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Quantum instanton (QI) approximation is recently proposed for the evaluations of the chemical reaction rate constants with use
of full dimensional potential energy surfaces. Its strategy is to use the instanton mechanism and to approximate time-dependent
quantum dynamics to the imaginary time propagation of the quantities of partition function. It thus incorporates the properties
of the instanton idea and the quantum effect of partition function and can be applied to chemical reactions of complex systems.
In this paper, we present the QI approach and its applications to several complex systems mainly done by us. The concrete systems
include, (1) the reaction of H + CH4 → H2 + CH3, (2) the reaction of H + SiH4 → H2 + SiH3, (3) H diffusion on Ni(100) surface;
and (4) surface-subsurface transport and interior migration for H/Ni. Available experimental and other theoretical data are also
presented for the purpose of comparison.

1. Introduction

The accurate and efficient evaluation of chemical reaction
rate constant is one of prime objectives of theoretical reaction
dynamics. Since rigorous quantum mechanical approaches
are limited to small molecular (several atoms) reactions, a
variety of approximation approaches have been proposed.
Benefited from the small recrossing dynamics at not-too-
high temperatures, the transition state theories (TSTs), origi-
nally proposed by Eyring [1, 2] and Wigner [3], have become
a possible and popular way to estimate rate constants. Due to
their practical simplicity, they have been broadly applied to
numerous reactions. The TST is inherently a classical theory
and suitable at sufficiently high temperatures, where the
classical description of nuclear motions may be adequate. At
low temperatures, especially for the reactions involving the
motions of light atoms (i.e., hydrogen), however, quantum
effects become quite significant. To make the TST still valid
for such low temperature reactions, many approaches have
been proposed to quantize it [4–14]. However, there is no
absolutely unambiguous way to do it.

To develop a more accurate and less ad hoc quantum
version of TST, with a specific focus on the tunneling
regime, Miller et al. [15–17] have proposed a quantum
instanton (QI) approach recently. The QI is based on an
earlier semiclassical (SC) TST [18] that became known as
the instanton [19, 20]. The similarity between the QI and
SC instanton lies in using the steepest descent approximation
to evaluate relevant integrals in the quantum rate formula,
while the crucial difference is that the Boltzmann operator
is evaluated by the quantum mechanics and semiclassical
approximation, respectively. The QI theory thus incorporates
the tunneling, corner cutting [21–24], and anharmonicity
correctly and is expected to overcome the quantitative
deficiency of the SC instanton model. In particular, the QI
theory considers all tunneling paths and automatically gives
each path its naturally weight factor from the quantum
Boltzmann operator, instead of choosing a single optimal
tunneling path, which is taken into account in the SC
instanton and TSTs with SC tunneling corrections. Indeed,
it has been numerically demonstrated that the QI pre-
dicts accurate quantum rates for one-dimensional and
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two-dimensional models within 20% error over a wide
temperature range, from the deep tunneling to overbarrier
regimes.

A lot of developments and applications [25–39] have
been made since the QI theory is proposed. The original
QI [15] involves the second time derivative of the flux-flux
correlation at time zero. It has been further improved [29]
by taking into account the higher derivatives of the flux-flux
function. For the 1D and collinear reactions, the improved
model is considerable accuracy, giving the rates to within
5%–10% errors. For a practical purpose, a simple and general
way for choosing dividing surfaces used in the QI is suggested
[31], namely, using the family of (hyper)planes normal to the
minimum energy path at various distances s. A “simplest”
QI model [26] has also been suggested with one dividing
surface, slightly less accurate than the original QI. To reveal
the relationship with conventional TSTs, the classical limit of
the QI has been derived [37]. It is found that the classical
TST is just a special case of the QI in high temperature limit;
moreover, the quantum correction of the prefactor is more
important than that of the activation energy in the TST.

Since the QI solely involves the Boltzmann operator and
its relevant quantities, it can be applied to quite complex
molecular systems (from gas phase [17, 37], liquid [28], to
surface [38, 39]) via well-established imaginary time path
integral techniques. The first implementation of QI with
path integral Monte Carlo and adaptive umbrella sampling
techniques is applied to the three-dimensional hydrogen
exchange reaction D + H2 → HD + H [16]. Soon, the
techniques are further extended to the reaction of H+CH4 →
H2 + CH3 [17]. The thermodynamic integration with respect
to the mass of the isotope and the inverse temperature is also
proposed to compute the kinetic isotope effects [30] and rate
constants [34] directly. To improve the convergence of the
Monte Carlo simulation, the efficient “virial” estimators [32]
have been derived from the logarithmic derivatives of the
partition function and the delta-delta correlation functions,
and it is found that their statistical errors do not increase with
the number of discrete time slices in the path integral. Most
recently, the QI has been compared with other conventional
approaches [36] for an intramolecular proton transfer on a
full-dimensional potential energy surface that incorporates
high-levels ab initio calculations along the reaction path. The
obtained kinetic isotope effects from the QI are in reasonable
agreement with those from the path-integral quantum TST.

In this paper, we firstly illustrate the QI formula and
its path integral representation. Then, we display several
applications, which are mainly done by ourselves. The
systems include two gas phase reactions H + CH4 → H2 +
CH3 [17] and H + SiH4 → H2 + SiH3 [37], H diffusion on
Ni(100) surface [38], and surface-subsurface transport and
interior migration for H/Ni [39].

2. Method

In this section, we summarize the rate formula for the
QI evaluation. The detailed derivation can be found in
[15–17]. The QI model proposes the following thermal rate

constant:

kQI = 1
Qr
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2
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Here, Qr is the reactant partition function per unit volume.
Cf f (0) is zero time value of the flux-flux correlation
function
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−βĤ/2eiĤt/�F̂be
−iĤt/�
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where β is the inverse temperature 1/(kBT), Ĥ is the
Hamiltonian operator of the reaction system, and F̂a and F̂b
are the flux operators given by
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with γ = a, b. In (3), h is the step-side function, r represents
the Cartesian coordinates of the reaction system, and sa(r)
and sb(r) define two separate dividing surfaces via the
equations sa(r) = 0 and sb(r) = 0, both sa(r) and sb(r) being
positive (negative) on the product (reactant) side of the
dividing surfaces.

