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While basing on the study that we we achieved on pseudodifferential operators in the works
[arXiv:0708.4046 and hep-th/0610056 ], we interest in this paper to the construction of the algebra
of q-deformed pseudodifferential operators. We use this algebraic structure to study in particular
q-Burgers and q-KdV differential operators by the Lax generating technique. We give q-deformed
Lax equations as well as the report between these equations through the q-deformed Burgers-KdV
mapping.

1. Basic Notions

1.1. q-Pseudodifferential Operators

We start this part with defining the q-derivation. For it, we are going to introduce the general
case to know the α-derivation that is defined by
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where the two functions f and g are polynomials in an indeterminant x and its inverse x−1.
In (1.1), α is a linear mapping. An example of the α-derivation is given by Jackson’s

q-differential operator ∂q, such as [1]
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which gives the following form for (1.1):
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)
= ηq
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f
) · ∂q
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)
+ ∂q

(
f
) · g. (1.3)

The q-shift operator ηq is given by

ηq
(
f(x)

)
= f

(
qx

)
. (1.4)

One can define the commutation relation as follows:

[
f, g

]
= f ◦ g − g ◦ f, (1.5)

where the multiplication law “◦” is

∂q ◦ f = ηq
(
f
)
∂q + ∂qf,

∂−1q ◦ f =
∑

k�0
(−1)kq−k(k+1)/2η−k−1

q

(
∂kqf

)
∂−k−1q .

(1.6)

The last equation are obtained by using the following relation:

∂−1q ◦ ∂q ◦ f = ∂q ◦ ∂−1q ◦ f = f, (1.7)

where ∂−1q is the formal inverse of ∂q.
We should note that ηq does not commute with ∂q,
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q
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= qkηk
q
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∂qf

)
, k ∈ Z (1.8)

or in the following general case:
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q
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= qk+mηk
q

(
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)
, k,m ∈ Z. (1.9)

Note that (1.6) can be unified as follows:

∂nq ◦ f =
∑

k≥0

(
n
k

)

q

ηn−k
q

(
∂kqf

)
∂n−kq , (1.10)

for all n. In the last equation, the q-binomials take the form

(
n
k

)

q

=
(n)q(n − 1)q · · · (n − k + 1)q

(1)q(2)q · · · (k)q
, (1.11)
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and the q-numbers are given by

(n)q =
qn − 1
q − 1

, (1.12)

where the convention

(
n
0

)

q

= 1, (1.13)

is taken.
We can write out several explicit forms of (1.10) for q-derivative ∂nq and ∂−nq (n ≥ 0) as
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(1.14)

We also add that the residue of the symbol L(x, ∂q) can be written as

Res

(
N∑

i=−∞
ui(x)∂iq

)

= u−1(x), (1.15)

and its Tr-functional is
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ui(x)∂iq

)

=
∫

S1
u−1(x)dx. (1.16)
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1.2. Algebraic Structure of q-PDO

Now let us introduce the q-pseudodifferential operators algebra q-PDO. The latter is
characterized by the relation [1]:

q-PDO =

{

L(
x, ∂q

)
=

N∑

i=−∞
ui(x)∂iq

}

. (1.17)

We can noted this space in the followingway qA ≡ q−ΨDO is seen as being the algebra
of all local and nonlocal q-differential operators of arbitrary conformal spins and arbitrary
degrees, this spaces can be seen as being the q-deformation of pseudodifferential algebra A
that we saw in [2–11]. One may expand qA as

qA = ⊕
m≤n

qA(m,n) = ⊕
m≤n

⊕
s∈Z

qA(m,n)
s , m, n, s,∈ Z, (1.18)

where we have denoted by (m,n) the lowest and the highest degrees, respectively, and by s

the conformal spin. To be explicit, consider the space qA(m,n)
s of q-differential operators:

L(m,n)
s =

n∑

i=m

us−i(z)∂iq. (1.19)

