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A simple recursive method is presented for performing the inverse dispersion modeling of
an unknown number of (localized) sources, given a finite number of noisy concentration data
acquired by an array of detectors. Bayesian probability theory is used to address the problem of
selecting the source model which is most plausible in view of the given concentration dataset
and all the available prior information. The recursive algorithm involves subtracting a predicted
concentration signal arising from a source model consisting of N localized sources from the
measured concentration data for increasing values ofN and examining the resulting residual data
to determine if the residuals are consistent with the estimated noise level in the concentration
data. The method is illustrated by application to a real concentration dataset obtained from
an atmospheric dispersion experiment involving the simultaneous release of a tracer from four
sources.

1. Introduction

Significant advances in sensing technology for concentration measurements of contaminants
(e.g., toxic industrial materials; chemical, biological, and radiological agents) released into
the atmosphere, either accidentally or deliberately, have fostered interest in exploiting
this information for the reconstruction of the contaminant source distribution responsible
for the observed concentration. Indeed, innovative methods for measuring and collecting
concentration data in formal observation (or monitoring) networks of ever more compact
(nanotechnology-enabled) sensors, including the adoption of new wireless sensor network
technologies for acquisition of data in situ and for rapid delivery of this information
throughwireless transmission [1], have placed the emphasis on data assimilation and inverse
dispersion modeling.
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This should not be too surprising owing to the fact that inverse dispersion modeling
will enable the full realization of the benefits in this new data context, allowing the innovative
fusion of sensor data with predictive models for atmospheric dispersion for determination of
the unknown source characteristics. In turn, this will lead to a greatly improved situational
awareness and result in a significantly enhanced common operational picture required for
making more informed decisions for mitigation of the consequences of a (toxic) contaminant
release. In this context, inverse dispersion modeling for source reconstruction has important
implications for public safety and security.

In the past, two different methodologies have been used to address the inverse
dispersion modeling problem, namely, deterministic optimization and stochastic Bayesian
approaches. In the optimization method, the parameters θ describing the source model are
obtained as the solution of a nonlinear least-squares optimization problem:

̂θ = argmin
θ∈Rn

{

fO(θ) + fR(θ)
}

, (1.1)

where n is the number of parameters (unknowns) used to parameterize the source model,
fO(θ) is an objective functional that measures the total mismatch (usually taken as the
sum-of-squared differences) between the measured concentration data and the synthetic
(predicted) concentration data associated with the current source model θ, and fR(θ) is a
regularization functional that is used either to impose an additional constraint on the solution
or to incorporate a priori information (which is required to produce a mathematically unique
solution). Most efforts in application of the optimization approach to inverse dispersion
modeling have been focused on the development of numerical methods for solution of the
optimization problem or on the prescription of the regularization functional for incorporation
of various forms of a priori information. The optimization method for inverse dispersion
modeling has been used by Robertson and Langner [2], Bocquet [3], Thomson et al. [4],
Allen et al. [5], and Issartel et al. [6] (among others) based on various numerical methods for
solution of the optimization problem (e.g., variational data assimilation, genetic algorithm,
conjugate gradient algorithm with line search, augmented Lagrangian method) and a
number of different forms of regularization (e.g., energy, entropy, smoothness, or flatness).

While the optimization approach for inverse dispersion modeling seeks to provide a
single optimal solution for the problem, the stochastic Bayesian approach seeks to generate
multiple solutions to the problem with the evaluation of the degree of plausibility for each
solution. In contrast to the optimization approach, the stochastic Bayesian approach allows
the quantification of the uncertainty in the source reconstruction (arising as such from the use
of incomplete and noisy concentration data and imperfect models of atmospheric dispersion
for the inverse dispersion modeling). This approach has been developed and used by a
number of researchers (e.g., [7–10]).

In all the previous studies cited above, the inverse dispersion modeling involved the
problem of identification of source parameters for a single localized source. The determination
of the characteristics of multiple localized sources was briefly addressed by Yee [11] and by
Sharan et al. [12] using, respectively, a stochastic Bayesian approach and an optimization
(least-squares) approach that were similar to those applied previously for the recovery of
a single source. In both these cases, this was possible because it was assumed in these
investigations that the number of sources was known a priori. The problem of reconstruction
of an unknown number of localized sources using a finite number of noisy concentration
measurements is a significantly more difficult problem. A solution for this problem was
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proposed by Yee [13, 14] who approached the problem as a generalized parameter estimation
problem in which the number of localized sources, N, in the (unknown) source distribution
was included explicitly in the parameter vector θ, in addition to the usual parameters that
characterize each localized source (e.g., location, emission rate, source-on time, source-off
time).

Solving the reconstruction of an unknown number of localized sources as a
generalized parameter estimation problem posed a number of conceptual and technical
difficulties. The primary conceptual difficulty resided in the fact that when the number of
sources is unknown a priori, the dimension of the parameter space (or, equivalently, the
dimension or length of the associated parameter vector θ) is an unknown that needs to be
estimated using the noisy concentration data. Yee [13, 14] overcame this conceptual difficulty
by using Bayesian probability theory to formulate the full joint probability density function
(PDF) for the number of sources N and the parameters of the N localized sources and
then demonstrated how a reversible-jump Markov chain Monte Carlo (RJMCMC) algorithm
can be designed to draw samples of candidate source models from this joint PDF, allowing
for changes in the dimensionality of the source model (or equivalently, changes in the
number of localized sources in the source distribution). Furthermore, it was found that
the RJMCMC algorithm sampled the parameter space of the unknown source distribution
rather inefficiently. To overcome this technical difficulty, Yee [13, 14] showed how the
RJMCMC algorithm can be combined either with a form of parallel tempering based on
a Metropolis-coupled MCMC algorithm [13] or with a simpler and computationally more
efficient simulated annealing scheme [14] to improve significantly the sampling efficiency
(or, mixing rate) of the Markov chain in the variable dimension parameter space.

In this paper, we address the inverse dispersion modeling problem for the difficult
case of multiple sources when the number of sources is unknown a priori as a model selection
problem, rather than as a generalized parameter estimation problem as described by Yee
[13, 14]. The model selection problem here is formulated in the Bayesian framework which
involves the evaluation of model selection statistics that gauges rigorously the tradeoff
between the goodness-of-fit of the source model structure to the concentration data and
the complexity of the source model structure. The model selection approach proposed
herein for reconstruction of an unknown number of localized sources is conceptually and
algorithmically simpler than that based on a generalized parameter estimation approach
[13, 14], leading as such to a simpler and more efficient computer implementation.
More specifically, the model selection approach is simpler than the generalized parameter
estimation approach in that it does not need to deal with the complexity of the variable
dimensionality of the parameter space, which requires generally the development of
sophisticated and computationally intensive algorithms.