ΔH(β) in (1) is a specific type of energy variance given by
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In order to get the correct free particle (high temperature)
limit (that would be 25% too large otherwise), an ad hoc
term is added to ΔH(β),ΔH mod (β) = ΔH(β) + (
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Here, N is the total number of atoms, ∇i = ∂/∂ri, ri denotes
the Cartesian coordinates of the ith atom, and mi is its atomic
mass.

The dividing surfaces are determined by the stationary
condition

∂

∂ck
Cdd(0; {ck}) = 0, (7)

where {ck} is a collection of parameters that is involved in the
location of the dividing surfaces. This condition originates
from the SC instanton model, and the resulting dividing
surfaces correspond qualitatively to the turning points of the
periodic orbit that runs on an upside down PES in imaginary
time (see Appendix A in [15, 18]).
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Since all the relevant quantities in the QI expression (1)
involved only the quantum Boltzmann operator, they can be
readily evaluated using imaginary time path integral Monte
Carlo (PIMC) [40] method.

We begin with the simplest quantity, Cdd(0), which can
be discretized according to the standard procedure [41–43]
to give

Cdd(0) = C
∫
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∫

dr(2) · · ·
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where C is a multiplicative constant, P the number of
imaginary time slices, and r(s) = (r(s)

1 , r(s)
2 , . . . , r(s)
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where r(0) = r(P) and {r(s)} represents {r(1), r(2), . . . , r(P)}.
Path integral expressions for Cf f (0) and C̈dd(0) are some-
what more complicated but can be obtained in a straightfor-
ward manner. The appropriate expressions are
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with f being the total number of degrees of freedom (i.e.,
f = 3N).

In realistic calculations, we rewrite (1) as the product of
several ratios

kQI =
√
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The terms of Cf f (0)/Cdd(0) and ΔH are directly calcu-
lated as a constrained average over the same ensemble of
paths [16, 17]
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The evaluation of Cdd(0)/Qr , however, meets a chal-
lenge because the Cdd(0) is the quantity associated with
the transition state, while Qr with the asymptotic reactant
domain, we evaluate it using adaptive umbrella sampling
techniques [44].

The QI approximation uses the short-time informa-
tion of the flux-flux correlation function. Predescu and
Miller [45] demonstrate that in the classical limit, Wigner’s
variational principle and the quantum variational criterion

based on the minimization of flux-flux correlation function
produce the same optimal surface. Recently, Wang et al. [37]
have shown that in the classical limit, the QI formula is the
same as the classical transition state theory. These situations
motivate us to write the QI formula (13) as the Arrhenius
form

kQI = AQI · e−βΔF . (16)
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Here, the free energy ΔF is defined by

ΔF = −1
β
· log
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)
. (17)

This two-dimensional free energy is related to Qr (the
reactant partition function) and Cdd(0; ξa, ξb), and it is
corresponding to the quality of probability density at
(ξa, ξb). Cdd(0; ξa, ξb) has a similar property to the partition
function at the transition state. The prefactor is given by
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π

2

Cf f (0)

Cdd(0)
�

ΔH
. (18)

The advantage of (16) allows us to investigate the respective
quantum contributions to the rates from the quantum free
energy and prefactor by comparing their quantum and
classical values, since other factors such as the vibrational-
rotational coupling and anharmonicity are automatically
involved.

3. Results and Discussions

3.1. The Reaction of H + CH4 → H2 + CH3. The H + CH4

reaction is a prototype of polyatomic hydrogen abstraction
reaction. Quantum dynamical studies of this reaction have
become possible only recently, because it involves 12 internal
degrees of freedom and thus poses difficulties to quantum
dynamics calculations as well as construction of the potential
surface. We apply the QI methodology to this reaction using
the potential energy surface constructed by Espinosa-Garcı́a
[46]. All calculations are performed in terms of the Cartesian
coordinates of all the atoms (i.e., 18 degrees of freedom).

In the path integral simulations, the number of imagi-
nary time slices P is chosen to be 20 and 100 at temperatures
T = 1000 K and 200 K, respectively, while 3 × 107 Monte
Carlo cycles are run to achieve <10% statistical convergence.

3.1.1. Reaction Coordinate. For this reaction, we define
a generalized reaction coordinate s(r; ξ), where ξ is an
adjustable parameter that shifts the location of the dividing
surface (defined by s(r; ξ) = 0). s(r; ξ) is defined by a linear
interpolation between two constituent reaction coordinates
s0(r) and s1(r) through the parameter ξ,

s(r; ξ) = ξ · s1(r) + (1− ξ) · s0(r). (19)

s1(r) is a reaction coordinate whose dividing surface is
designed to pass through the top of the classical potential
barrier, which is defined here as

s1(r) = max
{
sα(r), sβ(r), sγ(r), sδ(r)

}
, (20)

with sx(r)(x = α,β, γ, δ) being the reaction coordinate that
describes the abstraction process of one of the methane
hydrogens Hx by the incident one H

sx(r)=r(C−Hx)−r(Hx −H)−
[
r†(C−Hx)−r†(Hx −H)

]
,

(21)

where r(X − Y) denotes the interatomic distance between
atoms X and Y and r†(X − Y) is the value at the transition
state geometry. s0(r), on the other hand, describes a dividing
surface that is located far in the asymptotic reactant valley,
which is given by

s0(r) = R∞ − |R|. (22)

Here, R is the scattering vector that connects the incident
hydrogen and the center of mass of the methane. R∞ is an
adjustable parameter which is chosen to be 9 Å in order to
guarantee that the interaction potential energy between H
and CH4 is negligible.

Now, the term Cdd(0) (5) becomes a function of two
parameters, ξa and ξb, as follows:

Cdd(0; ξa, ξb) = tr
[
e−βĤ/2Δ(s(r̂; ξa))× e−βĤ/2Δ(s(r̂; ξb))

]
,

(23)

and thus, one seeks a stationary point of Cdd(0; ξa, ξb) in the
two-dimensional (ξa, ξb) space to obtain the corresponding
“optimal” values.

