢3Ps + kl)
’ (¢s+k1+.u)(ds+a¢r+¢s+o'+/")_q¢rk1’ 5)
_ Cﬁr(kZ + .“Pr)
(ko +p)(d-+o+or+p)

R; and R, are, respectively, the reproduction numbers for
drug-sensitive TB strain only and MDR-TB strain only. R,
measures the average number of new infections generated
by a typical infectious individual in a community where
intervention strategies are in place. Thus, in the absence of
diagnosis, treatment, and health education (i.e., ¢ = ¢, =
¢ =a=o0=0),(A.7) reduces to

CﬂS(kl + #PS)
(ki +u) (ds+ @5+ 0 +p)’

B (ky + ppy)
(kz +[4)(dr +¢r+0+#))

0s =

(6)

Ry =

Ry = max {Rgs, Ror}. The threshold quantity Ry is the basic
reproduction number of infection representing the average
number of new infections generated by a single infective
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individual in a completely naive population. Each term in R,
and R, has an epidemiological interpretation. For the drug-
sensitive reproduction number,

(1) ki/(¢ps+ki+u) is the expected fraction of individuals
that will progress from E; class to I;

(ii) 1/(ds+a¢, +@s+0+p) is the expected time infectious
individuals with drug-sensitive TB spend in I; class.

A similar interpretation caters for the drug-resistant
reproduction number. Thus, from [19] the following result
holds.

Theorem 1. The disease-free equilibrium Eq of model system
(1) is locally asymptotically stable if R, < 1, that is, Ry < 1 and
R, < 1, and unstable if R, > 1, that is, R; > 1 and R, > 1.

2.2. The Endemic Equilibria. For system (1), there are
three possible endemic equilibria; two boundary equilibrium
points which are E; (exists only when drug-sensitive strain
is present) and E, (exists only when drug-resistant strain
is present) and the equilibrium point E; which exists when
both strains are present or coexist.

2.2.1. The Drug-Sensitive TB-Only Endemic Equilibrium.
This is obtained by setting classes E, = I, = 0. This reduces
system (1) to

S(t) = A—AS - S,

E{(t) = ((1 = ps)S+ R)As — psAsEs
— (¢s + k1 + u)Es + q¢. 1,

I (t) = psAsS + (pshs + k1) Es 7
— (ds+a¢, +¢s+0+u)l,

R,(t) = (ap¢r + ¢S)Is + (/)SES - (AS +AM)R

The drug-sensitive TB-only equilibrium in terms of the
equilibrium value of the force of infection A} is given by
Ey = (S*,E*, I, R¥,0,0), where

* _ A B — al)t;“z +a2/\;"
A+’ S (A u) (AR + oA +bs)°

I = PAIN(DIAFE+ DoAS + b3) + (psdF+ k1) (A2 + and))
S (ds+ag, + s+ 0+ p) (AF +u) (biAF2+ bdF +bs)

A;k (03/\?2 + 614AS* + 05)
(ds +ag, + @s + 0 +p) (AF + ) (b1AF2+ boAF +b3)’
(8)

R*=
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with
ar = A[(1 = ps)(ds + ad, + ¢s + 0 + )
+q¢:ps — (apgr + ¢s)psls
ay = pA[(1 = ps) (ds + ag, + o+ 0 +p) +q¢rps],
as = by(apdr + @s) Aps + a1apd,ys,
ay = by(ape, + ¢s) Aps + ar [ (apd, + ¢s) ki

+ ¢s(ds +ad, + @5+ 0 +p)]
+ aZ(ap¢r + (PS)YS)

as = bs(apg, + ¢s) Aps

+ax[(apd, + @s)ki + ¢s(ds + adr + @5 + 0+ ) |,
by = ys(ds + agr + ¢s + 0+ p) = ysq¢r — (apdr + ) ys
by = (ds+ad, + @s+ 0 + ) (¢s + k1 + p)

+uys(ds +agy + g+ 0 +u) = qdr (uys + ki)

— ((apgr + @)k + ¢s(ds + ady + ¢ + 0 +44)),

by = u(ds + ady + @5+ 0 + ) (s + ki + ) — pqerk;.
9)

Substituting E; into the relationship A} = (c¢fI)/N, we
obtain the drug-sensitive TB-only endemic equilibrium that
satisfies the following polynomial:

VRAF) = (A2 +BAY +C) =0, (10)
where
Ay = ay[p(ds + ad, + @5+ 0 + ) + ki ]
+ar[(ds + ady + s + 0+ u) + ys]
+ by A[(ds + ad, + @5 + 0 + ) + ps]
+biuA(ds+ad, + o+ 0 +p) +ay

— cBs(psAby + arys),

By = ap ki +p(ds + ag, + s+ 0 +u)]
+b3A(ds + ad, + @5+ 0 + p+ ps)
+ by Ap(ds + ad, + @5 + 0 + )
+as — cfs(bsps A + azky),

Ci = ((ds + ag, + gs + 0 +p+ps) (¢s + ki + ) — kiqe,)
X (1 —Ry).
(11)

The solution A¥ = 0 in (10) corresponds to the disease-free
equilibrium and h(A¥) = 0 corresponds to the existence of
multiple equilibria. The coefficient A, is always positive and
C, is positive if R, is less than unity and negative if R; is
greater than unity. Thus, we have established the following
result.
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FiGUrE 2: Backward bifurcation diagram of the force of infection A *
for drug sensitive TB only model (7), against the drug sensitive TB
reproduction number, R; which occurs at Ry = 1 for an arbitrary set
of parameter values. The acronyms EE and DFE represent endemic
equilibrium and disease-free equilibrium, respectively.