2. Bayesian Model Selection

Let mN denote a source distribution (model) which consists of a known number, N, of
localized sources. The modelmN is characterized by a set of parameters θ. Bayesian inference
for θ, when given the concentration data D, is based on Bayes’ theorem (rule):

p(θ | mN,D, I) =
p(θ | mN, I)p(D | mN, θ, I)

p(D | mN, I)
, (2.1)
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where I denotes the background (contextual) information that defines the multiple source
reconstruction problem (e.g., background meteorology, atmospheric dispersion model
used to determine the source-receptor relationship, etc.) and the vertical bar “|” denotes
“conditional upon” or “given.” Furthermore, in (2.1), p(θ | mN,D, I) ≡ p(θ) is the posterior
probability distribution of the parameters θ, p(θ | mN, I) ≡ π(θ) is the prior probability
distribution of the parameters θ before the data D was made available, and p(D | mN, θ, I) ≡
L(θ) is the likelihood function and defines the probabilistic model of how the data were
generated. Finally, p(D | mN, I) is the evidence and, in the context of parameter estimation,
ensures proper normalization of the posterior probability distribution (assuming θ ∈ R

n):

p(D | mN, I) =
∫

Rn

L(θ)π(θ)dθ ≡ Z(mN). (2.2)

However, in our problem, the number of sources (N) is unknown a priori, so the
relevant question that needs to be addressed is as follows: given a set of possible source
models S ≡ {m0, m1, . . . , mNmax} (mN denotes the source model consisting of N localized
sources), which source model is the most plausible (probable) given the concentration data
D? This question is addressed rigorously in the Bayesian framework by using Bayes’ theorem
to compute the posterior probability for source modelmN (N = 0, 1, . . . ,Nmax) to give

p(mN | D, I) =
p(mN | I)p(D | mN, I)

p(D | I) . (2.3)

Here, p(mN | I) is the prior probability of source model mN given only the information I,
and p(D | mNI) is the global likelihood of the concentration data D given the source model
mN and I and represents the goodness-of-fit of the model to the data. Note that the global
likelihood of (2.3) is identical to the evidence Z(mN) defined in (2.2). Finally, the marginal
probability of the data given the background information, p(D | I), is a normalization
constant over all source models:

p(D | I) =
Nmax
∑

N=0

p(mN | I)p(D | mN, I). (2.4)

Given any two source models mN0 and mN1 from the set S, the “odds” in favor of
model mN1 relative to model mN0 are given by the ratio of the posterior probabilities of the
two models, which on using (2.3) and (2.2), reduces to

K10 ≡
p(mN1 | D, I)
p(mN0 | D, I)

=
p(D | mN1 , I)
p(D | mN0 , I)

· p(mN1 | I)
p(mN0 | I)

=
Z(mN1)
Z(mN0)

· p(mN1 | I)
p(mN0 | I)

. (2.5)

Note that the posterior odds ratio K10 is the product of the evidence ratio Z(mN1)/Z(mN0)
and the prior odds ratio p(mN1 | I)/p(mN0 | I). If every source model in the set S is equally
probable (namely, p(mN | I) = 1/(Nmax + 1) forN = 0, 1, . . . ,Nmax), then the prior odds ratio
is unity, and the posterior odds ratio is identically equal to the evidence ratio. When viewed
as a model selection problem, the inverse dispersion modeling of an unknown number of
sources is conceptually simple: compute the evidence Z(mN) for each source model mN
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in S given the input concentration dataD and the background information I, select the model
with the largest value of the evidence as themost probable model, and recover the parameters
θ corresponding to this most probable model.

The key to the model selection problem reduces to the computation of the evidence
Z(mN) for an arbitrary value of N. A perusal of (2.2) shows that the evidence for the source
model structure mN (namely, a source model consisting of exactly N localized sources)
involves a computation of the overlap integral (or inner product) of the likelihood L(θ) and
the prior distribution π(θ) over the entire parameter space for modelmN . This inner product
can be interpreted as a metric (statistic) for model selection and, as such, is an intrinsic
element of the source model structure mN in the sense that it depends on both the set of
parameters to be varied and the prior ranges for those parameters but is independent of the
most probable (preferred) values for the parameters.

Note that the model selection metric selects preferentially a source model structure
with the largest overlap of the likelihood and prior distribution, implying that in order for
a more complex source model (with a necessarily higher-dimensional parameter space) to
be selected, this requires the prior information to be smeared over a larger hypervolume
in the parameter space in order to overlap significantly the likelihood. This mechanism
embodies automatically an Occam’s razor in that a simpler source model structure is
preferentially selected unless the likelihood of the data for a more complex source model
increases significantly more than what would be expected from simply fitting the noise
(residual between the measured concentration and the predicted concentration provided by
the model).

The solution of the model selection problem is conceptually simple involving, as
such, the computation of Z(mN) (mN ∈ S). Unfortunately, this computation is a technically
difficult problem for two reasons. Firstly, as N (or, equivalently, as the number of localized
sources) increases, the overlap integral in (2.2) needs to be evaluated over a parameter space
of increasing dimensionality n. More specifically as N increases, the dimensionality of the
parameter space n increases linearly withN. Secondly, the integrand of the overlap integral of
(2.2) becomes ever more complex with increasing N, owing to a counting degeneracy in the
problem. In particular, it is noted thatL(θ) is invariant under a reordering (relabelling) of the
identifiers used to label the individual localized sources in the source model. This degeneracy
simply corresponds to different (but physically equivalent) identifications of what is meant
by a particular localized source in the source distribution, implying that the number of modes
in L(θ) increases with mN as N!. The factor N! here corresponds simply to the number
of possible permutations of the labels for the localized sources in the source model mN . In
summary, the increase in the dimensionality of the parameter space and in the complexity of
L(θ)with increasing N makes the problem of computation of Z(mN) technically difficult.

In view of the difficulty arising from the numerical evaluation ofZ(mN) for increasing
values ofN, we consider an alternative (but closely related)methodology for addressing the
model selection problem in the context of inverse dispersion modeling of an a priori unknown
number of localized sources. To this purpose, the question that needs to be posed is after the
removal of a predicted concentration for a sourcemodelmN from themeasured concentration
data, are the residuals that remain consistent with the estimated noise level or is there further
evidence for the existence of an additional localized source in the residuals? This question is
easily addressed using Bayes’ theorem as follows.
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Towards this purpose, the followingmodel is assumed for the measured concentration
data di (i = 1, 2, . . . ,Nm):

di = Ci + e
(1)
i = ˜Ci + e

(1)
i + e

(2)
i ≡ ˜Ci + ei, (2.6)

where Ci is the true (albeit unknown) mean concentration, e(1)i is the measurement error,
˜Ci is the predicted mean concentration obtained from an atmospheric dispersion model,
e
(2)
i is the model error incurred by using the (necessarily) imperfect atmospheric model to
predict Ci, and ei is the composite error that includes both the measurement and model error.
Furthermore, it is assumed that the expectation value 〈ei〉 of the composite error is zero, and
the variance 〈e2i 〉 is assumed (for now) to be known and given by σ2

i . Hence, it is assumed that
we are given the concentration data D ≡ {d1, d2, . . . , dNm} and corresponding uncertainties
{σ1, σ2, . . . , σNm} where σi is the standard deviation (square root of the variance) for the i-th
concentration datum di. Normally, exact values for the uncertainties σi are unknown so that
all we would have available would be some estimated values for these uncertainties si, rather
than the true values σi.

