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A new general system of variational inequalities in a real Hilbert space is introduced and studied.
The solution of this system is shown to be a fixed point of a nonexpansive mapping. We also
introduce a hybrid projection algorithm for finding a common element of the set of solutions
of a new general system of variational inequalities, the set of solutions of a mixed equilibrium
problem, and the set of fixed points of a nonexpansive mapping in a real Hilbert space. Several
strong convergence theorems of the proposed hybrid projection algorithm are established by using
the demiclosedness principle. Our results extend and improve recent results announced by many
others.

1. Introduction

Let H be a real Hilbert space with inner product (-,-) and C be a nonempty closed convex
subset of H. Recall that T : C — C is nonexpansive if | Tx - Ty|| < |lx - y||, for all x,y € C.
The fixed point set of T is denoted by F(T) := {x € C: Tx = x}.

Let A: C — H be anonlinear mapping. Then A is called

(i) a-strongly monotone, if there exists a positive real number a > 0 such that

2 Vx,yeG; 1.1)

(Ax-Ay,x-y)>a|x-y

(ii) L-Lipschitz continuous (or Lipschitzian), if there exists a constant L > 0 such that
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|Ax - Ay|| <L||x-y|, YxyeC; (1.2)

(iii) relaxed (c,d)-cocoercive, if there exist two constants ¢, d > 0 such that
(Ax - Ay, x-y) > (ol Ax - Ay|P + dllx -yl Vxyec (1.3

for ¢ = 0, A is d-strongly monotone. This class of mappings is more general than
the class of strongly monotone mappings.

Next, we consider the following variational inequality problem of finding x* € C such
that

(Ax*,x—x*)y >0, VxeC. (1.4)

The set of solutions of the variational inequality (1.4) is denoted by VI(C, A). Variational
inequality theory has emerged as an important tool in studying a wide class of obstacle,
unilateral, free, moving, equilibrium problems arising in several branches of pure and applied
sciences in a unified and general framework. The variational inequality problem has been
extensively studied in the literature, see, Piri [1], Qin et al. [2], Shehu [3], Wangkeeree and
Preechasilp [4], Yao et al. [5], Yao et al. [6], and the references therein.

For solving the variational inequality problem in the finite-dimensional Euclidean
space R" under the assumption that a set C C R" is closed and convex, a mapping A of C
into R” is monotone and k-Lipschitz-continuous and VI(C, A) is nonempty, Korpelevic¢ [7]
introduced the following called extragradient method:

xgo=x€C,

Yn = Pc(xn, — LAxy,), (1.5)
Xui1 = Pc (xn - -)tA]/n)/

foreveryn =0,1,2,..., where A € (0,1/k) and P is the projection of R" onto C. He showed
that the sequences {x,} and {y,} generated by this iterative process converge to the same
point z € VI(C, A). Later on, the idea of Korpelevich was generalized and extended by many
authors, see for example, [1-5, 8, 9] for finding a common element of the set of fixed points

and the set of solutions of the variational inequality.

We recall the following well-known result which is called the best approximation
result or the projection lemma.

Lemma 1.1. For a given z € H, u € C satisfies the inequality

(u-z,v-u)>0, Yvel(, iff u=_"Pcz, (1.6)

where Pc is the projection of H onto a closed convex set C.
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Lemma 1.2. x* € C is a solution of the variational inequality if and only if x* € C satisfies the
relation

x* = Pe(x* — LAx™Y), (1.7)

where Pc is the projection of H onto a closed convex set C and A > 0 is a constant.

Let C be a nonempty closed convex subset of a real Hilbert space H. Let A; : C —
H for all i = 1,2,3 be three mappings. In this paper, we focus on the problem of finding
(x*,y*,z*) € C x C x C such that

MAY +x* -y, x-x*)>0, VxeC,
(LA +y* -2z, x-y*) >0, VYxeC, (1.8)

(M3Azx* +z" —x",x-2") >0, VxeC(,

which is called a new general system of variational inequalities, where A; > 0 foralli =1,2,3. In
particular, if A3 = 0 and z* = x*, then problem (1.8) reduces to find (x*, y*) € C x C such that

(MAYy +x"-y",x-x") >0, VxeC,
(1.9)
(A" +y"—x",x-y*) >0, VxeC,

which is called a general system of variational inequalities and defined by Ceng et al. [10]. If we
add up the requirement that A; = A, := A, then problem (1.9) reduces to find (x*,y*) € CxC
such that

MAY +x* -y, x-x*)>0, VxeC,
(1.10)
LAX +y —x",x-1y*) >0, Vxe(C,
Y Y

which is defined by Verma [11], and is called the new system of variational inequalities. Further,
if we add up the requirement that x* = y* and Ay = A, = 1, then problem (1.10) reduces
to the classical variational inequality VI(C, A). Ceng et al. [10] introduced and studied a
relaxed extragradient method for finding a common element of the set of solutions of problem
(1.9) for the a and p-inverse-strongly monotone mappings and the set of fixed points of a
nonexpansive mapping in a real Hilbert space. Some related works, we refer to see [9, 12-16].