3.1.2. Free Energy Surface. The quantity Cdd(0; ξa, ξb) varies
exponentially as a function of (ξa, ξb), it is convenient to
define a quantum “free energy surface” as follows:

F(ξa, ξb) = −kBT logCdd(0; ξa, ξb), (24)

and locate the saddle point of F(ξa, ξb) by visual inspection.
Figure 1 shows the free energy surfaces for the H + CH4

reaction. It exhibits a barrier-like profile along the direction
ξ = (ξa + ξb)/2, while it grows approximately quadratically
with the increasing of the absolute value of Δξ = ξa − ξb.
From this figure, it is seen that at a higher temperature T =
1000 K (Figure 1(a)), there appears only a single saddle point
at (ξ,Δξ) = (1.02, 0.0), while at a low temperature T = 200 K
(Figure 1(b)), the saddle point bifurcates into a distinct pair
at (ξ,Δξ) = (1.1, ±0.35), which indicates the existence of
nonnegligible tunneling effects in the rate constant [15, 16].

3.1.3. Rate Constants. Having obtained the “optimal” values
of the (ξa, ξb) at each temperature, one can now compute the
quantum instanton rate by combining various quantities as
in (8). The calculated QI rates are tabulated in Table 1 as well
as other theoretical and experimental ones.

Comparing the quantum instanton rates with others, we
find that kQI is in good agreement with the experimental data
more specifically, it is closer to the rates obtained by Baulch
et al. [47] than those by Sutherland et al. [48], and kQI agrees
with kCVT/μOMT within 10% for the temperature range T =
600–2000 K, but it becomes somewhat larger than the latter
as the temperature is decreased (the deviation becomes 30%
and 55% for T = 500 and 300 K, resp.). It should be noted
that the differences between kQI and kCVT/μOMT are much
smaller than the uncertainty of the experimental data.

Figure 2 displays the Arrhenius plots of the rate con-
stants. In Figure 2, we also plot the accurate quantum
dynamics results of MCTDH (the multiconfigurational
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Figure 1: Local topography of the quantum free energy surface defined by (24) near the top of the barrier. (a) T = 1000 K; (b) T = 200 K.
The cross symbols show the location of the saddle points. The values of ξa and ξb at the saddle points are used as input for computing the
quantum instanton rate.

Table 1: Theoretical and experimental rate constants obtained for the H + CH4 → H2 + CH3 reaction. (ξa, ξb) is the saddle point of
the quantum free energy surface. kQI is the quantum instanton rate constant. kCVT/μOMT is the rate constant of the canonical variational
theory with microcanonical optimized multidimensional tunneling (CVT/μOMT) [46]. kaexp t and kbexp t are the experimental Arrhenius fits,
k(T) = 2.18× 10−20T3.0 exp(−4045/T)[47] and k(T) = 6.78 × 10−21T3.156 exp(−4406/T) [48], respectively. Unit: cm3s−1 for rates.

T (K) (ξa, ξb) kQI kCVT/μOMT kaexp t kbexp t

200 (0.93, 1.28) 3.30 (−22) 2.87 (−22) 3.36 (−23)

300 (1.05, 1.05) 7.80 (−19) 5.03 (−19) 8.20 (−19) 1.86 (−19)

400 (1.05, 1.05) 6.00 (−17) 4.16 (−17) 5.66 (−17) 1.82 (−17)

500 (1.04, 1.04) 9.00 (−16) 6.96 (−16) 8.35 (−16) 3.33 (−16)

600 (1.03, 1.03) 5.42 (−15) 5.00 (−15) 5.56 (−15) 2.57 (−15)

700 (1.02, 1.02) 2.40 (−14) 2.31 (−14) 1.19 (−14)

800 (1.02, 1.02) 7.13 (−14) 6.72 (−14) 7.10 (−14) 4.00 (−14)

900 (1.02, 1.02) 1.85 (−13) 1.78 (−13) 1.07 (−13)

1000 (1.02, 1.02) 3.97 (−13) 3.58 (−13) 3.82 (−13) 2.43 (−13)

2000 (1.00, 1.00) 1.52 (−11) 1.70 (−11) 2.31 (−11) 1.96 (−11)

time-dependent Hartree approach) [49]. Compared to the
MCTDH ones, our QI rate constants are larger by factors
of about 2 to 3 over the temperature range 300–400 K.
This difference may partly be due to the recrossing effect
which is not considered in QI theory and partly arise from
the use of the J-shifting approximation and the neglect of
the vibrational angular momenta Hamiltonian in MCTDH
method [49].

3.2. The Reaction of H + SiH4 → H2 + SiH3. The H + SiH4

reaction is an important step in the radical mechanism of
thermal decomposition of monosilane. We calculate the rates
and kinetic isotope effects (KIEs) of this reaction with the
quantum instanton method in full Cartesian space, on the
basis of analytical potential energy surface constructed by
Espinosa-Garcı́a et al. [50].

The reaction coordinate of H + SiH4 has the same form
as that of H + CH4 (Section 3.1.1). In our QI calculations,

the number of time slices, P, is set to be 20 (1000 K) and
120 (200 K) for the quantum evaluations. In our classical
evaluations, the formula is the same as QI, but the number
of time slices in the path integral is set to be 1. The number
of Monte Carlo is about (6−10)×106 for computing a single
ensemble average, and it converges the relevant quantities
within 10% statistical errors.

3.2.1. Free Energy and Prefactor. We have rewritten the QI
formula (8) in the Arrhenius form (16), which consists of
the free energy and prefactor. In this section, we calculate
the corresponding quantum and classical quantities so as to
investigate the respective quantum contributions to the rates
from the quantum free energy and prefactor. Our calculated
results are plotted in Figures 3 and 4.