Theorem 2. The drug sensitive TB only model system (7) has

(i) precisely one unique endemic equilibrium if C; < 0 &
Ry >1,

(ii) precisely one unique endemic equilibrium if B; < 0 and
C1 =0 OI‘B% - 4A1C1 = 0,

(iii) precisely two endemic equilibria if C, > 0, By < 0 and
B} —4A,C; >0,

(iv) otherwise, there is no endemic equilibrium.

Condition (iii) implies that the dynamical phenomenon
of backward bifurcation where a stable endemic equilibrium
coexists with a stable disease-free equilibrium when the
associated reproduction number is less than unity. This
has important implications for disease control. In such
a scenario, the classical requirement of the reproduction
number being less than unity becomes only a necessary,
but not a sufficient condition for disease elimination. To
find the backward bifurcation point, we set the discriminant
B} — 4A,C, to zero. Making R; the subject of formula, we
obtain
Ri=1

B
4A,((ds + adr + @+ 0 + ) (¢s + k1 + ) — kiqe,)”
(12)

Hence, it can be shown that backward bifurcation occurs
for values of R, in the range RS < R; < 1 (see Figure 2).
Figure 2 shows a backward bifurcation diagram of model
system (7). From the diagram, we observe that if Ry < 1
and then increases to unity, the number of TB cases increases
abruptly thus, the disease-free equilibrium coexist with the
endemic equilibrium implying that; the disease can invade



the population to a relatively high endemic level. In addition,
decreasing R; to its former level will not necessarily make the
disease disappear. This is a consequence of the exogenous
re-infection feature of TB. Hence, exogenous re-infection
is capable of sustaining TB even when the reproduction
number is below one [21]. However, backward bifurcation
is illustrated by specific choice of parameters which may not
be epidemiologically realistic.

2.2.2. The Drug-Resistant TB Only Endemic Equilibrium.
This is obtained by setting E; = I; = 0 in model system (1).
Hence, system (1) becomes

S'() = A—A,S — S,

E;(t) = (1 - p‘r)ArS +)LrR - (Y'rAr + k2 +‘I/l)E,,
(13)
I(t) = p S+ (P A + k)E, — (dr + o+ @ + ) I,

R,(t) = ((/) + (Pr)Ir - (Ar +[4)R,

so that N = S + E. + I, + R. Therefore, the drug-
resistant TB only equilibrium in terms of the equilibrium
value of the force of infection A} is given by E, =
(§%*,0,0, EX*, [¥* R¥*) = (§%*, EX*, [** R**), where

*k sk — A
AF+u’
EX* = (1 _Pr)Mf(m4/1;k2+m5/\;k+m6)
T (pAr ko +p) (AF + ) (maAF? + msA¥ + mg)
n (/)/\;k (ml)t;kz + mz)t;“ + Wl3)
(prdf + ko +p) (AF + p) (madi2 + mshf +mg)’
% = MAS? + mpdk + ms
T m4A;‘2+m5A;‘+m6’
R¥* — (/)(ml)t;"2+m2)t;k+m3)
(A ) (madF2 + msAF + me)’
(14)
with
my = Ay, my = pApy,
ms = Ak, my =y, (d, +u),
15)

ms = (d, + ¢+ @ +p) (ko + p+ py,) — (¢ + ¢r) ks,
Me :["(k2+ﬂ)(dr+¢+(/’r+‘u)~

Substituting E, into the equation A¥ = (cB,I*)/N, we
obtain an endemic equilibrium of the drug-resistant TB only
that satisfies the polynomial given by

V¥ g(A¥) = X (AA¥2 + BA* +C) = 0, (16)
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where

A = myA(ky +p) + msA(y, + (1-pr))
+my(ky+p) (¢ + @ +p)
+my((¢+@r) +yrptha+ i+ ($+@r)yr) +may,
— e ((uyr + ko + p)my + mayr),

B =msA(ky + ) + meA(yr + (1 —pr))
+my (ko + ) (¢ + @ + 1)
+ms(¢+uyr+ka+ut($+9r)yr)
— By (mi (ky + p)p + ma (uyr + ko + ) + msy, ),

C=ulky+u)(dr + ¢+ @r + ) (pyr + o+ ) (1 = Ry). -

The root A} = 0 in (16) corresponds to E (its stability has
already been established) and g(A) = 0 can be analyzed for
the possibility of existence of multiple equilibria. It is worth
mentioning here that the coefficient A is always positive and
C is positive if R, < 1 and negative if R, > 1, hence, the
following result.

Theorem 3. The drug-resistant TB only model (13) has

(1) precisely one unique endemic equilibrium if C < 0 <=
R, >1,

(2) precisely one unique endemic equilibrium if B < 0 and
C=00rB*—-4AC =0,

(3) precisely two endemic equilibria if C > 0, B < 0 and
B? —4AC >0,

(4) otherwise there is no endemic equilibrium.