Recently, in 2012, Ceng et al. [12] considered an iterative method for the system of
problem (1.9) and obtained a strong convergence theorem for the two different systems of
problem (1.9) and the set of fixed points of a strict pseudocontraction mapping in a real
Hilbert space.

Letgp : C — R{J{+oo} be a proper extended real-valued function and F be a bifunction
from C x C to R, where R is the set of real numbers. Ceng and Yao [17] considered the
following mixed equilibrium problem:

Find x € C such that F(x,y) +¢(y) > p(x), VYyeC. (1.11)
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The set of solutions of problem (1.11) is denoted by MEP(F, ¢). It is easy to see that x is a
solution of problem (1.11) implies that x € domg = {x € C | ¢(x) < +o0}.
If ¢ = 0, then the problem (1.11) becomes the following equilibrium problem:

find x € C such that F(x,y) >0, VyeC. (1.12)

The set of solution of (1.12) is denoted by EP(F).
If F = 0, then the problem (1.11) reduces to the convex minimization problem:

Find x € C such that ¢(y) > ¢p(x), VyeC. (1.13)

Ifp=0and F(x,y) = (Ax,y—x) forall x,y € C, where A is a mapping from C into H,
then problem (1.11) reduces to the classical variational inequality and EP(F) = VI(C, A). For
solving problem (1.11), Ceng and Yao [17] introduced a hybrid iterative scheme for finding
a common element of the set MEP(F, ¢) and the set of common fixed points of finite many
nonexpansive mappings in a Hilbert space. Some related works, we refer to see [3, 5, 9, 15].

Recently, in 2012, Kumam and Katchang [14] introduced an iterative algorithm for
finding a common element of the set of solutions of a system of mixed equilibrium problems,
the set of solutions of a general system of variational inequalities for Lipschitz continuous and
relaxed cocoercive mappings, the set of common fixed points for nonexpansive semigroups,
and the set of common fixed points for an infinite family of strictly pseudocontractive
mappings in Hilbert spaces.

In this paper, motivated and inspired by the idea of Kumam and Katchang [14], we
introduce a hybrid projection algorithm for finding a common element of the set of solutions
of a new general system of variational inequalities, the set of solutions of a mixed equilibrium
problem and the set of fixed points of a nonexpansive mapping in a real Hilbert space.
Starting with an arbitrary v € C and let x; € C, {x,}, {y»} and {z,} be the sequences
generated by

1
F(un,y) +o(y) —¢(u,) + r—(y — U, Up—Xn) 20, VYyeC,

zn = Pc(uy — A3 Azuy), (1.14)
Yn = PC (Zn - -)‘ZAZZn)/
Xni1 = An0 + bpxy + (1= ap = by) TP (Y — MA1yn), n>1,
where \; >0 foralli=1,2,3, {r,} C (0,00) and {a,}, {b,} C [0,1]. Using the demiclosedness
principle for nonexpansive mappings, we show that the sequence {x,} converges strongly to

a common element of those three sets under some control conditions. Our results extend and
improve recent results announced by many others.

2. Preliminaries

In this section, we recall the well-known results and give some useful lemmas that are used
in the next section.
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Let C be a nonempty closed convex subset of a real Hilbert space H. For every point
x € H, there exists a unique nearest point in C, denoted by Pcx, such that

lx - Pex|| < ||x-y|, VyeC (2.1)

Pc is called the metric projection of H onto C. It is well known that Pc is a nonexpansive
mapping of H onto C and satisfies

. Vx,yeH. (2.2)

(x—y,Pcx — Pcy) 2 ||Pcx - Pcy
Obviously, this immediately implies that
IGe-y) - (Pex-Pey) P < -yl - [ Pex - Pyl Wy H 23)
Recall that, Pcx is characterized by the following properties: Pcx € C and

(x = Pcx,y — Pcx) <0,
i 2 i (2.4)
l|x = yll” > llx = Pex|I* + || Pex - y||,

for all x € H and y € C; see Goebel and Kirk [18] for more details.
For solving the mixed equilibrium problem, let us give the following assumptions for
the bifunction F, ¢ and the set C:

(Al) F(x,x)=0forallx € C;

(A2) F is monotone, thatis, F(x,y) + F(y,x) <0forall x,y € C;
(A3) Foreach y € C, x — F(x,y) is weakly upper semicontinuous;
(A4) For each x € C, y — F(x,y) is convex;

(A5) For each x € C, y — F(x, y) is lower semicontinuous;

(B1) For each x € H and r > 0, there exist a bounded subset D, C C and y, € C such
that for any z € C \ Dy,

F(2,) + 9(3) + (9 - 2,2 - %) < 9(2). (25)

(B2) Cisabounded set.

In the sequel we will need to use the following lemma.
Lemma 2.1 (see [19]). Let C be a nonempty closed convex subset of H. Let F be a bifunction from
C x C to R satisfying (A1)—(A5) and let ¢ : C — RJ{+oo} be a proper lower semicontinuous and

convex function. Assume that either (B1) or (B2) holds. For r > 0 and x € H, define a mapping
T, : H — Cas follows:

T, (x) = {z €eC:F(z,y)+op(y) + %(y—z,z—x} >p(z), Vye C} (2.6)
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forall x € H. Then the following conclusions hold:

(1) for each x € H, T, (x) #9;
(2) T, is single-valued;
(3) T, is firmly nonexpansive, that is, for any x,y € H,

IO =T, (W < (Tox = Try, x — ) (2.7)

(4) F(T,) = MEP(F, p);

(5) MEP(F, o) is closed and convex.