Now, we look into the quantum effects from both
the free energy and prefactor. Figure 3 plots the quantum
and classical free energies as a function of temperature
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Figure 2: Arrhenius plots of the thermal rate constant for the
H + CH4 → H2 + CH3 reaction. The solid line is the quantum
instanton rate. Dotted and dashed lines are the Arrhenius fits of the
experimental data from [47, 48], respectively. The dot-dashed line
is the result of the multiconfigurational time-dependent Hartree
approach (MCTDH) [49]. The open squares are the results of
the canonical variational theory with microcanonical optimized
multidimensional tunneling (CVT/μOMT) [46].
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Figure 3: The temperature dependence of the free energy. The
solid and dotted lines correspond to the quantum and classical
calculations, respectively.

at the optimized stationary point. One immediately observes
that the quantum effect becomes significant at T < 600 K,
whereas both quantum and classical results nearly coincide at
T > 600 K. As expected, the quantum effect always decreases
the classical free energy. The difference of the contributions
to the rates is about 40% at 200 K.

Figure 4 shows the temperature dependence of the
quantum and classical prefactors. Compared with Figure 3,
one easily finds that this quantum contribution is much
larger than that for the free energy correction. Even at 1000 K,

200 400 600 800 1000
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g 10
{A

Q
I}

T (K)

Figure 4: The temperature dependence of the prefactor. The
solid and dotted lines correspond to the quantum and classical
calculations, respectively.
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Figure 5: Arrhenius plot of the thermal rate constants for the
H+SiH4 reaction. Solid line, the QI results; dashed line, the classical
VTST results; dotted line, CVT/CD-SCSAG results from [50]; dot-
dashed, the values from the conventional TST with a simple Wigner
tunneling factor [51]; filled squares are the experimental values
from [52].

the difference is observable. At 200 K, the difference is about
several orders of magnitude.

In the QI theory, it is not possible to explicitly distinguish
the quantum contributions from the partition function
and nuclear tunneling, but we can conclude that it is
insufficient to estimate the accurate rate by only replacing
the activation energy in the TST with its quantum analog,
because the quantum prefactor plays more important rule in
determining the quantum rate.

3.2.2. Rate Constants. In Table 2, we summarize the rate
constants obtained from the QI theory and classical VTST
(this kind of results are performed by setting the time slices
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Table 2: Rate constants for the H+SiH4 reaction (cm3s−1). The CVT/CD-SCSAG results from [50]. DD is the conventional TST with simple
Wigner tunneling factor [51]. Expt. is the experimental Arrhenius fits, k(T) = 1.78 × 10−10 exp(−3820/RT) (T = 290–660 K) [52].

T (K) Present QI VTST CVT/CD-SCSAG DD Expt.

200 4.82 (−14) 8.88 (−16) 3.07 (−14) 6.1 (−15)

300 2.74 (−13) 1.38 (−14) 2.09 (−13) 1.7 (−13) 2.81 (−13)

400 9.67 (−13) 4.32 (−13) 7.96 (−13) 9.1 (−13) 1.43 (−12)

500 2.37 (−12) 1.23 (−12) 2.11 (−12) 2.7 (−12) 3.78 (−12)

600 3.99 (−12) 2.55 (−12) 4.43 (−12) 5.9 (−12) 7.18 (−12)

700 7.60 (−12) 5.18 (−12) 8.00 (−12)

800 1.18 (−11) 8.63 (−12)

900 1.76 (−11) 1.29 (−11)

1000 2.39 (−11) 1.99 (−11) 2.80 (−11)

in the path integral to be 1 in the QI calculations) as
well as those from the canonical variational TST with the
centrifugal-dominant small curvature SC adiabatic ground-
state (CVT/CD-SCSAG) approach [50], the conventional
TST with simple Wigner tunneling factor [51] and the
experiment [52]. The corresponding Arrhenius plots are
displayed in Figure 5.

Table 2 and Figure 5 display comparable results of the
CVT/CD-SCSAG to the QI values, with 36% maximal errors
at 200 K and a slightly different Arrhenius slope. Both results
are in good agreement with experimental data in the tested
temperature range. This manifests that the PES used is
reasonable accurate. However, the values from the classical
VTST are always smaller than the QI results especially in the
deep tunneling regions. The conventional TST results have
similar tendency to those from the classical VTST. Although
the classical VTST can be much improved by evaluating
the partition functions quantum mechanically, we do not
focus on this improvement. However, it is noted that the
anharmonicity, rotational-vibrational coupling are involved
in the classical simulation. It is thus expected that these large
errors come from the pure quantum effects.

3.2.3. Kinetic Isotope Effects. Kinetic isotope effect (KIE) is
the characteristic of chemical reactions which may reveal the
quantum effect. We consider the following isotopic reactions:

(R1) H + SiH4 −→ SiH3 + H2

(R2) D + SiH4 −→ SiH3 + HD

(R3) H + SiD4 −→ SiD3 + HD.

(25)

The calculated values are tabulated in Table 3.
The KIEs of kQI(R1)/kQI(R2) and kQI(R1)/kQI(R3) in the

temperature range of 200–1000 K are summarized in Table 3.
Besides the QI values, this table also displays comparable
results of the CVT/CD-SCSAG [50]. It is easily found that
the k(R1)/k(R2) KIEs predicted by the QI are smaller
than 1, in agreement with the CVT/CD-SCSAG values.
The detailed comparison reveals that the CVT/CD-SCSAG
predicts smaller values than those from QI theory. Again,
the maximal error occurs at 200 K and is about 23%. For
k(R1)/k(R3) KIEs, we find that although both approaches

predict the values larger than 1 at 200 to 1000 K, the QI values
are smaller than those from CVT/CD-SCSAG. Espinosa-
Garcı́a and coworkers [50] have pointed out that the
CVT/CD-SCSAG rates may have been overestimated because
of the high vibrational and tunneling contributions. This
manifests that the QI approach indeed correctly accounts for
the quantum effects.

3.3. H Diffusion on Ni(100) Surface. Diffusion plays a
fundamental role in surface process. It reveals characteristics
about the underlying surface potential and is intimately
involved in determining the kinetics of surface catalyzed
chemical reactions. The hydrogen atom and its isotopes
are ideal candidates to exhibit quantum tunneling behavior
due to their small masses. We explore the evaluation of
the quantum instanton approximation to the process of
H diffusion on Ni(100) surface using the EAM4 potential
energy surface constructed by Truong and Truhlar [53].