The backward bifurcation point can be found by setting
the discriminant B?> — 4AC to zero. Then, making R, the
subject of the formula, we obtain

BZ

1_ bl
4Ap(ks +p) (dr + ¢+ @ + ) (uyr + ko + )
(18)

R =

r

from which it can be shown that backward bifurcation occurs
for values of R, in the range RS < R, < 1. The following result
provides a condition for the existence of the drug-resistant
TB only endemic equilibrium point, E,.

Theorem 4. The drug-resistant TB only endemic equilibrium
E, exists whenever R, > 1.

Proof. Solving for A in (16), we obtain

v ~B+ VB —4AC

’ 24 (19)
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FiGure 3: Backward bifurcation diagram of the drug-resistant TB
only model (13), for an arbitrary set of parameter values. EE and
DEFE represent endemic equilibrium and disease-free equilibrium,
respectively.

The disease is endemic when A* > 0 which occurs if and only
if

B> — 4AC > B> = 4Au(ky + p) (d, + ¢ + ¢, + )

X (uyr +ko+u)(1-R) <0 =R, > 1.
(20)

Thus, E, exists whenever R, > 1. O

Again, using the Center Manifold theory [22], the local
asymptotic stability of E, is established (see details in
Appendix B). The bifurcation diagram of the drug-resistant
TB only model is illustrated in Figure 3.

Figure 3 illustrates a case of a backward bifurcation of
system (13). As R, approaches unity, it can be seen from
the diagram that the number of secondary transmission sud-
denly increases giving rise to a situation whereby the disease-
free equilibrium coexist with the endemic equilibrium.

2.2.3. Two-Strain Model: Drug Sensitive and MDR-TB
Endemic Equilibrium. Having analyzed the dynamics of the
two submodels, the full drug sensitive and MDR-TB model
is now considered. Its endemic equilibrium occurs when
both drug sensitive and MDR-TB strains circulate in the
community and is denoted by

E3 — (S***,ES***,IS***,E;k**,I;k**,R***). (21)

It is a daunting task to explicitly express E3 in terms of the
equilibrium value of the force of infection A%. As in the
previous sections, it can be shown, using the next-generation
method that the associated reproduction number for the full
model is R, = max{R;, R, }, where R, and R, are, respectively,
the reproduction numbers of drug sensitive and drug-
resistant TB only sub-models given earlier. R, = max{R;, R,}

implies that the two TB strains (drug sensitive and drug-
resistant) escalate each other and competitive exclusion may
occur.

If R, = max{R,,R,}, then from Theorem 2, the drug
sensitive TB only sub-model has a backward bifurcation
for values of R such that R¢ < R, < 1 and Theorem 3
showed that the drug-resistant TB only sub-model exhibits
backward bifurcation for values of R, such that RS <
R, < 1. Thus, the two-strain model will also exhibit the
phenomenon of backward bifurcation whenever R, < 1, and
consequently, the coexistence endemic equilibrium E3 is only
locally asymptotically stable when R, > 1.

The existence of multiple endemic equilibria is of general
interest far beyond tuberculosis epidemiology. An impor-
tant principle in theoretical biology is that of competitive
exclusion which states that no two species can forever
occupy the same ecological niche [23]. The system studied
has the requisite in which the principle of competitive
exclusion holds. Since model (1) exhibits the phenomenon
of backward bifurcation thereby implying that the two-
strain model is only locally stable, the strain with the large
reproduction number colonizes the other strain [24].

3. Model Simulations

Graphical representations to support the analytical results
are provided using a set of parameter values given in Table 1.
These values were obtained from the National Tuberculosis
Control Programme secretariat (Lilongwe, Malawi). Incom-
plete data from the National TB Control Program proves to
be a major challenge, and the actual values of most of the
parameters are not readily available [25]. Therefore, we use
values from the literature for the purpose of illustration. We
simulate both the drug sensitive and MDR-TB dynamics in
the absence of any intervention and when the interventions
are present as well as the effect of varying each intervention
parameter on the number of infected populations. All figures
are generated using the parameter values presented in Table 1
and the following initial conditions S° = 14000,E) =
10500, = 7500,E° = 6500, = 5500,R = 4000.
The rationale behind this particular choice of the initial
conditions is to capture the dynamics of the epidemic in a
small community. TB is a disease with slow dynamics and
consequently, TB epidemics must be studied and assessed
over extremely long windows in time [26]. The time unit
throughout is per year.

(a) Absence of any Intervention Strategy. In the absence of
interventions, the susceptible population initially decreases
and then increases to its carrying capacity as shown by
Figure 4(a). On the other hand, the populations of latent
drug sensitive TB, infectious drug sensitive TB, latent drug-
resistant TB, and infectious drug-resistant TB decrease to an
endemic level with increasing time as shown by Figures 4(b),
4(c), 4(d), and 4(e), respectively. This indicates that as long as
there are no interventions to control the spread of the disease,
the disease will not clear from the population since the basic
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TABLE 1: Model Parameter Values.