If we assume a priori that there are N localized sources in the domain, we can
analyse the concentration data D given that mN is the correct model structure and draw
samples of source models with exactlyN localized sources (encoded by θ) from the posterior
distribution given by (2.1). Assume that Ns samples of source models with N localized
sources have been drawn from the posterior distribution; namely, we have available the
samples θk(mN) (k = 1, 2, . . . ,Ns) where θk(mN) is kth source model sample consisting of
exactlyN localized sources. To determine ifN is the correct number of localized sources, we
can compute the residual data E ≡ {ε1, ε2, . . . , εNm} where εi is the mean residual for the ith
concentration datum (with realizations of the residuals obtained by subtracting the predicted
concentration ˜Ci(mN) for a sample of the source model mN encoded in θk(mN) from the
measured concentration di). The mean residual datum εi is estimated from the ensemble of
source model samples θk(mN) (k = 1, 2, . . . ,Ns) as follows:

ε̂i =
1
Ns

Ns
∑

k=1

(

di − ˜Ci(θk(mN))
)

. (2.7)

Similarly, the uncertainty sεi (error) in the residual datum εi is estimated as sεi = [ ̂ε2i − (ε̂i)
2]

1/2
,

where

̂ε2i =
1
Ns

Ns
∑

k=1

(

di − ˜Ci(θk(mN))
)2
. (2.8)

Now, given the residual data E, we evaluate the evidence for the presence of
an additional source by considering two models (hypotheses) for E: (1) H0: there is no
additional source and the residual data εi = ˜Ci(m0) + ei = ei (where ˜Ci(m0) is the predicted
concentration for a source model with no localized sources and hence has zero value),
and (2) H1: there is an additional source and the residual data εi = ˜Ci(m1) + ei (where
˜Ci(m1) is the predicted concentration for a source model consisting of one localized source).
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Under hypothesisH0 (null hypothesis), the residuals are consistent with the estimated noise
level ei. To decide which hypothesis is favoured by the data, we calculate the posterior odds
ratio for H1 relative to H0. From (2.5) and assuming that hypotheses H0 and H1 are equally
probable so p(H0 | I) = p(H1 | I) = 1/2, we get

Kε
10 ≡

p(H1 | E, I)
p(H0 | E, I) ≡ p(m1 | E, I)

p(m0 | E, I) =
p(E | m1, I)
p(E | m0, I)

≡ Zε(m1)
Zε(m0)

. (2.9)

If Kε
10 exceeds some preassigned threshold, then there is evidence for an additional source

(namely, hypothesis H1 is favoured with respect to hypothesis H0). If this is the case, then
the number of sourcesN is increased by one, and we repeat the analysis of the concentration
data D given that mN+1 is the correct model structure. This analysis would involve drawing
samples from the posterior distribution of (2.1) with mN replaced by mN+1, computing the
residual data E (obtained now by subtracting the predicted concentration ˜Ci(mN+1) from the
measured concentration di), and then determining once more the evidence in favour of H1

relative to that ofH0. When this test fails (namely,Kε
10 is less than or equal to the preassigned

threshold value), the algorithm terminates. At this point, the number of sources N∗ has been
determined, and the samples drawn from the posterior distribution of (2.1) for mN∗ can be
used to estimate any posterior statistic of interest for the source parameters θ.

To summarize, the algorithm for the inverse dispersion modeling of an unknown
number of sources consists of the following steps.

(1) Input concentration data D = {d1, d2, . . . , dNm} and associated estimated uncertain-
ties {s1, s2, . . . , sNm}.

(2) SetN = 1 and specify a thresholdK∗ for the posterior odds ratio. DrawNs samples
of source models (encoded by the parameter vectors θk(mN), k = 1, 2, . . . ,Ns) from
the posterior distribution p(θ | mN,D, I) given by (2.1).

(3) Compute the evidences Z(mN) and Z(mN−1), and use these values to determine
K10 in accordance to (2.5). If K10 ≤ K∗, stop (no sources are present in the domain,
soN∗ = 0).

(4) Use samples θk(mN) (k = 1, 2, . . . ,Ns) to estimate the residual data E =
{ε̂1, ε̂2, . . . , ε̂Ns} and the associated uncertainty in this data {sε1, sε2, . . . , sεNm

} in
accordance to (2.7) and (2.8), respectively.

(5) Using the information from the previous step, compute Kε
10 in accordance to (2.9).

If Kε
10 ≤ K∗, set N∗ = N, output θk(mN) (k = 1, 2, . . . ,Ns), and stop.

(6) IncreaseN → N + 1. DrawNs samples θk(mN) (k = 1, 2, . . . ,Ns) of source models
from p(θ | mN,D, I) given by (2.1). Continue from Step 4.

The algorithm summarized previously determines the minimum number of localized
sources needed to represent the concentration data D down to the estimated noise level,
without the requirement to compute the evidence Z(mN) for N ≥ 2 (a technically difficult
problem computationally). Steps 2 and 3 in the algorithm correspond to the signal detection
phase which addresses the specific question: is there evidence in the concentration data D
for the existence of one or more localized sources in the domain? On the other hand, Steps 4
to 6 in the algorithm address the estimation phase and answer the question given that there
is evidence for one or more localized sources in the domain (detection has been confirmed),
how many localized sources are present, and what are the values of the source parameters
that best characterize each of these localized sources?
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3. Source-Receptor Relationship (Dispersion Modeling)

In this paper, we are interested in the reconstruction of an unknown number N of localized
sources. In view of this, the model for the source density function has the following explicit
form (for source model mN):

S(x, t) =
N
∑

j=1

Qjδ
(

x − xs,j
)[

U
(

t − Tb,j
) −U

(

t − Te,j
)]

, (3.1)

where δ(·) and U(·) are the Dirac delta and Heaviside unit step functions, respectively,
and, Qj , xs,j , Tb,j , and Te,j are the emission rate, vector position (location), source-on time,
and source-off time, respectively, of the jth source (j = 1, 2, . . . ,N). For a source model (or
molecule) composed of N localized sources (or source atoms), it is convenient to define the
parameter vector as follows: θ ≡ (xs,1, Tb,1, Te,1, Q1, . . . , xs,N, Tb,N, Te,N,QN) ∈ R

6N .
To apply the Bayesian probability theory, it is necessary to relate the hypotheses of

interest about the unknown source model S to the modeled (predicted) concentration ˜C [cf.
(2.6)]. The predicted concentration ˜C can be compared directly to themeasured concentration
d “seen” by a sensor at receptor location xr and time tr , averaged over the sensor volume and
sampling time. The comparison can be effected by averaging the mean concentration C(x, t)
over this sensor volume and sampling time to give

˜C(xr , tr) ≡
∫T

0
dt

∫

R
dxC(x, t)h(x, t | xr , tr) ≡ 〈C | h〉(xr , tr), (3.2)

where h(x, t | xr , tr) is the spatial-temporal filtering function for the sensor concentration
measurement at (xr , tr) and R× [0, T] corresponds to the space-time volume that contains the
source distribution and the receptors (sensors). Note that the mean concentration ˜C(xr , tr)
“seen” by a sensor can be expressed succinctly as the inner or scalar product 〈C | h〉 of the
mean concentration C and the sensor response function h.