In the path integral calculations, the numbers of time
slices, P and Pbath, for the degrees of freedom of H and
quantized Ni atoms, respectively, are set to (P,Pbath) =
(24–40, 6–8) in the temperature range of 40–300 K. The
number of Monte Carlo cycle employed is (1–10) ×106,
which converges most of the relevant quantities within 10%
statistical error (some of the statistical errors are within 20%
below 100 K).

3.3.1. Model. Nickel crystallizes in a face-centered-cubic
(fcc) lattice structure. The structural model used consists of
162 Ni atoms over four layers: 40 atoms are in each of the first
and third layers, and 41 atoms are in each of the second and
fourth layers.

Figure 6 shows the platform and profile chart of Ni(100)
lattice. In the simulations, 89 Ni atoms (orange), in the four
sides of the bulk metal and the bottom layer, are fixed. The
48 atoms (blue) closest to the fixed ones are considered to
be movable and treated classically. The last 25 ones (red),
surrounding the reactant and product sites and lying directly
beneath the reactant and product sites, are treated quantum
mechanically.

In our calculations, the lattice (see Figure 6) is rotated by
45 degrees counterclockwise, and we chose the x coordinate
of H atom (along the reaction path) to be reaction coordi-
nate.
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Table 3: The kinetic isotope effects (KIEs) at different temperatures. CVT is the CVT/CD-SCSAG values from [50].

T (K) QI KIE (R1/R2) CVT KIE (R1/R2) QI KIE (R1/R3) CVT KIE (R1/R3)

200 0.56 0.69 30.10 33.60

300 0.73 0.71 8.57 9.81

400 0.77 0.76 4.39 5.07

500 0.85 0.81 3.11 3.46

600 0.90 0.84 2.41 2.72

700 0.92 0.86 2.15 2.32

800 0.94 1.78

900 0.94 1.68

1000 0.95 0.90 1.64 1.80

Figure 6: The platform and profile chart of H diffusion on Ni(100)
lattice. The gray circles represent H atom on different surface sites,
and the orange circles represent the fixed Ni atoms. Blue circles are
Ni atoms treated classically, while the red ones are treated quantum
mechanically.

3.3.2. Probability Distribution of Paths. The path integral
has an advantage that the paths of the particles can display
the character of the diffusive process. We extract the prob-
ability distributions for the paths of H and Ni atoms (two
reaction coordinate beads (x0 and xP/2) of H path are fixed at
the two dividing surfaces) for the purpose of guaranteeing
the instanton property (the instanton is a periodic orbit
between the two dividing surfaces). The dividing surfaces can
be obtained from the free energy surface (24), their values at
different temperatures are shown in Table 4.

Figure 7 displays the probability distributions for both
H and Ni atoms at several temperatures. It is found that
the probability distribution of H is localized at 300 K, and
it becomes more and more delocalized as the temperature
decreases. Below 80 K, the distribution rapidly becomes
obvious in both sides of the transition state, and the path
begins to continuously distribute between the two hollow
sites at lower temperatures. This phenomenon indicates that

H

300 K 80 K

60 K 40 K

Ni

Ni

Ni
⟨0

01
⟩

⟨010⟩

Figure 7: Distribution of H and Ni quantum paths on the surface
with two reaction coordinate beads (x0 and xP/2) of H path fixed
at the two dividing surfaces. Labels of <010> and <001> denote
the crystal directions of nickel. The probabilities are normalized for
both H and Ni.

H tunneling becomes remarkable at the temperatures lower
than 80 K. The probability distributions of Ni atoms have
small changes in the whole temperature range, and they seem
to be frozen at very low temperature.

3.3.3. Diffusion Coefficients. According to the hopping model
[54], the diffusion coefficient D is related to the rates through

D = kQI · b2, (26)

where b is the hop length and is equal to 2.489 Å for the
Ni(100) surface. We have calculated the diffusion coefficients
at temperatures ranging from 40 to 300 K, and the results are
plotted in Figure 8.

We plot two kinds of QI diffusion coefficients in Figure 8,
one is the result on a rigid lattice, the other is the result on a
quantized lattice. At high temperatures, these two kinds of
diffusion coefficients are nearly the same; however, at low
temperatures, the ones on a rigid lattice are bigger than that
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Table 4: The positions of two dividing surfaces. (Unit in Å. The position 0.00 corresponds to the bridge site and the positions ±1.24 Å
correspond to two hollow sites.)

T (K) 300 80 60 50 40

x†a 0.00 0.00 −0.75 −1.00 −1.08

x†b 0.00 0.00 0.75 1.00 1.08
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Figure 8: Arrhenius plots of the diffusion coefficients in the range
40–300 K. Solid line: the QI results for the quantized lattice; dotted
line: the QI results for the rigid lattice; dashed line: the CVT/SCSAG
results for the rigid lattice [55]. Pluses, circles, squares, and crosses
are experimental results of Lee et al. [58], George et al. [56], Mullins
et al. [57], and Lin and Gomer [59], respectively.

on a quantized lattice, and this is mainly due to the fact that
the free energy on a quantized lattice is higher than that on
a rigid lattice [38]. Comparing the QI diffusion coefficients
with the CVT/SCSAG ones [55] on a rigid lattice, we find that
our QI results on a rigid lattice are very similar to those from
the CVT/SCSAG. Now, we compare the present theoretical
results with experimental ones. It is found that the QI results
as well as the CVT/SCSAG results are in good agreement
with the experiments of George et al. [56] and Mullins et
al. [57] at 200 K and 300 K. However, at low temperatures,
the theoretical results are significantly larger than Lee et al.
[58] and Lin and Gomer [59]. The experimental transition
temperature (100 K–160 K) is also different from the present
calculations. The QI predicts it to be 70 K for the quantized
lattice, while it is about 66 K for the rigid lattice obtained
from both the QI and the CVT/SCSAG approaches. These
discrepancies between theories and experiments may be
attributed to the interaction potential. It is likely that the
accuracy of the potential energy surfaces needs further
improvement.