Description Symbol Value Source
Recruitment rate A pox 10° Assumed
Natural mortality rate 7 0.02 [4]
Contact rate c 2 [5]
DS TB induced death rate d, 0.3 [4]
MDR-TB induced death rate d, 0.5 [4]
Probability of being infected with drug sensitive TB Bs 0.4 [6]
Probability of being infected with MDR-TB Br 0.5 [5]
Progression rate to active sensitive TB ki 0.03 [7]
Progression rate to active MDR-TB k> 0.05 [7]
Fast progression rate to active drug sensitive TB Ps 0.2 Assumed
Fast progression rate to active MDR-TB Pr 0.1 [8]
Re-infection rate of exposed individuals with sensitive TB s 0.4 [9]
Re-infection rate of exposed individuals with MDR-TB Vr 0.02 [9]
Natural immunity rate of infectious individuals with sensitive TB Os 0.15 [10]
Natural immunity rate of infectious individuals with MDR-TB or 0.2 [10]
Treatment rate of latently infected individuals with sensitive TB os 0.2 [4]
Treatment rate of infectious individuals with sensitive TB o 0.3 [4]
Treatment rate of infectious individuals with MDR-TB ¢ 0.09 [4]
Education rate of infectious individuals with sensitive TB a 0.6 [4]
Rate of diagnosis o 0.3 [11]
Rate of recovery from active TB p 0.8 [5]
Regression rate to latency after treatment q 0.2 Assumed

reproduction number Ry = 1.4286 > 1. This result supports
the theorem on local stability of endemic equilibrium.

(b) With Control Strategies (Presence of Interventions). When
interventions are introduced, improved trends of the pop-
ulations are observed. For instance, in Figure 5(a), the
susceptible population increases compared to the case when
no interventions are available. Further improved trends can
also be seen in Figures 5(b)-5(f). Figures 5(b) and 5(c)
indicate that individuals infected with drug sensitive TB
decrease and eventually diminish to zero as a result of the
interventions. This means that, if the disease threshold is
below unity (R, = 0.2987), both drug sensitive and resistant
strains can be eliminated. Figure 5(e) depicts the time series
plot of the population density of infectious individuals with
drug-resistant TB which decreases but does not tend to
zero. This simply means that the interventions in place
are not enough to completely eradicate the epidemic from
the population. The observed decrease of the number of
drug-resistant TB individuals may be the result of abrupt
reductions in the rates of disease progression [27].

MDR-TB which is difficult to treat, spreads fastest in
areas with poor adherence to second-line drug. This poor
adherence is frequently caused by shortages of second-
line drugs which are quite expensive and as such minimal
treatment is offered to those infected. Figure 5(f) shows
that the recovered population increases as a result of the
interventions unlike in Figure 4(f). In other words, we
observe that the introduction of treatment, diagnosis, and
health education in a TB stricken community reduces the

impact of MDR-TB but cannot completely clear it from the
community, because higher levels of treatment may lead to
an increase of the epidemic size, and the extend to which
this occurs depends on the factors such as drug efficacy
and resistance development [28]. Figure 6(a) shows that
diagnosis of infectious individuals with drug sensitive TB
to determine whether or not the infection has developed
resistance to drugs is very crucial in MDR-TB control.
More infectious individuals with sensitive TB needs effective
treatment that should correlate with the diagnosis levels. In
addition, diagnosis is very important to detect the number of
people who have developed resistant strains and are eligible
to the second-line treatment to prevent the infection from
a possible spread. As for the sick individuals with MDR-
TB, treatment of the infection is paramount as indicated by
Figure 6(b). Also, from Figure 6(b), education campaigns
alone cannot curb or reduce the infection but work hand
in hand with treatment as well as diagnosis. In other words,
Figure 6 suggests that all individuals diagnosed with MDR-
TB should be educated on the importance of treatment
compliance and completion.

3.1. Dynamics of the Populations under Different Interventions

3.1.1. The Effect of Treatment on MDR-TB Dynamics. It is
assumed under this scenario that treatment is given to latent
and infectious individuals with drug sensitive TB as well as
infectious individuals with MDR-TB. We then investigate
the impact of each of these control measures on all the
infected populations of both strains. As the treatment rate
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when Ry = 1.4286.

of latent individuals with drug sensitive TB, ¢, increases,
R, decreases so are the infectious populations with both
strains. Thus, treating more latent individuals with drug
sensitive TB can eliminate drug sensitive TB (Figures 7(a)

and 7(c)). This is the case because as more latent individuals
with drug sensitive TB are treated, then only a few of them
will progress to active infection. Also, increasing ¢ reduces
the number of infectious individuals with MDR-TB since
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the treatment will prevent the infection from developing
resistance to the drugs. Although, this is the case, MDR-
TB may not completely be eradicated from the population
due to re-infection and relapse as illustrated in Figure 7(d),
and also due to the fact that treatment efficacy is less than
100%. Figures 8(a) and 8(b) show that increasing ¢, reduces
both R, and the latent and infectious populations with drug
sensitive TB to zero over time. Treating more infectious
individuals with drug sensitive TB prevents the infection
from developing resistance to drugs and hence reduces the
number of infectious population with MDR-TB as shown
in Figure 8(d). However, Figure 8(d) also shows that, at
this level of treatment, MDR-TB cannot be absolutely wiped
out of the society which confirms the complexity of the
disease. Figures 9(a) and 9(b) show that as the treatment
rate of infectious individuals with MDR-TB, ¢, increases, R,
reduces to less than unity and decreasing trends for latent and
infectious individuals with MDR-TB are observed although
they do not decay to zero due to the continuous development
of resistance as treatment is not fully (or 100%) effective.