We also need the following lemmas.
Lemma 2.2 (see [20]). Let (H,(:,-)) be an inner product space. Then, for all x,y,z € H and
a,B,y €[0,1] witha+ p+vy =1, one has

llax + By +yz||* = allxl® + BllylI* + yllzIP - ap||x - y|*

(2.8)
—ay|lx=ylI* - prlly - ="
Lemma 2.3. In a real Hilbert space H, there holds the inequality
lx+y|* <llxI* +2(y, x +y), V¥x,ye€H. (2.9)
Lemma 2.4 (see [21]). Assume {a,} is a sequence of nonnegative real numbers such that
an < (1= yn)an + 6n, (2.10)

where {y,} is a sequence in (0,1) and {6,} is a sequence such that
(i) 21 Yn = o0; (ii) limsup,, 6,/ Yn <007 377 |64 < co.
Then lim,, _, xa, = 0.

Lemma 2.5 (see [22]). Let {x,} and {y,} be bounded sequences in a Banach space X and let {b,} be
a sequence in [0,1] with 0 < liminf, ., b, < limsup,_, b, < 1. Suppose x,.1 = (1 —bp)Yn +bpxy
for all integers n > 1 and imsup,, ., (Y1 = Yull = [Xne1 = Xall) < 0. Then, limy,— o[y = 2| = 0.

Lemma 2.6 (see [18]). Demiclosedness principle. Assume that T is a nonexpansive self-mapping of
a nonempty closed convex subset C of a real Hilbert space H. If T has a fixed point, then I — T is
demiclosed: that is, whenever {x,} is a sequence in C converging weakly to some x € C (for short,
xn — x € C), and the sequence {(I —T)x, } converges strongly to some y (for short, (I -T)x, — y),
it follows that (I — T)x = y. Here I is the identity operator of H.

In 2009, Kangtunyakarn and Suantai [23] introduced a new mapping called the S-
mapping. Let {T;}Y, be a finite family of nonexpansive mappings of C into itself. For each
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j=12,...,N,leta; = (a{,aé, aé), where a{,cxé, aé € [0,1] and ai + ag + cxé = 1. They defined
the new mapping S : C — C as follows:

Uy =1,
U; = alTyUg + ey + ail,
U, = a2ToU,y + adUy + a2,

Us = a3TsUs + a3U, + 231, (2.11)

N-1 N-1 N-1
Un = oy TnaUn + o, Uno + ag 1,

S = UN = a{VTNLIN_l + aéVuN_l + (xéVI.

This mapping is called S-mapping generated by T3, T>,..., Ty and ay,a», ..., an. Nonexpan-
sivity of each T; ensures the nonexpansivity of S.

Lemma 2.7 (see [23]). Let C be a nonempty closed convex subset of a strictly convex Banach space
X. Let {T,-}.f\l1 be a finite family of nonexpansive mappings of C into itself with ﬂlN:J F(T;) #Q and
let aj = (ajl,ajz, a]3),j =1,2,...,N, ther{z zx’l,zx’z,zxé € [0,1], a]1 + txé + ag =1, “]1 € (0,1) for all
i=12,...,N-1, ai\’ € (0,1] and aé,a] € [0,1) forall j =1,2,...,N. Let S be the S-mapping

generated by T1, Ty, ..., Tn and aq, az, . .., an. Then F(S) = ﬂgl F(T).

3. Main Results

In this section, we prove strong convergence theorems of the iterative scheme (1.14) to a
common element of the set of solutions of a new general system of variational inequalities
for relaxed (c, d)-cocoercive mappings, the set of fixed points of a nonexpansive mapping,
and the set of solutions of a mixed equilibrium problem in a real Hilbert space.

The next lemmas are crucial for proving the main theorems.

Lemma 3.1. Let C be a nonempty closed and convex subset of a real Hilbert space H and let A; :
C — H be L;-Lipschitzian and relaxed (c;, d;)-cocoercive mappings fori =1,2,3. Let G: C — C
defined by

G(x) = Pc[Pc(Pc(x = A3A3x) — My Ay Pc(x — A3A3x)) 31)
— M A1 Po(Pe(x — \3Asx) — M AsPe(x — A3 Asx))], Vx € C. ’