The vector space qA(m,n) of q-differential operators with given degrees (m,n) but
undefined spin

qA(m,n) = ⊕
s∈Z

qA(m,n)
s (1.20)

exhibits a Lie algebra’s structure with respect to the Lie bracket form ≤ n ≤ 1.
In fact, It’s straightforward to check that the commutator of two operators of qA(p,q)

s is
an operator of conformal spin 2s and degrees (p, 2q − 1). Since the Lie bracket [·, ·] acts as

[·, ·] : qA(m,n)
s × qA(m,n)

s −→ qA(m,2n−1)
2s , (1.21)

imposing the closure, one gets strong constraints on the spin s and the degrees parameters
(m,n), namely,

s = 0, m ≤ n ≤ 1. (1.22)

From these equations, we learn in particular that the spaces qA(m,n)
0 , m ≤ n ≤ 1 admit a

Lie algebra’s structure with respect to the bracket (1.5) provided that the Jacobi identity is
fulfilled. This can be ensured by showing that the Leibnitz product is associative.
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The spaces qA(m,n)
0 , m ≤ n ≤ 1 as well as the vector space qA(0,1)

0 are in fact subalgebra
of the Lie algebra qA(−∞,1)

0 which can be decomposed as

qA(−∞,1)
0 = qA(−∞,−1)

0 ⊕ qA(0,1)
0 . (1.23)

qA
(−∞,−1)
0 is nothing but the Lie algebra of Lorentz scalar pure q-pseudodifferential operators

of higher degree n = −1 and qA(0,1)
0 is the central extension of the Lie algebra qA(1,1)

0 of vector
fields Diff(S1):

qA(0,1)
0 = qA(0,0)

0 ⊕ qA(1,1)
0 , (1.24)

and where qA(0,0)
0 � A(0,0)

0 is the one dimensional trivial ideal.
The infinite dimensional huge space qA is the algebra of q-differential operators of

arbitrary spins and arbitrary degrees. It’s obtained from the space qA(m,n) by summing over
all allowed degrees qA:

qA = ⊕
m≤n

qA(m,n)

= ⊕
m∈Z

[
⊕

k∈N

qA(m,m+k)
]

= ⊕
m∈Z

[
⊕

k∈N

[
⊕
s∈Z

qA(m,m+k)
s

]]
.

(1.25)

This infinite dimensional space which is the combined conformal spin and degrees tensor
algebra is closed under the Lie bracket without any constraint.

A remarkable property of qA is that it can splits into six infinite subalgebras qAj+

and qAj−, j = 0, ±1 related to each others by conjugation of the spin and degrees. Indeed
given two integers m and n ≥ m, it is not difficult to see that the vector spaces qA(m,n) and
qA(−n−1,−m−1) are dual with respect to the pairing product (·, ·) defined as

(
L(m,n),L(α,β)

)
= δ0,1+m+βδ0,1+n+αRes

[
L(m,n) ◦ L(α,β)

]
, (1.26)

where d(α,β) are q-differential operators with fixed degrees (α, β; β ≥ α) but arbitrary spin and
where the residue operation res is defined as:

Res
(
∂iq

)
= δ0,i+1. (1.27)

This equation shows that the operation res exhibits a conformal spin Δ = 1. Using the
properties of this operation and the pairing product (1.26), one can decompose qA as follows:

qA = qA+ ⊕ qA− (1.28)
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with

qA+ = ⊕
m≥0

[
⊕

k∈N

qA(m,m+k)
]
, (1.29)

qA− = ⊕
m≥0

[
⊕

k∈N

qA(−m−k−1,−m−1)
]
. (1.30)

The indices + and − carried by qA+ and qA− refer to the positive (local) and negative
(nonlocal) degrees respectively. On the other hand one can decomposes the space
qA(m,m+k), k ≥ 0 as

qA(m,m+k) = qΣ(m,m+k)
− ⊕ qΣ(m,m+k)

0 ⊕ qΣ(m,m+k)
+ . (1.31)

qΣ(m,m+k)
− and qΣ(m,m+k)

+ denote the spaces of q-differential operators of negative and positive
definite spin. They are read as

qΣ(m,m+k)
− = ⊕

s>0
qA(m,m+k)