3.1.2. The Effect of Diagnosis on MDR-TB Dynamics. Fig-
ure 10 shows that increasing the value of ¢ reduces R,
and also decreases the infectious populations with drug
sensitive and MDR-TB. From Figure 10(a), drug sensitive
TB can be completely eliminated from the population if
more people are diagnosed. This is mainly the case because
usually diagnosis leads to treatment which reduces the
infection (Figures 7, 8, and 9). On the contrary, diagnosis
of more infectious individuals with drug sensitive TB is not
a guarantee of eliminating MDR-TB as it only reduces the
number of infectious individuals with MDR-TB but does
not wipe the infection out of the population as illustrated

by Figure 10(b). Therefore, increase in diagnosis should be
correlated with increase in treatment to ensure treatment for
all infectious individuals after they are detected.

3.1.3. The Effect of Health Education on MDR-TB Dynamics.
Figure 11 illustrates the importance of health education in
the fight against MDR-TB. It is observed in Figure 11(a)
that when more people receive health education on the
importance of adhering to the doctor’s recommendation on
how to take their TB regimens, the infectious population
with drug sensitive TB decreases and eventually decays to
zero. Also, this strategy reduces R, to further smaller values.
Consequently, health education slightly reduces infectious
individuals with MDR-TB as shown in Figure 11(b). This
is possible because treatment adherence and compliance
reduce the likelihood of the infection developing drug-
resistance. However, Figure 11(b) also indicates that edu-
cation alone is not enough to completely eliminate MDR-
TB from the community as not all people will follow these
rational instructions. In addition, exogenous re-infection
and regression also make the efforts to root out MDR-TB dif-
ficult but not impossible. Thus, preventing re-infection and
regression are viable. Figure 12 shows that as more infectious
individuals with drug sensitive TB receive health education,
the number of recovered population increases. This supports
the fact that education has a positive impact on TB dynamics
as depicted in Figure 11. Thus, educating more infectious
individuals with drug sensitive TB increases the number of
people recovering from the infection which is a positive
development for the management of MDR-TB. Therefore,
stepping up TB information/awareness campaigns should be
given prominence in TB control programmes.
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4. Discussion and Conclusion

A two-strain TB model with diagnosis, treatment, and health
education is formulated and analyzed. The main objective
of this theoretical study was to assess the impact of these
control strategies on the transmission dynamics of MDR-
TB (with Malawi as a case study). We note however that
the results presented are general and can be applied to other
settings because neither the model, nor the parameters values
represent characteristics unique of Malawi. The effective
reproduction number was computed and used to compare

the effect of each intervention strategy on the MDR-TB
dynamics.

Using the theory of dynamical systems, qualitative anal-
ysis shows that the model has two equilibria the disease-
free equilibrium and endemic equilibrium. Using the next-
generation operator approach, it was found that, whenever
the threshold that describes endemic persistence of the
disease, R, < 1 (i.e.,, Ry < 1 and R, < 1), the disease-
free equilibrium is locally asymptotically stable and becomes
unstable whenever R, > 1 (R; > 1 and R, > 1). The existence
and stability of the endemic equilibrium was determined
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using the Center Manifold theory [22]. Near the threshold
R, = 1, there exists a stable endemic equilibrium which is
locally asymptotically stable for R, > 1. In the absence of
interventions, the effective reproduction number, R,, reduces
to the basic reproduction number Ry. As customary in epi-
demiological models, the disease-free and endemic equilibria
are found and their stability is investigated depending on the
system parameters. Because of the occurrence of backward
bifurcation in some parameter regimes, the system exhibits a
bistability between a disease-free and endemic steady states.

Whether the parameter values for which this phenomenon
arises are biologically realistic remains a conjecture as field
data will be needed to parameterize such occurrence. The
Centre Manifold theory was used to determine the local
asymptotic stability of the endemic equilibrium. Our results
provide a perspective for understanding the complexity of
MDR-TB, and the model can be applied in most settings
where MDR-TB is present.

Numerical simulations suggest that, in the absence of
any intervention, both TB strains cannot be eliminated from
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the population as Ry > 1, and the disease persists at an
endemic equilibrium. A critical factor in addressing MDR-
TB is primary prevention through DOTS and management
of patients requiring second-line drug-regimen. Treatment
of latent and infectious individuals with sensitive TB showed
that ordinary TB can be completely eradicated. Thus,
effective treatment for latent and infectious individuals with
ordinary TB results in a reduction of MDR-TB, since the
emergence of most MDR-TB cases is due to failure to

provide TB drugs on time, as identifying latently infected
individuals with sensitive and putting them on treatment
is crucial in reducing new cases of resistant TB [29]. Also
effective chemoprophylaxis and treatment of infectives result
in a reduction of MDR-TB cases since most MDR-TB cases
are a result of inappropriate treatment [5]. Treatment for
infectious individuals with MDR-TB alters TB epidemics
because it reduces the spread of MDR-TB strains and this
supports the analytical results. Hence, a decrease in MDR-TB
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cases implies a decrease in MDR-TB-related deaths as MDR-
TB kills more people than ordinary TB.