If0 <\ <2(d; — c;L?) /L2, fori=1,2,3, then G : C — C is a nonexpansive mapping.
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Proof. For all x,y € C, we have

|G(x) = G(y)|| = IPc[Pc(Pc(x — A3Aszx) — Ay Az Pe(x — A3 A3x))
—M AP (Pe(x — A3A3x) = M AsPe(x — A3 A3x))]
= Pc[Pe(Pe(y - LaAsy) - LaA2Pe(y - LsAsy))
~MA1Pe(Pe(y — AsAsy) — L A2Pe(y - AsAsy)) ] ||
= ||Pc[Pc(Pc(I = A3A3)x — Ay A Pe(I — A3A3)x)
=AM A1 Pe(Pe(I = A3A3)x — My AP (I — A3A3)x)]
— Pc[Pc(Pe(I - A3A3)y — Lo ArPe(I - A\3A3)y) 32)
—MA1Pc(Pe(I - A3A3)y — M A2 Pe(I - A3A3)y)] ||
< [Pe(Pe(I = A3A3)x — Ly Ao Pe(I - A3 Asz)x)
=M AL Pc(Pc(I - A3 A3)x — M Ao Pe(I - A3A3)x)
— [Pc(Pc(I - A\3A3)y — M2 A2Pe(I - A\3A3)y)
—MAIPc(Pc(I = \3A3)y — M ArPe(I - A3A3)y)] ||
= [|(I = M A1) Pc(I — X2 Az) Pe(I — A3 Asz)x
~(I = M AD)Pe(I = A2 A7) Pe(I - A3 As)y |-

It is well known that if A : C — H is L-Lipschitzian and relaxed (c, d)-cocoercive, then
I — LA is nonexpansive for all 0 < A < 2(d — cL?)/L? By our assumption, we obtain
I — X;A; is nonexpansive for all i = 1,2,3. It follows that (I — 11 A1)Pc(I — Ay Ap)Pc(I — A3A3)
is nonexpansive. Therefore, from (3.2), we obtain immediately that the mapping G is
nonexpansive. O

Lemma 3.2. Let C be a nonempty closed and convex subset of a real Hilbert space H. Let A; : C — H
be three possibly nonlinear mappings. For given x*,y*,z* € C, (x*,y*, z*) is a solution of problem
(1.8) if and only if x* € F(G), y* = Pc(z* — MyAxz*) and z* = Pc(x* — A3 Asx™), where G is the
mapping defined as in Lemma 3.1.

Proof. Note that we can rewrite (1.8) as

(x* = (v - MA1y*),x-x*) >0, VxeC
(y*— (2" =W A2z"),x-y*) 20, VxeC, (3.3)
(z" = (x* = A3A3x%),x—2z") >0, VYVxeC.
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From Lemma 1.1, we can deduce that (3.3) is equivalent to

x* = Pc(y* - LAy,
Y =Pe(z" - laArz"), (3.4)

zF = Pc(x* - /\3A3x*).

It is easy to see that (3.4) is equivalent to x* € F(G), y* = Pc(z* — \pA»z*), and z* = Pc(x* -
)LgAgx*). |

Throughout this paper, the set of fixed points of the mapping G is denoted by
GVI(C, Ay, Ay, A3).

Now we prove the strong convergence theorems of the algorithm (1.14) for solving
problem (1.8), fixed point problem of nonexpansive mapping and mixed equilibrium
problem.

Theorem 3.3. Let C be a nonempty closed and convex subset of a real Hilbert space H. Let F be
a function from C x C to R satisfying (A1)—(A5) and ¢ : C — RJ{+co} be a proper lower
semicontinuous and convex function. Let the mappings A; : C — H be L;-Lipschitzian and
relaxed (c;, d;)-cocoercive for i = 1,2,3 and T be a nonexpansive self-mapping of C such that
Q = F(T)NGVI(C, A1, Ay, A3) NMEP(F, ¢) # . Assume that either (B1) or (B2) holds and that
v is an arbitrary point in C. Let x1 € C and {x,}, {yn}, {zn} be the sequences generated by

1
F(un,y) +9(y) —¢(un) + r—(y—un,un -x,) 20, VyeC,

zn = Pc(uy — \3Asuy), (3.5)
Yn = PC(Zn - )LzAzZn),
Xps1 = Ap0 + bnxn —+ (1 —ay — bn)TPC(yn - ./\1A1yn)/ n 2 1/

where {ry} C (0,00) and 0 < \; < 2(d; — ¢;L?) /L, fori=1,2,3 and {a,}, {bn} are two sequences in
[0, 1] such that

(Cl) limy—an=0and 37, a, = oo;

(C2) 0<liminf, b, <limsup,_, b, <1;

(C3) liminf,_, 7, > 0and lim,_, o|rp1 — 1| = 0.

Then {x,} converges strongly to x = Pqv and (x,y,z) is a solution of problem (1.8), where i =
PC (E - .)L2A2E) and z = PC (E - J\3A3§)

Proof. Let x* € Q and {T,,} be a sequence of mappings defined as in Lemma 2.1. It follows
from Lemma 3.2 that

x* = Pc[Pc(Pc(x” = A3A3x™) — My AaPe(x* — A3 A3x™)) (36)
—M A1 Pe(Po(x” = A3A3x™) — Ly Ao Pe(x” — A3A3xY))].
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Put y* = Pc(z* — M Arxz¥), 2" = Po(x* — A3 A3x™) and t,, = Pc(y, — M1 A1Y,). Then x* = Pe(y* -
MA1y*), and

Xpi1 = apo +byx, + (1 —a, —b,)Tt,. (3.7)