A source-oriented forward-time Lagrangian stochastic (LS) model can be used to
predictC(x, t). In this approach,C is estimated from the statistical characteristics of “marked”
particle trajectories described by the following stochastic differential equation [15]:

dX(t) = V(t)dt,

dV(t) = a(X(t),V(t), t)dt + (C0ε(X(t), t))1/2 dW(t),
(3.3)

where X(t) ≡ (Xi(t)) = (X1(t), X2(t), X3(t)) is the Lagrangian position and V(t) ≡ (Vi(t)) =
(V1(t), V2(t), V3(t)) is the Lagrangian velocity of a “marked” fluid element at time t (marked
by the source as the fluid element passes through it at some earlier time t′). The state of
the fluid particle at any time t after its initial release from the source density function S is
defined by (X,V). In (3.3), C0 is the Kolmogorov “universal” constant that is associated with
the Kolmogorov similarity hypothesis for the form of the second-order Lagrangian velocity
structure function in the inertial subrange; ε is the mean dissipation rate of turbulence kinetic
energy; dW(t) ≡ (dWi(t)) = (dW1(t), dW2(t), dW3(t)) are the increments of a vector-valued
(three-dimensional) Wiener process; a ≡ (ai) = (a1, a2, a3) is the drift coefficient vector (or,
more precisely, the conditional mean acceleration vector).
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Unfortunately, for the current application, the computational demands of the source-
oriented approach make it impractical as a direct tool for sampling from the posterior
distribution because this involves necessarily exploring a large number of source parameter
hypotheses. This is highly computer intensive, as the simulation-based Bayesian inference
procedure requires a large number of forward calculations of the mean concentration to be
performed, each of which involves the numerical solution of (3.2) and (3.3). In this particular
case, it may be useful to construct an emulator for the simulationmodel and use this emulator
as an inexpensive surrogate to replace the forward model [16–18]. Fortunately, applying
this type of approximation method for the forward model is not required for the current
problem. It was shown by Keats et al. [7] and Yee et al. [10] that an exact computationally
efficient procedure (appropriate for use in a Bayesian inference scheme) exists in the form of
a receptor-oriented strategy for the representation of the source-receptor relationship.

Towards this purpose, the modeled sensor concentration ˜C(xr , tr) can be computed
alternatively using the following dual representation:

˜C(xr , tr) ≡
∫T

0
dt

∫

R
dxC(x, t)h(x, t | xr , tr)

=
∫ tr

0
dt0

∫

R
dx0C∗(x0, t0 | xr , tr)S(x0, t0) ≡ 〈C∗ | S〉(xr , tr),

(3.4)

where C∗(x0, t0 | xr , tr) is the adjunct (or dual) concentration at space-time point (x0, t0)
associated with the concentration datum at location xr at time tr (with t0 ≤ tr). A comparison
of (3.2) and (3.4) implies the duality relationship 〈C | h〉 = 〈C∗ | S〉 between C and C∗

through the source functions h and S. Moreover, C∗ is uniquely defined in the sense that it is
explicitly constructed so that it verifies this duality relationship.

The adjunct field C∗ in the dual representation can be estimated from the statistical
characteristics of “marked” particle trajectories corresponding to a receptor-oriented
backward-time LS trajectory model, defined as the solution to the following stochastic
differential equation (with dt′ > 0):

dXb(t′
)

= Vb(t′
)

dt′, (3.5)

dVb(t′
)

= ab
(

Xb(t′
)

,Vb(t′
)

, t′
)

dt′ +
(

C0ε
(

Xb(t′
)

, t′
))1/2

dW
(

t′
)

, (3.6)

where at any given time t′, (Xb,Vb) is a point in the phase space along the backward trajectory
of the “marked” fluid element (here assumed to be marked or tagged as a fluid particle which
at time tr passed through the spatial volume of the detector at location xr). Here, (Xb,Vb)
defines the state of a fluid particle at any time t′ < tr before its “final” release from the sensor
space-time volume h at time tr . It can be shown [15, 19] that C∗ obtained from (3.5) for a
detector with the filtering function h and C obtained from (3.2) for a release from the source
density S, are exactly consistent with the duality relationship 〈C | h〉 = 〈C∗ | S〉 provided:
(1) Vb in (3.5) is related to V in (3.3) as Vb(t) = V(t), and (2) ab in (3.5) is related to a in (3.3)
as

ab
i (x,u, t) = ai(x,u, t) − C0ε(x, t)

∂

∂ui
lnPE(u), (3.7)
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where PE(u) is the background Eulerian velocity PDF. Thomson [15] provides one particular
solution for the drift coefficient vector a that is consistent with the well-mixed criterion for
the case where PE(u) has a Gaussian functional form (namely, for Gaussian turbulence).

Finally, if we substitute (3.1) into (3.4), the predicted concentration ˜C(θ) ≡ ˜C(xr , tr ; θ)
“seen” by the sensor at (xr , tr) is given explicitly by the following expression:

˜C(θ) =
N
∑

j=1

Qj

∫min(T,Te,j )

Tb,j

C∗(xs,j , ts | xr , tr
)

dts. (3.8)

4. Prior and Likelihood

4.1. Prior

Assuming that each parameter in θ (for source modelmN) is logically independent, the prior
π(θ) can be factored as follows:

π(θ) =
N
∏

j=1

π
(

Qj

)

π
(

xs,j
)

π
(

Tb,j
)

π
(

Te,j
)

. (4.1)

In this paper, the component prior distributions are assigned uniform distributions over an
appropriate range for each source parameter. Furthermore, it is noted that the parameter
ranges specified in the prior define the region inR

n (n ≡ 6N) over which the evidence integral
is carried out [cf. (2.2)]. More specifically, for j = 1, 2, . . . ,N, Qj ∼ U([0, Qmax]), where Qmax

is an a priori upper bound on the emission rate; xs,j ∼ U(R) where R ⊂ R
3 is the a priori

specified spatial domain that is assumed to contain the source S; and, Tb,j ∼ U([0, Tmax]) and
Te,j ∼ U([Tb,j , Tmax]), where Tmax is the upper bound on the time at which the source was
turned on or turned off. Here, the symbol ∼ denotes “is distributed as” and U([a, b]) is the
uniform distribution defined on the closed interval [a, b]. Finally, note in the specification of
the prior for Te,j that the lower bound of the parameter range is Tb,j , encoding the fact that
the time the source is turned offmust necessarily occur after it has been turned on.