Diagnosis also plays an important role in MDR-TB
reduction. As the proportion of TB patients being presented
for diagnosis is increased, the rate of treatment should be
correlated to the number of diagnosed infected individuals
so as to reduce the burden of TB [6]. Significant increase
in the detection rate of infectious individuals in Nigeria
has been recommended because DOTS failed to reduce the
incidence rate in the country due to failure to adequately
detect a huge number of active TB cases which are primarily
responsible for the spread of the infection [30]. As more
people go for TB diagnosis, MDR-TB decreases due to the
fact that those diagnosed with the disease are placed on
DOTS. Drug-resistant TB will remain a serious threat to
our communities as long as many members of our society
do not have regular access to medical care [31]. Health
education is another important aspect in the fight against
MDR-TB. Results showed that, if more people receive health
education, then the burden of MDR-TB can be reduced since
MDR-TB cases also arise due to noncompliance with TB
treatment. Information/awareness campaigns are viable in
order to sensitize people on the importance of completing
their TB dosages. Despite the role of the control strategies in
reducing the burden of MDR-TB, numerical simulations also
show that at the current level of TB treatment, diagnosis and
health education, MDR-TB can only be reduced significanly.

Incomplete data from the National TB Control Program
proves to be a major challenge in deriving estimates for the
key biological parameters to calibrate the model to Malawi.
Nevertheless, resorting to the literature, fundamental param-
eters values mimicking the epidemic in the region were used
as a basis for illustration. Although several assumptions are
made in the process, our results are driven by the model

formulation and its structure; however, they are applicable to
the Malawi context and other settings with similar epidemic
trend. In summary, adequate treatment of sensitive TB will
result in a reduction of MDR-TB in Malawi as most MDR-
TB cases come from failure to properly administer TB drugs.
Furthermore, diagnosis and health education of infectives
with sensitive TB is important in the reduction of new MDR-
TB cases due to adherence and compliance to treatment.
Scaling up diagnosis, treating, and TB education will help
in reducing the burden of the disease. Treatment rate of
infected individuals should be correlated to the number of
diagnosed individuals, and policies should be put in place
to minimize loss to follow up. MDR-TB eradication remains
a challenge to National Tuberculosis Control Programs
in most developing countries, hence strengthening control
strategies is paramount to curtailing TB spread, especially as
the incidence rate of MDR-TB seems to be on the increase.
Finally, we identify some limitations of this study. A more
realistic perspective could have been achieved by including,
vaccination of susceptible population, immigrants, and
new born; efficacy of MDR-TB drugs and information
campaigns; controlling the disease with a possible minimal
cost and side effects using control theory; estimating the
cost-effectiveness of these control measures. Most parameter
values are obtained from different sources giving rise to
parameter uncertainty regarding their exact value. Our
results which are driven by the model structure and its
formulation are sensitive to the choice of parameter values.
However, it is worth stressing that the main goal of this
work was to provide a theoretical framework where the
emergence of drug-resistant and MDR-TB can be addressed
using a dynamical model. We focused on the population-
level dynamics and potential benefits associated with imple-
mentation of various control strategies. It is our hope that
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the theoretical results obtained from this study will stimulate
further interest in developing more complex models, be it
agent based or network.

Appendices

A. Computation of the Effective Reproduction
Number R,

Following [19], the associated matrices F; for new infections
terms and V; for the remaining transition terms are,
respectively, given by

[(1 - ps)s + R]/\s
PsAsS
[(1 - Pr)s + R]/\r
PrA:S >
0
0

Fi = (A.1)

(pshAs + Ap)Es + (¢s + k1 + p) Es — q¢, I
(ds + adr + @5+ 0+ p) I + A I — (pshs + k1) Es
(k2 + W) E: + (prdr + A)E, — (1= (p+q)) ¢/ L
(dr+¢+(Pr+[/l)Ir_(Es+Is)/\r_(As+k2+)/r)Lr)Er_0'Is '
S+ As+1,)S - A
UR+ (As + A, )R — ap¢.Is — ¢:Es — ¢I,

(A2)
(¢ + ki +p) —q¢r
Vo —k (ds+a¢, + s+ 0+ p)
0 (1= (p+4q))¢r
0 -0

where

Vi = [(¢s+k1+ﬂ) —q¢r }
1 —k (ds+ag, +ps+a+u) |

_ k2+[l 0
Vo= [ K, (dr+¢r+¢r+u)]’ (A6)

. [o —<1—<p+q>>¢,}

0 -0

The effective reproduction number, denoted by R,, is given
by R, = p(FV~!), where p denotes the spectral radius (or
the dominant eigenvalue of matrix FV~!). The dominant
eigenvalues of matrix FV ™! are given by

R = (FiVi')
_ cPs(pps + ¢sps + k1)
(¢ + ki +p) (ds +ag, + o+ 0 +p) — qp ki (A7)
_ 1y Cﬁr(kl"'ﬂpr)
Rr*(FZVZl)f(k2+‘u)(dr+¢+¢r+‘u).
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Evaluating the partial derivatives of (A.1) at Ey and bearing
in mind that system (1) has four infected classes, namely,
E,, I, E,, and I,, we obtain