By nonexpansiveness of I — \;A; (i = 1,2,3), we have

l[tn = x*|| = ||Pc(I = M A1) Yn — Po(I = L AN Y|
< |lyn = v || = 1Pc(I = A2A2)z, — Pe(I - A A2)Z"||

(3.8)
<llzw = 2°|| = IPc(I = A3As)un — Pe(I - A3 As)x™||
S Nl = %7 = 1T, 20 = T, 7| < [l = 7]l
which implies that
|xne1 — x*|| = ||an© + bpxn + (1 — a, — by) T, — x*||
< anllo = X" + ballxn = x7[| + (1 = an = by)[tn = X7
(3.9)

< gl = X7 + byllxn = x7[| + (1 = an = bn) |20 = x7|

<max({|lo = x|, [lxr = 7]}

Thus, {x,} is bounded. Consequently, the sequences {y,}, {zn}, {tr}, {A1yn}, {A2z4}, {Asun},
and {Tt,} are also bounded. Also, observe that

ltne1 = tall = || Pc (Yn1 = MA1Yni1) — Pe(yn — M Arya) ||

< Nymer = vl
= [|Pc(zne1 = A2A2zp41) — Po(zn — X2 Arz,)||
(3.10)
< ||Zn+1 - Zn”
= ||Pc(tns1 — A3 Azups1) — Po(un — A3 Azuy)||
< “un+1 - un”‘
On the other hand, from u, = T}, x, € dom ¢ and u,,1 = Ty, X4+1 € dom ¢, we have
1
F(un,y) +9(y) — ¢p(uy) + r—(y —Up, Uy —Xn) 20, VyeC, (3.11)

1
F(uns1,y) +9(y) — (1) + r—1<y — Ups1, Uns1 — Xna1) 20, VyeC. (3.12)
n+
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Putting v = 1,41 in (3.11) and y = u,, in (3.12), we have

1
F(un, tpi1) + @(upi1) — o(uy) + r—<un+1 = Up, Uy — Xp) 20,

F(upi1, tn) + @(Un) = (Uns1) + (Un = Ups1, Uns1 — Xns1) 2 0.

Tt

From the monotonicity of F, we obtain that

Un — X Up+1 — Xn+l
<un+1 — Uy, - >0,

Tn Tn+1

and hence

n
<un+1 —Up, Uy — Up+1 + U1 — Xy — r_(un+1 - xn+1)> > 0.
n+1

Then, we have

r
[ttns1 — unllz < <un+1 —Up, Xn+1 — Xp + <1 o )(un+1 - xn+1)>
Yn+1

1-n
.

n+l

<l — unn{nxm Cxl+
and hence

1
||un+1 - un” < ||xn+1 - xn” + _|rn+1 - rn|||un+1 - xn+1||'
Tn+l

It follows from (3.10) and (3.17) that

1
[tne1 = tall < l2ne1 = Xnll + =741 = Tl ner — Xnaa||-
Tn+l

Let x,41 = byx, + (1 — b,)w,, for all n > 1. Then, we obtain

w w Xpi2 = bus1Xna1 X1 — bpxy
n+l — Wn = -
1- bn+1 1- bn

_ Ap10+ (1= aps1 = bp) Tty _anv+ (1-a, -by)Tt,

i1 = }

1-bun 1-by

An+l

a
= 1-b 1 (U _Ttn+]) + —n(Ttn — ’U) + Ttn+1 _Ttn-
n+

1-b,

11

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)
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By (3.18) and (3.19), we have

An+1 a
o1 = wnll = 2n1 = 2ll < _"l;m |0 = Tty + ﬁllﬂn - ||

+ ||tn+1 - tn” - ||xn+1 - xn”

An+l an
——|lo-Tt +

- 1 _ bn+1 || 1’l+1|| 1 _ bn
1

+ |rn+1 - rn|||un+1 - xn+1||'

Tni1

This together with (C1)—(C3), we obtain that

lim sup||wp+1 — wal| = [[xn1 — x| < 0.

n—oo
Hence, by Lemma 2.5, we get ||x, —w,|| — 0asn — oco. Consequently,
m [ = 2| = 1im (1= by)|won = xa]| = 0.
Since
Xni1 = Xn = An(0 = Xp) + (1 = an = bp) (Tt = x),
we have that
Tty —xy|| — 0 asn— oo.
Next, we prove that lim,, _, »||x,, — u,|| = 0. From Lemma 2.1 (3), we have

llun - x*”z =Ty, xn - TrnX*H2 ST xn = T, x*, 2 — x°)

1
= (st =", =) = 3l =21+ e = 21 = e = .

Hence

2 2 2
l[tn = x*(17 < llocn = 217 = llxn — uall”.

Tty - ol

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)



ISRN Applied Mathematics 13

From Lemma 2.2, (3.8) and (3.26), we have

21 = x| < @ullo = x| + bullxn = x> + (1 + an = by) [t — x|
< an”v - X*HZ + bn“-xn - x*”2 + (1 +an — bn)”un - x*”Z
2
< apllo = x*|Pballx, - x°|| (3.27)
%12 2
+ (14 @y = by) [l = 211 = [l =

2 2
< apllo = x*|Pllxn — x| = (1 + an — ba)[lxn — unll*.