3.4. Surface-Subsurface Transport and Interior Migration for
H/Ni. A full-dimensional potential energy surface (EAM6),

Ni
Ni1

Ni2

Ni3

Ahcp Afcc

Tesub
Ocsub

Ni

Figure 9: A lattice model with a few Ni atoms for the circle
reaction processes of hydrogen. Ahcp, Afcc, Ocsub, and Tesub are the
abbreviations for a hcp hollow site, a fcc hollow site, a subsurface
octahedral vacancy, and a subsurface tetrahedral vacancy, respec-
tively. The black lines stand for the directions of the reaction paths.
The atoms of Ni1, Ni2, and Ni3 colored in orange are specially used
to determine the reaction coordinate of the process Ocsub → Tesub.

constructed by Wonchoba and Truhlar [60], using the
embedded diatomics-in-molecules (EDIMs) [61] potential
energy function, is used in this QI calculations.

In path integral calculations, the numbers of time slices,
P and Pbath for the degrees of freedom of the H and quantized
Ni atoms, respectively, are set to (P,Pbath) = (30−40, 6−8) in
the temperature range of 100–400 K. The number of Monte
Carlo is about (2− 6)× 106 for computing a single ensemble
average. It converges most of the values within 10% statistical
errors (some of the statistical errors are within 20% at 100 K).

3.4.1. Model. Figures 9 and 10 show H diffusion processes
in the nickel crystal with a face-centered-cubic (fcc) lattice
structure. For a given rate process, we construct a lattice cell
(each cell contains more than 200 Ni atoms) in which all
atoms are treated to be movable to incorporate the effect of
the crystal fluctuation on the rates. To be concrete, the Ni
atoms in the four sides of the bulk metal and at the bottom
layers are fixed, the Ni atoms surrounding the reactant and
product sites and lying along the reaction path are treated
quantum mechanically, and the others are treated classically.
It should be noted that the lattice for the interior diffusion
process has a structure of sphere and the outer layers are
fixed.

In the QI calculations, we need to define the reaction
coordinate operators ŝ (6). For the systems considered in
this section, the hydrogen coordinates are essentially good
choices. We thus adopt the following reaction coordinates for
different rate processes. In the H diffusion on Ni(111) surface
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Ni

Ni6

Ni5

Ni4

Teinte

Ni
inteOcinteOc

Figure 10: A lattice model with a few Ni atoms for the process
of H diffusion in interior of bulk Ni. Ocinte and Teinte are the
abbreviations for an interior octahedral vacancy and an interior
tetrahedral vacancy, respectively. The black lines stand for the
general directions of the reaction paths. The atoms of Ni4, Ni5, and
Ni6 colored in orange are specially used to determine the reaction
coordinate of the process Ocinte → Teinte.

from a hcp site to a fcc site (Ahcp → Afcc), the x coordinate of
the H atom is chosen, whose direction is showed in Figure 9
as the black line connecting the Ahcp site to Afcc site. In the
H resurfacing from a subsurface octahedral vacancy to the
fcc site (Ocsub → Afcc) and from a subsurface tetrahedral
vacancy to the hcp site (Tesub → Ahcp), the z coordinate
of the H atom (vertical to Ni(111) surface) is taken. In the
H diffusion between the adjacent subsurface octahedral and
tetrahedral vacancies (Ocsub → Tesub) and between the
adjacent interior octahedral vacancy and interior tetrahedral
vacancy (Ocinte → Teinte), the reaction coordinates are along
the directions that perpendicular to the planes of Ni1–Ni2–
Ni3 and Ni4–Ni5–Ni6, respectively.

3.4.2. Free Energy and Prefactor. In order to investigate the
quantized Ni lattice effect on the rates, we have recast the QI
formula in (1) into Arrhenius form, which consists of the free
energy and the prefactor (17) and (18).

In the free energy calculations, firstly, we calculate the
free energy profile for each step of the H hopping paths,
Ahcp → Afcc → Ocsub → Tesub → Ahcp and Ocinte →
Teinte → Ocinte, with the reaction coordinate defined in
Section 3.4.1. Then, we connect these free energy profiles one
by one, the final free energy profiles for the whole processes
are displayed in Figures 11 and 12.

Figures 11 and 12 display the calculated free energy
profiles for the surface-subsurface and interior processes,
respectively, with the quantized lattice, the classical lattice
and the rigid one at room temperature (300 K). The
corresponding free energy barriers, prefactors, and rates are
tabulated in Table 5.

Figures 11 and 12 clearly show that the classical lattices
always reduce the free energy barriers compared with the
rigid lattices, however, the differences between the free
energy barriers with the quantized lattices and the ones with
the classical lattices are very small. For different processes;
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Figure 11: Free energy profiles with respect to the processes in
Figure 9 at 300 K. The green, the red, and the blue lines correspond
to the rigid, classical, and quantized lattices, respectively.
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Figure 12: Free energy profiles with respect to the processes in
Figure 10 at 300 K. The green, the red, and the blue lines correspond
to the rigid, classical, and quantized lattices, respectively.

however, the relaxation effect on the free energies is very
different. For hydrogen diffusion on Ni(111), the classical
lattice only slightly lowers the free energy barrier, while it
decreases the barriers by more than one-half in subsurface
and interior processes. More careful analysis from Figure 11
reveals that the two preferred Ni(111) surface binding
sites, that is, hcp and fcc hollows have symmetric wells,
manifesting that the motions of Ni atoms in the layer beneath
the surface have little influence on the surface free energies
despite the fact that the Ni atoms beneath the hcp and fcc
hollows have different arrangements. It is also found that
the Ocsub site has a deeper well than the Tesub site and the
well of the Tesub site nearly disappears as relaxed Ni atoms
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are considered. It manifests that the hydrogen at the Tesub

site is very unstable and can easily move to the Ocsub site or
resurface to the hcp site. In the interior processes, although
the hydrogen in the Teinte site is much less stable than in the
Ocinte site (see Figure 12), the well at the Teinte is obvious.
One thus expects that a two-step reaction process can be used
for the reaction from one Ocinte to the other.