0 (1—ps)cfs 0 0
10 pscPs 0 0 _|FR 0
P=lo "o o (1-p)ep, ‘[o Fz} (A-3)
0 0 0 pch
where

_ 10 (1= ps)eps _ 10 (I_Pr)cﬁr
e I

Similarly, partial differentiation of (A.2) with respect to
E,, I, E,, and I, at E; gives

0 0
0 0 . Vi 0
ko + u 0 - Vs V,|”

—ky (dy+¢+9¢+p)

(A.5)

Therefore, R, = p(FV™!) = max{Ry,R,}, where R; and R,
are, respectively, the reproduction numbers for drug sensitive
TB strain only and MDR-TB strain only. R, measures the
average number of new infections generated by a typical
infectious individual in a community where intervention
strategies are in place. Thus, in the absence of diagnosis,
treatment and health education (ie., ¢s = ¢, = ¢ = a =
o =0), (A.7) reduces to

cBs(ky + ups)

R s — >
0 (k1+.u)(ds+¢s+.”)
(A.8)
Ry, = cpr (ko + ppr)
" (k) (d )’

and Ry = max {Rg;, Ry, }.

B. Proof of the Stability of the EE

B.1. The Bifurcation Theorem. This Theorem is proven in
Castillo-Chavez and Song [32].
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Theorem B.1. Consider the following general system of ordi-
nary differential equations with a parameter ¢:

% — f(x4), f:R'XR—R" feC(R"xR),

(B.1)

where 0 is an equilibrium point of the system, that is, f(0,¢) =
0 for all ¢ and
(i) A = D, f(0,0) = [(9fi/0x)(0,0)] is the linearization
matrix of the system around the equilibrium 0 with ¢
evaluated at 0;

(ii) zero is a simple eigenvalue of A and all other eigenvalues
of A have negative real parts;

(iii) matrix A has a right eigenvector w and a left eigenvector
v corresponding to the zero eigenvalue.

Let fi be the kth component of f and

02
Z vkw,w]a (_J; (0,0),
k,i,j=1

b= Z vkwl

The local dynamics of system (B.1) around 0 is governed by
the signs of a and b.

(i)a > 0,b > 0. When ¢ < 0 with [¢] <« 1,0
is locally asymptotically stable, and there exists a
positive unstable equilibrium; when 0 < ¢ <« 1,
0 is unstable and there exists a negative and locally
asymptotically stable equilibrium.

(ii) a < 0, b < 0. When ¢ < 0 with |[¢| < 1, 0 is unstable;
when 0 < ¢ < 1, 0 is locally asymptotically stable,
and there exists a positive unstable equilibrium.

(B.2)
(0 0).

l
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(ili)a > 0, b < 0. When ¢ < 0 with |[¢|] <« 1,0
is unstable, and there exists a locally asymptotically
stable negative equilibrium; when 0 < ¢ <« 1,0 is
stable, and a positive unstable equilibrium appears.

(iv)a < 0, b > 0. When ¢ changes from negative to
positive, 0 changes its stability from stable to unsta-
ble. Correspondingly a negative unstable equilibrium
becomes positive and locally asymptotically stable.

Particularly if @ > 0 and b > 0, then a backward
bifurcation occurs at ¢ = 0.

B.2. Proof of Local Asymptotic Stability of E;. Again, using the
Center Manifold theory [22], the local asymptotic stability
of E, is established. To this effect, the following change of
variables is made; S = x1, E, = x,1, = x3,R = x4 (note that
Es = I, = 0 at this point) so that N = x; + x; + x3 + x4. Using
vector notation X = [xl,XZ,X3,X4]T, the system (13) can be
written in the form

X

dl’ - (fl)fZafS)fA}) (B3)
such that
X6 = fi=A- L;C;Xl .
i) fo - ol pdnral oo,
= (k2 + )2,
(B.4)
x;(t) _ f}’ _ C/))TPI:]Xle + )/rCﬁ]:IX3x2 n k2x2
- (dr +¢+ o +[J)X3,
’ CPrX3X.
x(t) = fa= (¢ + @)% — % — Uxs
The Jacobian matrix of (B.4) at E? is given by
—H 0 —cfr 0
](EO) _ 0 —(k2+[l) (1_Pr)cﬁr
0 ks Cﬁrpr_(dr+¢+§0r+‘bl) 0
0 0 (¢+¢r) —
(B.5)

From (B.5), it can be shown that the the reproduction
number is

Cﬁr(kZ +.”Pr)
(ko +u)(dr+ ¢+, +u)

(B.6)

r =

If B, is the bifurcation point and if we consider the case when
R, = 1 and then solve for f,, we obtain

(ky + ) (d; +¢+§0r+.”)
(k2+!"Pr)

Br = PBs = (B.7)

System (B.5) with B, = B« has a simple zero eigenvalue,
hence we can use the center manifold theory in the analysis
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of the dynamics of system (B.5) near f3,
matrix (B.5) near S,

= f«. The Jacobian
= f, has a right eigenvector associated

with the zero eigenvalue given by w = [wl,wz,W3,w4]T,
where
wy = Pews
U
Wy = (l _ Pr)cﬁ*w3 _ (di’ + ¢ + Pr +[/l - Cﬂ*Pr)Wg,
2 k2 +u k2
ws =ws > 0, Wy = W
2

(B.8)

The left eigenvector of (B.5) associated with the zero
eigenvalue at 3, = 8« is given by v = [v1, v, 3, v4]T, where

vy =v4 =0, v3=v3 > 0,

_ kovs _ (dr+ ¢+, +u—cBipr)vs (B.9)

k> tu (1 _Pr)cﬁ*

We use Theorem 2.5 in [32] to find the conditions for the
occurrence of backward bifurcation.