−s , (1.32)

qΣ(m,m+k)
0 = qA(m,m+k)

0 , (1.33)

qΣ(m,m+k)
+ = ⊕

s>0
qA(m,m+k)

s . (1.34)

qΣ(m,m+k)
0 is just the vector space of Lorenz scalar q-differential operators. Combining (1.28)–

(1.34), one sees that qA decomposes into 6 = 3 × 2 subalgebras

qA = ⊕
j=0,+,−

[
qAj+ ⊕ qAj−

]
(1.35)

with

qAj+ = ⊕
m≥0

[
⊕

k∈N

qΣ(m,m+k)
j

]
,

qAj− = ⊕
m≥0

[
⊕

k∈N

qΣ(−m−k−1,−m−1)
j

]
.

(1.36)

The duality of these 6 = 3× 2 subalgebras is described by the combined scalar product 〈〈·, ·〉〉
built out of the product equation(1.26) and conformal spin pairing:

〈uk, ul〉 =
∫
dzuk(z)u1−k(z)δk+l,1, (1.37)

as follows [2, 3]:

〈〈
L(α,β)

s ,L(m,n)
r

〉〉
= δ0,r+sδ0,1+n+αδ0,1+m+β

∫
dz res

[
L(α,β)

s ◦ L(−β−1,−α−1)
−s

]
(1.38)
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with respect to this new product, qA++, qA0+, and qA−+ behave as the dual algebras of qA−−,
qA0−, and qA+−, respectively, while qA0− is just the algebra of Lorenz scalar pure q-pseudo
operators. This algebra and its dual qA0+, the space of Lorenz scalar local q-differential
operators, are very special subalgebras as they are systematically used to construct new
realizations of the wi-symmetry, i ≥ 2 by using scalar q-differential operators type

L(k)(a) = a−k(a)∂kq . (1.39)

We note that the space qA++ is the algebra of local q-differential operators of
positive definite spins and positive degrees. qA−−, however, is the Lie algebra of pure q-
pseudodifferential operators of negative degrees and spins.

2. q-Deformed Lax Generating Technique

The aim of this section is to present some results related to the Lax representation in its q-
deformed version. Using the convention notations and the analysis presented previously,
we perform consistent algebraic computations, based on the Pseudodifferential analysis,
to derive explicit Lax pair operators of some integrable systems in the q-deformation
framework.

We underline that the present formulation is based on the (q-pseudo) operators ∂nq and
∂−nq instead of the (pseudo) operators ∂n and ∂−n used in several works. We note also that the
obtained results are shown to be compatible with the ones already established in literature
[12–16] in the case of q = 1.

The basic idea of the Lax formulation consists first in considering a noncommutative
integrable system which possesses the Lax representation:

[L, ∂t − B]q = 0, (2.1)

with ∂t ≡ ∂/∂t et [f, g]q = f ◦ g − f ◦ g.
Equation (2.1) and the associated pair of operators (L, B) are called the Lax q-

differential equation and the Lax pair, respectively. The q-differential operator L defines the
integrable system which we should fix from the beginning.

Note that the sln-KdV hierarchy in the q-deformed version is defined as:

∂L
∂tk

= [(Lk/2)+,L]q, (2.2)

and the way with which ones to writes the Lax q-differential equation as in (2.1) is equivalent
to the following equation:

[L, ∂t − B]q ≡ [L, ∂tk − (Lk/2)+]q = 0, (2.3)

where the operator B is the analogue of (Lk/2)+ describing then an q-differential operator of
conformal spin k.
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Now, let us apply the q-deformation Lax-pair generating technique. We need to find
an appropriate operator B which satisfies (2.1), for this we have to make some constraints on
the operator B, namely,

Ansatz for the operator B:

B = ∂nq ◦ Lm + B̃, (2.4)

with ∂nq is the q-differential operator which acts on Lm according to (1.10) and B̃ is another
operator of same conformal weight than B. Then, with this ansatz, the problem reduces to
find the operator B̃.