Next, we consider the prefactor. Table 5 shows that the
prefactors of the classical lattices are much smaller than those
of rigid ones except for the process of H diffusion on Ni(111),
and the prefactors of quantized lattices are always smaller
than that of classical ones, but their amplitudes have the same
order. This may be explained by the fact that the quantum
motions of the lattice atoms can induce the dissipative effect
on the tunneling degrees of freedom [62, 63], because the
prefactor essentially incorporates the dynamical effect. It is
well known that pure dissipation in the overdamping regime
always hinders the reaction rates for a given reaction barrier.
The present results thus are consistent with above analysis.

The rate is determined by both the prefactor and the
free energy barrier. In Table 5, the rate with the rigid lattice
is smaller than the one on the classical lattice, which is
because the prefactor changes a little and the free energy
determines the rate. However, the rate with the quantized
lattice is smaller than that of the classical lattice, which is
due to the fact that quantized lattice has a smaller prefactor
while the free energies are similar. Generally speaking, for
the quantized lattices, the rates are lower by 20%–40% when
compared to the ones on the classical lattices.

Another important feature of the free energy is its
temperature dependence. Figure 13 displays the free energy
profiles with both H- and Ni-treated quantum mechanically
at several temperatures. Generally speaking, the free energies
have a slight difference at 300 K and 400 K, whereas this
difference becomes pronounced for 100 K and 200 K, and
the barrier positions move to the directions of shallow well
for asymmetric reactions. These properties can be explained
by the hydrogen tunneling effect. At lower temperatures,
the tunneling plays a more important role. Indeed, the
barrier heights decrease with decreasing temperature except
for Ocsub → Tesub among 200 K to 400 K. This special case
may be due to the special structure of the lattice. The thermal
average displacements of Ni1 and Ni3 (in Figure 9) vertical
to the Ni(111) surface increase with increasing temperature.
Thus, H goes through reaction bottleneck easier at a higher
temperature, which makes the barrier decrease. Figure 13
also displays that the free energy barriers of Ocinte → Teinte

change little in the temperature range of 200–400 K, while
those of the Teinte → Ocinte become smaller and smaller
with decreasing temperature. The corresponding free energy
barriers are 0.47, 1.09, 1.47, and 1.66 kcal/mol at 100, 200,
300, and 400 K, respectively. It manifests that the diffusing H
atom may not equilibrate in the interior tetrahedral vacancy
at very low temperatures.

3.4.3. Surface-Subsurface Transport. In the resurfacing pro-
cess, Tesub → Ahcp does not show an obvious barrier
(see Figure 11), as the lattice atoms are treated quantum

mechanically. This step thus can be thought as a barrierless
process. Table 6 tabulates the rate constants for the other
resurfacing and subsurface processes in the temperature
range of 100 to 600 K. We also list the available CVT/SCT
results for Ocsub → Afcc and its reverse reaction [60]. Again,
the CVT/SCT rates are close to the QI rates except at 100 K.
We think our much bigger rate constant at 100 K is due to the
contribution of tunneling.

3.4.4. Interior Migration. In the interior of bulk Ni, the
two most stable sites to cage H are symmetric octahedral
vacancies (see Figure 12). H diffusion between them has
been measured experimentally [64–67]. Several theoretical
calculations have also been proposed to investigate this
diffusion process. Wimmer et al. [68] calculate the diffusion
coefficient via two-step reactions Ocinte → Teinte → Ocinte

by using a transition state theory together with accurate ab
initio energies, while Wonchoba and Truhlar [60] consider
the kinetic step as a direct process with a double maximum
barrier and calculate the diffusion coefficient using the
CVT/SCT. In the present QI calculations, Figure 13 has
explicitly shown that the free energies have a well at the
tetrahedral site from 200 K to 400 K. It is thus reasonable to
assume that the diffusing H atom temporarily equilibrates in
the tetrahedral site before jumping forward or backward to a
neighboring octahedral site. The free energy well, however,
becomes very shallow at 100 K. In this case, the direct
reaction from the octahedral site to the other one may be
acceptable. Here, we only calculate the diffusion coefficients
via the two kinetic steps at 200–400 K.

The temperature dependence of the diffusion coefficients
are commonly fitted to the Arrhenius equation

D(T) = D0 · exp
[−Ea
RT

]
, (27)

where R is the gas constant and D0 and Ea are the pre-
exponential factor and the activation energy, respectively.
The QI calculations predict D0 = 3.93 × 10−3 cm2s−1

and Ea = 10.26 kcal/mol. In the calculations, the rates of
Ocinte → Teinte are used to obtain the diffusion coefficients
for Ocinte → Ocinte, because this process is much slower than
that of Teinte → Ocinte and it determines the total reaction
rates.

Table 7 tabulates the pre-exponential factors and acti-
vation energies coming from available experiments and
theories. It is found that both D0 and Ea from the QI
calculations are close to Ebisuzaki’s experimental data [65].
Further tracking down the comparisons with experiments is
nontrivial, because the accuracy of the diffusion coefficients
is much dependent of the potential energy surface. However,
we may make a quantitative comparison for the QI and
CVT/SCT results. With use of the diffusion coefficients
from 295 K to 300 K obtained by the CVT/SCT, Wonchoba
and Truhlar [60] predict 11.1 kcal/mol for Ea, and 1.3 ×
10−3 cm2s−1 for D0, respectively. These values are observably
different from the QI calculations. Ea and D0 are 0.8 kcal/mol
larger and 3 times smaller than those from the QI calcu-
lations, respectively. The origin of these differences can be
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Table 5: Free energies, prefactors, and rate constants.