4.2. Likelihood

In the absence of a detailed knowledge of the noise distribution ei in (2.6), other than the
fact that it has a finite variance σ2

i , the application of the principle of maximum entropy
[20] informs us that a Gaussian distribution is the most conservative choice for the direct
probability (likelihood) of the concentration data D. In consequence, the likelihood function
L(θ) has the following form:

L(θ) ≡ L(θ | D, ς) =
1

∏Nm

i=1

√
2πσi

exp
(

−1
2
χ2(θ)

)

, (4.2)
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where

χ2(θ) ≡
Nm
∑

i=1

(

di − ˜Ci(θ)
σi

)2

. (4.3)

In (4.2), the notation for the likelihood function was adjusted to include the standard
deviation for the noise ς ≡ (σ1, σ2, . . . , σNm) in the conditioning to emphasize the fact that
{σi}Nm

i=1 are assumed to be known quantities.
Unfortunately, as mentioned previously, the noise term ei in (2.6) is rather compli-

cated, arising as such from a superposition of both model and measurement errors. In
consequence, reliable estimates for σi (i = 1, 2, . . . ,Nm) are difficult to obtain in practical
applications. In view of this, let us denote by si the quoted estimate of the standard deviation
for the noise term ei for which the true (but unknown) standard deviation is σi. Now, let us
characterize the uncertainty in the specification of the standard deviation of ei with an inverse
gamma distribution of the following form (or, equivalently, prior distribution for σi):

π
(

σi | si, α, β
)

= 2
αβ

Γ
(

β
)

(

si
σi

)2β

exp

(

−α s2i
σ2
i

)

1
σi
, i = 1, 2, . . . ,Nm, (4.4)

where Γ(x) denotes the gamma function and α and β are scale and shape parameters,
respectively, that define the inverse gamma distribution. The inverse gamma distribution
for σi has mean 〈σi〉 = siα

1/2 Γ(β − 1/2)/Γ(β) and variance Var[σi] = s2i α[1/(β − 1) −
Γ2(β − 1/2)/Γ2(β)]. Again, the parameters α and β have been added to the PDF of the noise
uncertainty in (4.4) to indicate that the values for these parameters are assumed to be known.

In view of (4.4), the true but unknown standard deviations σi of ei that appear in
(4.2) can be treated as nuisance parameters and eliminated by considering the integrated
likelihood

L(

θ | D, s, α, β
)

=
∫

L(θ | D, ς)π
(

ς | s, α, β)dς

=
∫

L(θ | D, ς)
Nm
∏

i=1

2
αβ

Γ
(

β
)

(

si
σi

)2β

exp

(

−α s2i
σ2
i

)

1
σi
dς,

(4.5)

where s ≡ (s1, s2, . . . , sNm) are the estimated standard deviations for the noise (e1, e2, . . . , eNm)
and dς ≡ dσ1dσ2 · · ·dσNm . Now, substituting the form for L(θ | D, ς) from (4.2) and (4.3) into
(4.5) and performing the integration with respect to ς, we obtain the integrated likelihood
function given by

L(

θ | D, s, α, β
)

=
Nm
∏

i=1

αβΓ
(

β + 1/2
)

√
2πsiΓ

(

β
)

1
[

α +
(

di − ˜Ci(θ)
)2
/(2s2i )

]β+1/2
.

(4.6)

The integrated likelihood of (4.6) can be interpreted simply as an average over all conditional
likelihoods given ς, weighted by their prior probabilities. In so doing, the integrated
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likelihood incorporates the uncertainties regarding the standard deviations for ei (i =
1, 2, . . . ,Nm).

The integrated likelihood function given by (4.6) depends explicitly on the hyperpa-
rameters α and β for which values need to be assigned. In this paper, the values of α and β
are assigned as α = π−1 and β = 1. The assignment α = π−1 ensures that 〈σi〉 = si encoding
our belief that our estimates si of the standard deviation of ei are unbiased. Furthermore,
the assignment β = 1 results in a very heavy-tailed distribution for π(σi | si, α, β) which
allows significant deviations of the noise uncertainty from the quoted value of si (provided
by the user). Indeed, with the choice β = 1, the variance associated with p(σi | si, α, β) in (4.4)
becomes infinite. The heavy tail of the distribution is chosen to account for possibly significant
under-estimations of the actual uncertainty (namely, the quoted uncertainty si � σi). This
could arise from inconsistencies in the model concentration predictions owing to structural
model error or to “outliers” in the measured concentration data owing to either measurement
error or perhaps distortion of the measured concentration data due to some unrecognized
spurious (background) source.

In order to compute Zε(m1) required in the evaluation ofKε
10 in (2.9), we are required

to specify a functional form for the likelihood L(θ(m1) | E, sε) of the estimated mean residual
data E ≡ {ε̂1, ε̂2, . . . , ε̂Ns} and the associated uncertainty in this data sε ≡ {sε1, sε2, . . . , sεNm

}.
To this end, the integrated likelihood function of (4.6) is also used for the specification of
L(θ(m1) | E, sε):

L(θ(m1) | E, sε) ≡ L(

θ(m1) | E, sε, α, β
)

=
Nm
∏

i=1

αβΓ
(

β + 1/2
)

√
2πsεi Γ

(

β
)

1
[

α +
(

ε̂i − ˜Ci(θ(m1))
)2
/(2sε2i )

]β+1/2
. (4.7)

Here, θ(m1) are the parameters of a source model consisting of a single localized source, used
in the test to determine if the mean residual data E contains evidence for the presence of an
additional source. Towards this objective, the likelihood function of (4.7) is used to calculate
the evidence Zε(m1) for this test as

Zε(m1) =
∫

Rn

L(

θ(m1) | E, sε, α, β
)

π(θ(m1))dθ(m1), (4.8)

where n = 6 (corresponding to the dimension of the parameter space for one source).

5. Computational Methods

There are two major computational problems that need to be addressed in order to fully
specify the algorithm summarized in Section 2, namely, (1) specification of a method to draw
samples from the posterior distribution p(θ | mN,D, I) (Steps 2 and 6) and (2) specification
of a method for computation of the evidence Z(m1) (Step 3, cf. (2.2)) or Zε(m1) (Step 5, cf.
(4.8)).

The most popular method that can be used for sampling from p(θ | mN,D, I) (see
(2.1)) is a stochastic algorithm referred to as Markov chain Monte Carlo (MCMC). There has
been considerable effort expended to improve the efficiency and the chain mixing efficacy
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of MCMC sampling procedures in order to allow rapid chain convergence to and efficient
sampling from the posterior distribution of θ. Improvements to MCMC sampling methods
include: introduction of an adaptive Metropolis algorithm by Haario et al. [21], formulation
of the differential evolution Monte Carlo algorithm by Ter Braak [22], development of a
differential evolution adaptive Metropolis algorithm (DREAM) by Vrugt et al. [23], and
design of multiple-try Metropolis algorithms by Liu et al. [24].