It follows that

2 2 2
(1= @y = ba) 10 = wnll® < @nllo = | + |20 = X7 = floems = 27

(3.28)
< anllo = x| + (loen = %[ + [[20e1 = X ) [%na1 = Xall-
From the conditions (C1), (C2) and (3.22), we obtain
lim [[xc, — u,|| = 0. (3.29)
n— oo
By (3.24) and (3.29), we have
Tty = unl| < | Tty — xull + [[Xn — ]| — 0, asn— co. (3.30)

Next, we show that ||A1y, — A1y*|| — 0, ||A2z, — A2z*|| — O, and ||Asu, — Asu*|| — 0, as
n — oo.

From (3.8) and the fact that A; is Li-Lipschitzian and relaxed (c;, d1)-cocoercive, we
have

IN

201 = x| < anllo = x| + bullxn = x> + (1 = an = by) |t — x*|
= allo - x"|* + byllx, — x*|?

+ (1= ap—bp)||Pc(yn — MA1Ys) - Pe(v* — M A1Y") ||2
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IN

anllv = x*|I* + byllx, - x*|17

+ (1= ay =) || (= MArya) - (v = Ay |

ayl|v = x*|* + byl xn — x|
+ (= ay =) [llyn =7 [P+ Bl Avya - Ay |

=201y — V", A1yn — A1y*>]

IN

anllv = x*|* + by, — x*|17
+ (1= a0 =) [[lya =y ||+ B[] Aryn = Ay ||

20 (~er | Aryn - AP+ dillya - ')

IN

anllv = x*|I* + byllx, - x*|17

20d
+ (1= ay—by) [nxn - x| <2A1c1 - 1>||A1yn - Aly*”z]

1

IN

anllo = x*|* + [|xn — x*|1?

20,d
+(1-a,-b,) <211c1 +43 - le 1>||A1yn - A

1

(3.31)

Similarly, since A; is L;-Lipschitzian and relaxed (c;, d;)-cocoercive mappings for i = 2,3,
ltn = x*[| < lyn =yl and [[yn — y*|| < [|zn — 2*[|, we can show that

%01 = x°|° < anllo = x*|* + [|2c0 — x*|17

2\,d
+ (1 - ay —bn) <2.)L2C2 +)L§— 52 2>||A22n —AZZ*H2,

2

(3.32)
%01 = x°|1° < anllo = x*|* + ||, — x|

2)5d )
+(1-a,—b,) <2A3C3 +42 - %) || Asity, — Asx*||.

3

From (3.31) and (3.32), we have

20d
-(1-a, —bn><lec1 A== 1>||A1yn - Ay’ |? < anllo - x|

1

+ ([ = 27+ %01 = X7 Dl1xn01 = Xall
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2,d
_a_%-m<uxﬂ¢}-é2)m%rAﬂWg%m-fW

2

+ (len = ™[ + llxne1 = X" Dl]2n41 = xnll
2M3ds

- (1-ay—"by) <2)L3C3 +15- T) | Asuy — Asx™|* < anllo - x*|?
3

+ (I = X[ + 1xne1 = X7 D l1xn1 = Xall.

This together with (C1), (C2) and (3.2), we obtain that

1im [| vy, — Ay’ || = lim [| Aoz, — Azz*|| = lim || A5, — Asx’]| = 0.

15

(3.33)

(3.34)

Next, we prove that ||Tt, — t,|| — 0asn — oo. From (2.2), (3.8) and nonexpansiveness of

I-1,A; and I — A3A3, we get

”]/n - y*Hz = ”PC(Zn - -)LZAZZn) - PC(Z* - /\2A22*)||2

((zn — M2A2zy) — (2" = M2 A2Z"), Y — ¥*)

IN

1
51 = 22A220) = (=" = 222z P + |lya = |

l(zn ~ A2Aaz) - (& ~ daaz) = (ya - )]

IN

1 . *
S+ - v P

[l zn =) = (2" = ) = da( Aoz, - Arz)|]

IN

|2

2 |[(zn - yu) - (=" - ")

1 * *
5[l =1+ [y - v

+200((zn = ya) = (= ¥"), Aoz — Aaz') = | Arz, — Aoz,

20 = 2*|1* = || Pc (4 — A3 Azty) — Pe(x* = A3Asx™)|)?

< ((un = M3 Asuy) — (X7 = M3 Asx”™), zp — 2°)
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1 * * *
5 (1000 = A5 Agun) = (x* = A5 Asx) P + 120 = 2P

ot = A3 Astay) = (" = D3 Agx™) = (20 = 2) ]

IN

1
5 [l = 1P + 11z = 211

1t = 2a) = (6" = 2 = Aa( Azt = Asx")|]?]

IN

1 * * * *
5 [l =1 1z = 2P =l = 20) = (" = 29

+2A3((Up — zy) — (x* = 2%), Aguty, — Asx™) — /\§||A3un - A3x*||2].