Process (300 K) ΔF (kcal/mol) AQI (s−1) kQI (s−1)

a 2.19 1.58 (13) 4.07 (11)
Afcc → Ahcp b 2.14 1.61 (13) 4.49 (11)

c 2.14 1.27 (13) 3.47 (11)

a 33.06 6.87 (13) 6.22 (−11)
Afcc → Ocsub b 13.79 2.85 (13) 2.64 (3)

c 13.75 2.29 (13) 2.23 (3)

a 20.00 6.44 (13) 1.83 (−1)
Ocsub → Afcc b 5.40 2.10 (13) 2.62 (9)

c 5.40 1.72 (13) 2.15 (9)

a 34.92 4.29 (13) 1.67 (−12)
Ahcp → Tesub b 14.92

c 14.87

Tesub → Ahcp a 3.25 5.13 (13) 2.28 (11)

a 26.19 5.23 (13) 4.31 (−6)
Ocsub → Tesub b 7.83 1.86 (13) 3.51 (7)

c 7.86 1.45 (13) 2.74 (7)

a 7.83 8.17 (13) 1.51 (8)
Tesub → Ocsub b 1.75 1.91 (13) 1.05 (12)

c 1.73 1.49 (13) 8.22 (11)

a 27.82 5.12 (13) 2.86 (−7)
Ocinte → Teinte b 11.14 2.50 (13) 1.90 (5)

c 11.17 1.75 (13) 1.32 (5)

a 7.07 7.80 (13) 6.16 (8)
Teinte → Ocinte b 1.52 2.06 (13) 1.60 (12)

c 1.47 1.53 (13) 1.36 (12)

a: The results for a rigid lattice.
b: The results for a classical lattice.
c: The results for a quantized lattice.

Table 6: Rate constants (Unit: s−1. Powers of 10 are in parentheses) for surface-subsurface processes. aThe QI results with a quantized lattice.
bThe CVT/SCT results from [60].

100 K 200 K 300 K 400 K 600 K

Afcc → Ocsub
a 3.81 (−14) 1.14 (−1) 2.23 (3) 5.48 (5) 2.43 (8)

Afcc → Ocsub
b 1.09 (−15) 1.23 (−1) 9.72 (3) 3.36 (6) 1.16 (9)

Ocsub → Afcc
a 1.17 (6) 4.59 (7) 2.15 (9) 1.23 (10) 1.02 (11)

Ocsub → Afcc
b 1.62 (5) 7.36 (7) 2.93 (9) 2.33 (10) 2.15 (11)

Ocsub → Tesub
a 2.78 (−4) 1.99 (4) 2.74 (7) 1.18 (9) 2.49 (10)

Tesub → Ocsub
a 7.24 (8) 4.68 (10) 8.22 (11) 2.00 (12) 4.13 (12)

Table 7: Arrhenius parameters for H diffusion in interior of bulk Ni. aThe QI diffusion coefficients for Ocinte → Ocinte. bFrom [60]. cFrom
[68]. dFrom [64]. eFrom [65]. f From [66]. gFrom [67].

D0 (cm2s−1) Ea (kcal/mol)

Present QIa 200–400 K 3.93 (−3) 10.26

295–300 K 1.3 (−3) 11.1

Wonchobab (theoretical data) 300–627 K 7.8 (−4) 10.9

627–1650 K 4.4 (−4) 10.2

Wimmerc (theoretical data) 273–1000 K 3.84 (−2) 10.92

Yamakawad (experimental data) 220–350 K 1.9 (−3) 8.89

Ebisuzakie (experimental data) 470–690 K 5.22 (−3) 9.56

Eichenauerf (experimental data) 660–930 K 6.73 (−3) 9.47

Katzg (experimental data) 670–1270 K 7.04 (−3) 9.43
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Figure 13: The temperature dependence of the free energies. The blue, the black, the red, and the green lines correspond to free energy
profiles at 100 K, 200 K, 300 K, and 400 K, respectively.

explained by that Wonchoba and Truhlar have treated the
processes Ocinte → Teinte and Teinte → Ocinte as a single
kinetic step rather than as two kinetic steps, which results
in a much longer tunneling path than that of the two steps.
Compared with the results reported by Wimmer et al. [68],
the activation energy is about 0.6 kcal/mol larger than the
present one, and the pre-exponential factor is 10 times larger,
which is also larger than all available experimental data.
These differences may come from both the different potential
energy surfaces and rate methods.

4. Conclusion

We have presented the basic principle of the quantum instan-
ton (QI) approximation and its applications to chemical
reactions from gas phase to surface systems. The applications
demonstrate that the QI method makes it possible to treat
hundreds of atoms because of the well-established techniques
of imaginary time path integrals. For instance, more than 200

atoms have been incorporated in the present study of the H
diffusion processes.

The QI approximation is a kind of “quantum transition
state theory” in that there is no account of “recrossing”
dynamics in the description. The recrossing effects on the
quantum instanton rate constants have been quantified for
several collinear reaction by Ceotto and Miller [25], and it is
found especially evident for the collinear heavy-light-heavy
reactions. Fortunately, the recrossing effects become gener-
ally less important in higher dimensions [69]. Therefore, the
QI approach may become a suitable tool for the calculation
of chemical reaction rate constants of complex systems.

Compared to conventional TST theories, the QI approx-
imation involves two dividing surfaces, which are quantum
analogs of the two turning point surfaces of the imaginary
time trajectory in the semiclassical instanton theory. At
high-temperature limit, these dividing surfaces coalesce into
the one, the same as the dividing surface from Wigner’s
variational principle. In this case, the QI approximation
becomes exactly the same as the classical TST. As the
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tunneling corrections are incorporated, the CVT rates are
consistent with the QI rates except at deep tunneling regime,
where QI rates are generally greater than the rates from CVT
with various tunneling corrections, since the CVT method
uses an optimized tunneling path, while the QI method
considers all tunneling paths and automatically gives each
path its natural weight by the quantum Boltzmann factor.
For the reaction of H + CH4 → H2 + CH3, accurate
quantum dynamics rate constants are obtained with the
MCTDH method. Compared to the MCTDH ones, the QI
rate constants are larger by factors of about 2 to 3 over
the temperature range 300–400 K. This difference may partly
be due to the recrossing effect which is not considered in
QI theory and partly arise from the use of the J-shifting
approximation and the neglect of the vibrational angular
momenta Hamiltonian in MCTDH method.
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