The are a number of options that are available for the computation of the evidences
Z(m1) and Zε(m1). Owing to the fact that the determination of Z(m1) and Zε(m1) involves
only an evaluation of a multidimensional integral in a low-dimensional space (R6 in this
case), it is in principle possible to apply a brute force numerical integration [25] to address
this problem. An alternative would be to apply a methodology that is applicable to the
evaluation of the evidence in the general case, involving the evaluation of an overlap integral
in a high-dimensional parameter space R

n (n � 1). These methodologies include importance
sampling estimators [26] and thermodynamic integration [27].

Although there are various alternatives (leading to many different combinations) that
could be used potentially to draw samples from p(θ | mN,D, I) and to evaluate Z(m1) and
Zε(m1), we have used instead a single methodology to do both. Themethodology that is used
in this paper to address both these problems is nested sampling developed by Skilling [28] for
the efficient evaluation of the evidence Z for the general case. The nested sampling algorithm
transforms the multidimensional evidence integral of (2.2) into a simple one-dimensional
representation:

Z ≡ Z(mN) =
∫1

0
L(

χ
)

dχ, (5.1)

where

χ(L∗) =
∫

L(θ)>L∗
π(θ)dθ (5.2)

is the prior mass in the parameter (hypothesis) space enclosed with likelihood greater than
L∗ and L(χ) is the inverse which labels the likelihood contour that encloses a prior mass χ.
If we evaluate the likelihood L(χ) at a sequence of m points χi (i = 1, 2, . . . , m) with 0 < χm <
χm−1 < · · · < χ2 < χ1 < 1 and L(χi) > L(χj) (i > j), the evidence Z can be approximated from
the likelihood-ordered samples as the following weighted sum:

̂Z =
m
∑

i=1

L(

χi

)

δχi, δχi = χi−1 − χi. (5.3)

If the prior mass points χi are sampled in a logarithmic manner as χi =
∏i

j=1tj where
tj ∈ (0, 1) is a shrinkage ratio, then the nested algorithm consists of the following steps. The
reader is referred to Skilling [28] for further details of the algorithm.

(1) Set i = 0, χ0 = 1, Z0 = 0 and f = 0.5 (preset fraction used in the stopping criterion).
Randomly draw M samples θ from the prior π(θ) to give an ensemble of samples.
Evaluate the likelihood L(θ) for each of the samples in the ensemble.
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(2) Increase i → i+1. Select the sample having the lowest likelihood (which we label as
Li) in the ensemble and remove (discard) it. Shrink the prior mass to χi = χi−1e−1/M.

(3) Draw a new sample θ from the prior π(θ) subject to the hard likelihood constraint
L(θ) > Li, and add this sample to the ensemble of samples.

(4) Increment the evidence: Zi = Zi−1 +Li(χi−1 − χi).

(5) If Lmaxχi < fZi (Lmax is the largest value of the likelihood in the ensemble of
samples), add in contributions to the evidence Zi from the ensemble of samples
(remainingM samples that have not been discarded), and stop; otherwise, continue
from Step 2.

In Step 5 of the algorithm, if the stopping criterion is satisfied, the estimate for the
evidence ̂Z is completed by adding the contribution of the remaining M samples in the
ensemble to Zi; namely, ̂Z → Zi + M−1(L(θ1) + L(θ2) + · · · + L(θM))χi where L(θk)
(k = 1, 2, . . . ,M) are the likelihood values evaluated at the remaining M samples. It is noted
that the algorithm summarized above for estimation of Z (overlap integral ofL(θ) and π(θ))
automatically provides weighted samples θk(mN) drawn from the posterior distribution
p(θ | mN,D, I) ∝ L(θ)π(θ) (cf. (2.1) and (2.2)). More specifically, the ith discarded sample in
Step 2 of the algorithm can be interpreted as a sample drawn from the posterior distribution
of θwithweight given by pi = Li(χi−1−χi)/ ̂Zwhere ̂Z is the estimate of the evidence obtained
in Step 5 on termination of the algorithm.

The key part of the algorithm is Step 3 involving drawing a sample from the prior
π(θ) within a prescribed hard likelihood constraint L(θ) > L∗. To this purpose, Feroz et al.
[29] developed a very efficient algorithm (which the authors refer to as MULTINEST) for
sampling from a prior within a hard likelihood constraint involving a very sophisticated
procedure for decomposition of the support of the likelihood above a given bound L∗ into a
set of overlapping ellipsoids and then sampling from the resulting ellipsoids. The algorithm
is appropriate for sampling from posterior distributions with multiple modes and with
pronounced curving degeneracies in a high-dimensional parameter space.

Finally, the posterior odds ratio Kε
10 in (2.9) is a summary of the evidence for H1

(additional source is present in the residuals) against H0 (no source is present in the
residuals). To interpret how strong (or weak) is the evidence for H1 against H0 provided
by the residual data E, we use a reference scale suggested by Jeffreys [30]. In this scale,
log(Kε

10) < 1 corresponds to inconclusive evidence for H1 against H0 (or the evidence for
H1 is not worth more than a bare mention and corresponds to a posterior odds ratio of less
than about 3 to 1 in favor ofH1). On this same scale, log(Kε

10) > 5 corresponds to very strong
evidence for H1 against H0 (associated, as such, with a posterior odds ratio greater than
about 150 to 1). In view of this scale for interpreting Kε

10, we choose the threshold K∗ for
the posterior odds ratio (required to be specified in Step 2 of the algorithm summarized in
Section 2) to be log(K∗) = 1 (or, equivalently, K∗ ≈ 2.7).

6. Example: An Application of the Methodology

In this section, we apply the proposed methodology for inverse dispersion modeling of
an unknown number of sources to a real dispersion data set obtained from a specific
experiment conducted under the FUsing Sensor Information from Observing Networks
(FUSION) Field Trial 2007 (FFT-07). The scientific objective of this field campaign was to
acquire a comprehensive meteorological and dispersion dataset that can be used to validate
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methodologies developed for source reconstruction. Details of the instrumentation deployed
and the experiments conducted in FFT-07 are given in Storwold [31], so only a brief summary
of FFT-07 will be presented here. In particular, only the relevant details of the particular
experiment that are required for the interpretation of the results in this paper are emphasized.

The experiments in FFT-07 were carried out in September 2007 at Tower Grid on US
Army Dugway Proving Ground, Utah about 2 km west of Camel Back Ridge on the Great
Salt Lake Desert. The easterly through southerly drainage flows that predominate during
the early morning hours at this site originate on the higher terrain to the southeast and are
channeled by Camel Back Ridge. Generally, the terrain was flat, uniform, and homogeneous
consisting primarily of short grass interspersed with low shrubs with a height between about
0.25 and 0.75m. The momentum roughness length, z0, was estimated to be z0 = 1.3 ± 0.2 cm.