(3.35)
Therefore
v =y |1 < llxw =21 = | (zn = ) = (= =) |I?
+20((zn —Yn) — (2" - y"), Az, — A2z"),
(3.36)
iz = 2° 17 < llxn = x* |7 = |t = 20) = (" = 29|
+ 203 (tty — zy) — (x* = 2%), Asu,, — Azx™).
From (3.36), we have
21 = X[ < @nllo = X + bullxn = x** + (1= an = ba) lyn - v*||°
< aullv = x| + bylxn — x|
(L= ap=by) [l = x' 1P = [z~ 1) - =" - )|
+2)l2<(Zn - yn) - (Z* - y*),Azzn — A2Z*>]
< aullv - x| + [l — x°|
* * 2
~(1=a,=by)|[(zn —yn) = (" =yl
+ (1= ap—b,)20|| (20 = yn) = (2" = ) ||| A2z — ArZ*|,
(3.37)

2 2 2 2
xne1 = X7 < anllo = X" + bullxn — x*[I7 + (1 = an = bu)l|zn - 2"

< ayllo = x| + ballx, - x*1?
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+ (1= ay = by) [l = 21 = 11t = 20) = (2" = 2]
423 (1t = 2a) = (%" = ), Astty = Asx")]

< apllo = x|+ [0 = XN = (1= @y = bp) || (sn — 20) — (x* = 2°) |17

+ (1= an = bn)2A3| (un — zu) — (x* = 2°) || Asten — Asx”|.

(3.38)
Hence
* * 2
(1= an=by)||(zn = yn) - (2" = y")||
< aullo = x|+ (1= an = bu)2ha | (z0 = y) = (27 = y) [ A2z = AxZ’|
+ ([l = x*|| + lloens1 = XD |01 = xall,
(3.39)
(1= an = by)||(n — z) = (x" = 2|
< anllvo = x*|7 + (1= @n — ba) 245 (= 2a) = (x* = 2°)|[|| Astan — Asx”||
+ ([l2cn = 2" || + [|xns1 = x*[) 20041 = 2]l
This together with (C1), (C2), (21), and (3.34), we obtain
Jim | (20 = ) = (27 = y*) || = lim (1 = 24) = (2" = 2] = 0. (3.40)
Therefore
| (= yn) = (" =y < | (zn = ym) = (" =)l
(3.41)

+ [(uy — zy) = (x* =2%)]| — 0 asn— oo.

From Lemma 2.3 and (2.3), it follows that

[ (yn = ta) + (x* = y") ||
= |(yn - M A1Yn) - (¥~ M AY")

~[Pe(yn = MAY) - Pe(y" - MAY")] + M(Arya - Ary?)|
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< (Yn - MAryn) = (v = MAY") = [Pe(yn - M1 Aryn) - Pe(y' - MAy)] |
+ 201 (Aryn = A1y, (Y —tn) + (" = ¥"))
<N n = 1 Aryn) = (" = Ay | = [ Pe(yn = M Arya) = Pe(y” - A" |1°
+ 2 [[Aryn = Ay ||| (yn = tn) + (" = y) |
<N n = 2 Aryn) = (" = Ay | = TP (yn = MAwa) - TPe(y" - LAy
+ 20| Aryn = Ay (|| (yn = ) + (2" = )|
<[y = MAryn) = (v° - MAy") = (Tta - x7) |
[l (vn = MA1Yn) = (v = LAY || + 1Tt - x7|]
+ 201 || Aryn = Ay ||| (yn = tn) + (" = )|
= [Jun = Ttn + x" =y = (un = yn) = M1 (Aryn — Ary") ||
< [l (vn = MA1Yn) = (v = LAWY || + 1Tt — x7|]
+ 21 [|Aryn = Ay ||| (yn = t) + ("= y7) |

(3.42)

This together with (3.30), (3.34), and (3.41), we obtain || (v, —t,) + (x* —y*)|| = Oasn — oo.
This together with (3.30) and (3.40), we obtain that

1Tty = tull < ITtn = unll + 11t = 20) = (" = 2 + || (20 = yu) = (" =) | (343)
[ (yn—ta) + (x" =) | —0, asn— oo '

Next, we show that

limsup(v -x,x, —X) <0, (3.44)

n—oo

where x = Pav.
Indeed, since {t,} and {Tt,} are two bounded sequences in C, we can choose a
subsequence {t,,} of {t,} such thatt,, — z € C and

limsup(v -x,Tt, —x) = lim (v - X, Tt,, — X). (3.45)

n— oo =

Since lim,, || Tty — t,|| = 0, we obtain that Tt,, — zasi — oo.
Next, we show that z € Q.
Since t,, — z and ||Tt, — t,|| — 0, we obtain by Lemma 2.6 that z € F(T).
From (3.43) and (3.24), we obtain

Ity — xnll < |Tty —tull + [Tty — xn|| — 0, asn — oo. (3.46)
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Furthermore, by Lemma 3.1, we have G : C — C is nonexpansive. Then, we have

”tn - G(tn)“ = ”PC(yn - )LlAlyn) - G(tn) ”
= ||Pc[Pc(zn — M2Arzn) — MA1Pc (20 — M2 A2z,)] — G(t,) ||

= ||Pc[Pc(Pc(un — A3Aszuy) — M A2 Pe(uy — A3 Azuy,)) (3.47)
=M A1 Pe(Pe(uy — A3 Azuy) — My Ay Pe(uy — A3Asu,))] = G(t,)||

= 1G(un) = G(t)|l < [Jun = tall

< lun = 2l + llxn = tall,

hence lim,, _, -||t, — G(t,)|| = 0. Again by Lemma 2.6, we have z € GVI(C, Ay, Ay, A3).