V2

Computations of a and b. For system (B.4), the partial
derivatives of F associated with a at Ej are given by

82](2 _ _["Cﬁ*[(l _Pr) +Vr]

8x38x2 A ’
P 2(1=pruchs
E)x3ax3 A ’
Pf_ ucPlpr—yr) Pfi _ 2pucPs
8x38x2 A ’ 8x38x3 A '
(B.10)

Following (B.10), we have

a—VZZwlw]a S (00)+1/3Zw,w]a (00)

i,j=1 i,j=1

— [_W3W2(”Cﬁ*((l —pr) +yr) _ 2wl (1 _Pr)/“/j*]
? A A

_ 2
+v3[_W3Wz#CﬁZ(pr yr) 2%/9;\#6/3*}
_Zycﬁ*ww% B o
—7A(k2+#)2[ (1= pr)ucPs — (1 = p;) pcPspr
— (kg + p) (2py (ky + ) + (1 = pr)k2) ].
(B.11)

We see from (B.11) that a < 0 whenever m < nanda > 0
whenever m > n, where

= pr)pcPs
= (1= pr)ucPspr + (ky + 1) (2p, (ky + ) +

m=7y(1

(1 - Pr)kZ)-
(B.12)
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The nonzero partial derivatives of F associated with b at Ej
are given by

’h ’fs
3x00ps (1-pr)c T cpr. (B.13)
It follows from (B.13) that,
n 2 n 2
vzzw, BJZ (0,0) +V3ZW, 8f[3$ (0,0),
* *
= vyw3(1 = p,)c + vswsp,c, (B.14)
_swslk(=p) +pr(ketp)]

k2+‘u

Therefore, b > 0 and a < 0 or a > 0 depending on whether
m < nor m > n. We have therefore, established the following
result.

Theorem B.2. If m > n, a > 0, then model system (13) has a
backward bifurcation at R, = 1, otherwise a < 0 and a unique
endemic equilibrium E, is locally asymptotically stable for R, >
1 but close to 1.

B.3.  Existence of Backward Bifurcation of the Full Model.
From model system (1), we make the following change of
variables, that is, S = x1,Es = x3,I; = x3,E, = x4,1, =
xs5,R = xg, such that N = x; + x, + x3 + x4 + X5 + Xs.
Further, by using vector notation X = [x1, X2, X3, x4,x5,x6]T,

system (1) can be written in the form dX/dt = F(X), where
F= (ﬁ)ﬁ)ﬁ)ﬁ)ﬁ)fﬁ) as follows:
S(t)=f=A-As+A)x1 — pxi,
E((t) = fo = ((1 = ps)x1 + x6)As = (peks + Ar) X2

— (s + k1 + ) x2 + qrx3,

I(t) = f3 = pshsx1 + (pshs + k1) x2 — Arxs
— (ds+ad, + 0+ ¢s + ) x3,

E(t) = fa= ((1 = pr)xi +x6)A + (1 = (p+q))prx3
— A+ pAr + ko + ) xa,

L(t) = fs = pehexi + (As + yeds + k2) x4 + M2
+Ax3+0x3 — (dy + ¢+ @ + ) x5,

R(t) = fo = (ap; + ¢s)xs + doxz

+ (¢ + @r)xs — (A + A)x6 — pxe,
(B.15)

where A; = ¢Bx3/N and A, = ¢f3,x5/N. The Jacobian matrix
of system (B.15) at E, is given by
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—u 0 0 0 0
0 —(pstki+p) (1—ps)chs+qdr 0 0 0
_ 10 ki & 0 0 0
0 0 o k2 g4 0
0 ¢s (apgr + ¢s) 0 (6+¢r) —p

where
g1 =—(ds+ag, +0+@s+u) +chsps
&= (1 - (P+q))¢r:

g =(1-p)cpr g1 =—(d + ¢+ +u) +pechy.
(B.17)

It can be shown that the eigenvalues of (B.16) are expressed
in terms of R, = max{R,,R,}, where R, and R, are the
reproduction numbers of drug sensitive and drug-resistant
TB only sub-models respectively as seen earlier. R, =
max{R;, R, } implies that the two TB strains (drug sensitive
and drug-resistant) escalate each other. Thus, when the two
reproduction numbers exceed unity, that is, R; > 1 and R, >
1, there is always coexistence (endemic case) of these two
strains regardless of which reproduction number is greater
as shown in Theorem 4. If R, = max{R,,R,}, then from
Theorem 2, the drug sensitive TB only sub-model has a
backward bifurcation for values of R; such that R < Ry < 1
and Theorem 3 showed that the drug-resistant TB only sub-
model exhibits backward bifurcation for values of R, such
that RS < R, < 1. Thus, the coexistence model of TB will also
exhibit the phenomenon of backward bifurcation whenever
R, =1
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