In all the experiments, propylene (C3H6)was used as the tracer gas. The concentration
detectors used were fast-response digital photoionization (dPID) detectors. In the experi-
ments, a plume was formed in the atmospheric surface layer by releasing propylene from
one or more (up to a maximum of four) purpose-designed gas dissemination systems. The
network (or array) of concentration detectors consisted of up to 100 dPIDs, arranged in a
staggered configuration of 10 rows of 10 detectors, with the rows of detectors separated by
50m and the detectors along each row spaced 50m apart. The concentration detectors along
the ten sampling lines in the array were placed at a height, zd, of 2.0m.

In the experiment used to test the inverse dispersion modeling methodology proposed
herein, tracer gas was released continuously over a period of 10min from four source
locations at a height, zs, of 2.0m: (1) source 1 is at (xs, ys) = (33.0, 171.0)m; (2) source 2
is at (xs, ys) = (33.8, 240.7)m; (3) source 3 is at (xs, ys) = (30.0, 312.9)m; (4) source 4 is at
(xs, ys) = (26.0, 384.4)m. The coordinates reported here for the source locations are referenced
with respect to a local Cartesian coordinate system. Unfortunately, in this experiment, only
the mass flow controller for source 3 functioned properly. The mass flow controllers for
sources 1, 2, and 4 failed to properly regulate the flow, so the emission rates from these sources
were unknown.

A three-dimensional sonic anemometer, placed at the 2m level of a lattice tower
located upwind of the array of concentration detectors, was used to characterize the
background micrometeorological state of the atmospheric surface layer. For this experiment,
the horizontal mean wind speed S2 at the 2m level, the friction velocity (u∗), the atmospheric
stability (Obukhov length L), and the standard deviations of the velocity fluctuations in
the alongwind (σu), crosswind (σv), and vertical (σw) directions were S2 = 3.61ms−1,
u∗ = 0.282m s−1, L = −27.3m, σu/u∗ = 2.33, σv/u∗ = 1.86, and σw/u∗ = 1.10. The mean wind
direction in the experiment was normally incident on the detector array (namely, the mean
wind direction corresponded to a wind from the +x-direction and, hence, is perpendicular to
the sampling lines of detectors along the y-axis).

The wind velocity and turbulence statistics were used in conjunction with Monin-
Obukhov similarity theory relationships [32] as input to the atmospheric dispersion model
(namely, the backward-time LS particle trajectory model described briefly in Section 3) for
provision of the predicted concentration ˜C (cf. (3.4)). More specifically, the backward-time
LS model of (3.5) was applied with the Kolmogorov constant C0 = 4.8, a value which was
recommended by Wilson et al. [33] from a calibration of the model against concentration
data obtained from the Project Prairie Grass atmospheric dispersion experiments.

The example used here to illustrate the inverse dispersion methodology involve
continuously emitting sources, so the relevant source parameters for source model mN are
θ ≡ θ(mN) = (xs,1, Q1, . . . , xs,N,QN). Furthermore, it is assumed that the height of the sources



16 ISRN Applied Mathematics

above ground level (zs = 2.0m) is known a priori, so the only unknown location parameters
are the (xs, ys) coordinates of the sources. Owing to the horizontal homogeneity of the mean
flow and turbulence statistics in the current example, the adjunct concentration C∗(xs | xd) in
(3.4) can be precalculated for one detector location xd (for the known source height zs), with
the adjunct concentration C∗ (considered as a function of xs) at all other detector locations
obtained simply by a linear translation of C∗(xs | xd) in the horizontal (x, y)-plane.

In order to calculate the likelihood function given by (4.6), we need to provide values
for the estimated standard deviations si for the noise ei. The noise error variance σ2

i includes
the sensor sampling error variance, σ2

d,i
, in the measurement of the concentration datum di

and themodel error variance, σ2
m,i, in the prediction of ˜Ci. The two contributions are combined

in quadrature to give the noise error variance σ2
i = σ2

d,i+σ
2
m,i. The measurement error standard

deviation is estimated as σ̂d,i ≡ sd,i = max(0.05, 0.02di)ppm (parts per million by volume)
where the lower limit of 0.05 ppm represents the precision in the concentrationmeasurements
using the dPIDs. The model error standard deviation is estimated to be 20% of the predicted
value of the concentration ˜Ci(θ) (namely, σ̂m,i ≡ sm,i = 0.20 ˜Ci(θ)). In consequence, the
estimated noise error standard deviation is given by σ̂i ≡ si = (s2d,i + s2m,i)

1/2.
The algorithm described in Section 2 was used for the source reconstruction, applied

to the concentration data D ≡ {d1, d2, . . . , dNm} obtained from 62 detectors in the array
(Nm = 62) (see Figure 1 which shows the locations of the 62 detectors as filled squares).
The hyperparameters defining the prior π(θ) have been chosen as follows:Qj ∼ U([0, Qmax])
withQmax = 100 g s−1 and (xs,j , ys,j) ∼ U(R)with R = [0, 100]m× [0, 500]m for j = 1, 2, . . . ,N.

After Steps 2 and 3 of the algorithm were completed, we found log(K10) =
log(Z(m1)/Z(m0)) = 64.0 ± 0.2 implying that the concentration data strongly support the
source model m1 (one localized source or “signal”) against the alternative source model
m0 (no localized source or “no signal”). In other words, at this point in the algorithm,
a source for the concentration has been detected in the data D. Owing to the fact that
log(K10) > log(K∗) = 1, the algorithm continues to the iterative loop involving Steps 4 to
6. This iterative loop executes four times before it is terminated. The results of the execution
of each of these four iterations are exhibited in Figure 1(a) (N = 1), Figure 1(b) (N = 2),
Figure 1(c) (N = 3), and Figure 1(d) (N = 4). The caption in Figure 1 summarizes the
values for log(Kε

10) = log(Zε(m1)/Zε(m0)) obtained from testing the alternative hypothesis
H1 (additional source present in the residual data) against the “null” hypothesis H0 (no
additional source present in the residual data). Each panel in Figure 1 also displays a density
plot of samples of the source modelmN drawn from the posterior distribution p(θ | mN,D, I)
and projected onto the (x, y) horizontal plane (namely, each point in the plot corresponds to
the (x, y) location of a sample of the sourcemodelmN drawn from the posterior distribution).
Note that the algorithm terminates with N∗ = N = 4 with log(Kε

10) = 0.92 ≤ log(K∗) = 1,
providing the correct number of localized sources in the source distribution (N∗ = 4 in this
case).