Since t,, — z and ||x, — t,|| — 0, we obtain that x,,, — z. From ||u, — x,|| — 0, we also
obtain that u,, — z. By using the same argument as that in the proof of [19, Theorem 3.1, pp.
1825], we can show that z € MEP(F, ¢). Therefore z € Q.

On the other hand, it follows from (2.4), (3.24), and Tt,, — zasi — oo that

limsup(v - X, x, —X) = limsup(v - x,Tt, —x) = lim (v - X, Tt,, — X)

n—oo n—oo t—oo

(3.48)
=(v-x,z-x)<0.
Hence, we have
1%¢ps1 = X||* = (@n0 + buxty + (1 = ay — by) Tty — X, Xpy1 — X)
=ap{(v—%X,Xp1 —X) + by (X — X, Xp11 — X)
+(1-a,—by){Tt, —x,xp11 — X)
_ _ 1 _ _
< (0 = %, %01 = %) + 56 (10 = X + 1201 - 3I7)
1 _ _
+ 51 = a0 =) (It = 37 + s = 71°) (3.49)

IN

— .1 —2 —2
(0 = %, X = %) + b (I = FI + a1 - %)

1 — —
+ 5 (1= 2y = b) ([l = I + s = I17)

_ 1 _ _
(0 =%, %01 = %) + 5 (1= a) (Il = X + 001 - %),
which implies that

%1 = X|I* < (1 = @) |30 — | + 200 (v = X, Xps1 — ). (3.50)
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This together with (C1) and (3.48), we have by Lemma 2.4 that {x,} converges strongly to x.
This completes the proof. O

Theorem 3.4. Let C be a nonempty closed and convex subset of a real Hilbert space H. Let F be

a function from C x C to R satisfying (A1)—(A5) and ¢ : C — RJ{+o0} be a proper lower

semicontinuous and convex function. Let the mappings A; : C — H be Li-Lipschitzian and relaxed

(ci, d;)-cocoercive for i = 1,2,3 and {T;} %, be a finite family of nonexpansive self-mappings of C such

that Q = mf_‘:’l F(T) NG VI(C, A1, A, A;) \MEP(F, ) #Q. Let a; = (a),a,al),j=1,2,...,N,
i

where aﬁ,a2,a3 € [0,1], zx{ +a]2 +a£ =1, “]1 € (0,1) forall j =1,2,...,N -1, zle\’ € (0,1]

and aé, zxé € [0,1) forall j =1,2,...,N. Let S be the S-mapping generated by Ty, T>,..., Tn and
a1, q, ..., aN. Assume that either (B1) or (B2) holds and that v is an arbitrary point in C. Let x; € C
and {x,}, {yn}, {2z} be the sequences generated by

1
FQun,y) +¢(y) = ¢p(un) + —(y = thn = x2) 20, Vy €C,

zn = Po(u, — \3Azuy), (3.51)
Yn = Pe(zy — M Azzy),
Xpi1 = @0 + by + (1= ay — b,)SPe (Y — M Ary,), n>1.

IfO < X < 2(d;i — ¢iL2)/L2, for i = 1,2,3 and {r,}, {an}, {b,} are as in Theorem 3.3. Then {x,}
converges strongly to x = Pou and (x, 7V, z) is a solution of problem (1.8), where yy = Pc(z — Ay AyZ)
and z = PC (f - A3A3§).

Proof. By Lemma 2.7, we obtain that S is nonexpansive and F(S) = Y, F(T;). Hence, the
result is obtained directly from Theorem 3.3. O

If ¢ = 0 in Theorem 3.3, then, we obtain the following result.

Corollary 3.5. Let C be a nonempty closed and convex subset of a real Hilbert space H. Let F be
a function from C x C to R satisfying (A1)-(A5) and ¢ : C — RJ{+oo} be a proper lower
semicontinuous and convex function. Let the mappings A; : C — H be Li-Lipschitzian and
relaxed (c;, d;)-cocoercive for i = 1,2,3 and T be a nonexpansive self-mapping of C such that
Q=F(T)NGVI(C, A1, Ar, A3) NEP(F) 9.

Let v,x1 € Cand {x,}, {yn}, {zn} be the sequences generated by

F(un,y) + %(y—un,un—x,& >0, VyeC,

Zn = Po(xn — M3A3xy), (3.52)
Yn = PC(Zn - -)LZAZZn)r
Xpi1 = A0 +byxy + (1 - a, - bn)TPC(yn - JllAlyn)/ n>1
If0< i< 2(di—ciLl.2)/L%,fori =1,2,3 and the sequences {a,}, {b,}, and {r,} are as in Theorem 3.3,

then {x,} converges strongly to x = Pgouv and (x,y,z) is a solution of problem (1.8), where y =
PC (E - .)L2A2E) and z = PC (E - J\3A3§)
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