The samples of source modelsmN (N = 4) drawn from the posterior distribution p(θ |
mN,D, I) in the last iteration of the algorithm (see Figure 1(d)) can be used to determine the
characteristics (location, emission rate) of the four localized sources. Towards this objective,
Figure 2 displays the univariate (diagonal) and bivariate (off-diagonal) marginal posterior
distributions for the parameters of each source. For each univariate marginal posterior
distribution of a parameter for a given source, the solid vertical line indicates the true value
of the parameter (for this source), and the dashed vertical line corresponds to the best
estimate of the parameter (for this source) obtained as the posterior mean. For the bivariate
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Figure 1: Four iterations of the algorithm of Section 2 showing the samples of sourcemodelmN drawn from
the posterior distribution p(θ | mN,D, I) and the computation of Kε

10 for (a) N = 1, log(Kε
10) = 62.4 ± 0.2;

(b) N = 2, log(Kε
10) = 57.3 ± 0.3; (c) N = 3, log(Kε

10) = 39.1 ± 0.3; (d) N = 4, log(Kε
10) = 0.92 ± 0.33. A solid

square denotes a detector.

Table 1: The posterior mean, posterior standard deviation, and lower and upper bounds of the 95%
HPD interval of the parameters xs,j (m), ys,j (m), and Qj ≡ qs,j (g s−1) for j = 1, 2, 3, and 4 calculated
from samples of source model mN with N = 4 drawn from the posterior distribution p(θ|mN,D, I) [cf.
Figure 1(d)].

Parameter Mean Standard deviation 95% HPD Actual

xs (m) 34.9 4.3 (27.6, 44.4) 33.0

j = 1 ys (m) 170.8 0.6 (169.5, 171.8) 171.0

qs (g s−1) 8.9 0.4 (8.0, 9.3) —

xs (m) 33.7 1.1 (31.6, 35.9) 33.8

j = 2 ys (m) 240.7 0.3 (240.2, 241.4) 240.7

qs (g s−1) 7.5 0.4 (6.7, 8.1) —

xs (m) 25.4 3.9 (17.1, 31.2) 30.0

j = 3 ys (m) 313.2 0.6 (311.9, 314.6) 312.9

qs (g s−1) 4.2 0.2 (3.7, 4.6) 3.8

xs (m) 25.1 3.0 (18.9, 30.3) 26.0

j = 4 ys (m) 384.5 0.5 (383.5, 385.5) 384.4

qs (g s−1) 6.3 0.3 (5.8, 6.8) —



18 ISRN Applied Mathematics

0 20 40 60
0

0.05

0.15

10 20 30 40 50

169
170
171
172
173

168 170 172 174
0

1

10 20 30 40 50
7

8

9

10

169 171 173
7

8

9

10

6 8 10 12
0

1

2

1.5

0.5

0.5

0.1

0.2

y
s
(m

)

ys (m)

q s
(g

 s
−1
)

qs (g s −1 )xs (m)

(a) Source 1

25 30 35 40
0

1

30 35 40

240

241

242

239 240 241 242
0

1

2

30 35 40
6

7

8

9

240 241 242
6

7

8

9

6 7 8 9
0

1

2

y
s
(m

)

ys (m)

q s
( g

 s
−1
)

qs (g s −1 )xs (m)

0.5

1.5

0.5

1.5

0.5

(b) Source 2

0 20 40
0

0.05

0.15

10 20 30

310

312

314

316

305 310 315 320
0

1

10 20 30

4

5

310 312 314 316

4

5

3 4 5 6
0

1

2

y
s
( m

)

ys (m)

q s
( g

 s
−1
)

qs (g s −1 )xs (m)

0.2

0.1

4.5

3.5

1.5

0.5

0.5

3.5

4.5

(c) Source 3

10 20 30 40
0

0.05

0.15

10 20 30

383
384
385
386
387

382 384 386 388
0

1

 

10 20 30

6

7

383 385 387 5 6 7 8
0

1

2

y
s
( m

)

ys (m)

q s
(g

 s
−1
)

qs (g s −1 )xs (m)

0.1

0.2

7.5

6.5

5.5
6

7
7.5

6.5

5.5
0.5

1.5

0.5

(d) Source 4

Figure 2: Univariate (diagonal) and bivariate (off-diagonal)marginal posterior distributions of the source
parameters, namely, alongwind location xs, crosswind location ys, and emission rate qs that characterize
sources 1 (a), 2 (b), 3 (c), and 4 (d) obtained from samples of source model mN (N = 4) drawn from the
posterior distribution p(θ | mN,D, I) ([cf. Figure 1(d)).

marginal posterior distribution of parameters of a given source, the solid square represents
the position of the true source parameter values, and the solid circle indicates the best
estimate of the true source parameter values obtained as the posterior means. The posterior
mean, posterior standard deviation, and the lower and upper bounds for the 95% highest
posterior distribution (HPD) interval of the source parameters for each identified source are
summarized in Table 1. Comparing these estimated values of the source parameters, it can
be seen that the proposed algorithm has adequately recovered the true parameters for each
source (if these are known) to within the stated uncertainties.

7. Conclusions

In this paper, we have proposed a Bayesian inference approach for addressing the
inverse dispersion of an unknown number of sources using model comparison (selection).
The necessary integrations to compute the evidence Z(mN) for N > 1 can be very



ISRN Applied Mathematics 19

computationally demanding (as well as technically difficult), and, as a consequence, we
developed an efficient and robust algorithm for model comparison that recursively removes
the influence of a source model mN from the measured concentration data D and tests the
resulting residual data E to determine if the residual data are consistent with the estimated
noise level. This test requires nothing more than the computation of the evidence Zε(mN)
for N = 1 which is usually computationally simple. The procedure finds the minimum
number of localized sources necessary to represent the concentration signal in the data D
down to the estimated noise level. Furthermore, the uncertainty in the estimated noise level
(which includes contributions from both measurement and model errors) is treated by using
an integrated likelihood, which was implemented using a specific prior (inverse gamma
distribution) to represent the uncertainty in the estimated noise level. Nested sampling is
used for the evidence computation, as well as for sampling from the posterior distribution
p(θ | mN,D, I) in the proposed algorithm for inverse dispersion modeling.

The new algorithm has been applied successfully to a real concentration dataset
obtained from an atmospheric dispersion experiment conducted in the FFT-07 field campaign
consisting of the simultaneous release of a tracer from four sources. It is shown that the
proposed algorithm performed well for this example: the number of sources was determined
correctly (N∗ = 4), and for each of the identified sources the corresponding parameters
(e.g., location, emission rate) were estimated reliably along with the determination of the
uncertainty in the parameter (in the form of either a standard deviation or a credible interval
that encloses a prespecified posterior probability mass). The methodology proposed herein
offers a simpler alternative for the inverse dispersion modeling of an unknown number
of sources that was addressed previously [13, 14] as a generalized parameter estimation
problem, the latter of which involves necessarily the complexities in the design of an
appropriate reversible-jump MCMC sampling algorithm to allow transdimensional jumps
in the generalized parameter space (namely, jumps between the parameter space of source
models mN of different dimensions involving different numbers of sources N).
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