To understand the situation, we will study two interesting examples to know q-KdV
and q-Burgers equations.

2.1. q-Deformed Burgers Equations

The L-operator for the q-deformed Burgers equation is given by

Lq−burgers = ∂q + u1 (2.5)

with

Lq−burgers ∈ qA(0,1)
1 . (2.6)

Let’s consider the constraint n = 1 = m, for the q-deformed Burgers operator B can be written,
from the ansatz (2.4), as follows:

B = ∂q ◦ L + B̃

= ∂2q + ηq(u1)∂q + ∂q(u1) + B̃.
(2.7)

Simply algebraic computations give

[
L, B̃

]
=
(
ηq(u1) − u1

)
∂2q

+
[
qηq

(
∂q(u1)

)
+
(
ηq(u1)

)2 + ∂q(u1) − ∂q
(
ηq(u1)

) − u1ηq(u1)
]
∂q

+ ηq(u1)∂q(u1) − u1,

(2.8)

where u1 = ∂u1/∂t.
Now, our goal is to extract, from (2.1) and (2.8), the Lax equation called q-deformed

Burgers or just q-Burgers equation. For this we will follow the following procedure:
Ansatz for the operator B̃:

B̃ = α∂q + β, (2.9)
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where α and β are arbitrary functions on u and its derivatives. one finds

[
L, B̃

]
=
(
ηq(α) − α

)
∂2q

+
[
∂q(α) + ηq

(
β
)
+ u1α − αηq(u1) − β

]
∂q

+ ∂q
(
β
) − α∂q(u1).

(2.10)

While identifying the two equations (2.8) and (2.10)we finds

a∂2q(u1) + (b − 1)
[
ηq(u1)∂q(u1) + u1∂q(u1)

]
+ u1 = 0, (2.11)

with a and b are arbitrary real constant.
Equation (2.11) is called q-deformed Burgers equation or q-Burgers equation. the

characteristic of this equation is that it is linear for b = 1 and that for q = 1. (i.e., ηq(u1) = u1)
we recover the same equation gotten in works [4, 5, 9]

au′′
1 + 2(b − 1)u1u

′
1 + u1 = 0. (2.12)

2.2. q-Deformed KdV Equations

In this second example, we go worked on an q-differentials operator of conformal weight 2,
this operator is given by the KdV Lax operator

Lq-KdV = ∂2q + u2. (2.13)

We are going to follow the same method of the previous example, therefore the Ansatz
for the operator B is

B = ∂q ◦ L + B̃

= ∂3q + ηq(u2)∂q + ∂q(u2) + B̃
(2.14)

and the associated Lax equation:

[∂t − B,L]q = 0 (2.15)

after a calculation, one finds

[L, B]q = −u1, (2.16)

by the same way of the case of Burgers, we finds the following q-KdV equation:

u2 =
[
u2 + ηq(u2)

]
∂q(u2) + ∂2q

[
∂q(u2) + ηq

(
∂qu2

)]
(2.17)
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as for q = 1, we finds the standard KdV

u2 = u2u
′
2 + u′′′

2 . (2.18)

2.3. q-Deformed Burgers-KdV Mapping

In this section, we present an approach to define the correspondence between integrables
systems q-deformed-type Burgers and integrables systems q-deformed-type KdV. such cor-
respondence named q-deformed Burgers-KdV mapping that is considered like a generalization
of the Burgers-KdV mapping studied in works [7, 8, 11, 17].

We illustrate this idea with the example of KdV and Burgers equation and then we are
going to make a generalization for cameraman q-differentials-operators-type sln-KdV.

Let’s consider the Burgers q-differential operator (2.5):

Lq-burgers = ∂q + u1 ∈ qA(0,1)
1 (2.19)

and the KdV q-differential operator (2.13):

Lq-KdV = ∂2q + u2 ∈
qA(0,2)

2

qA(1,1)
2

. (2.20)

Proposition 2.1 (q-deformed Miura transformation). If one considers the two previous
q-differential operators, one can make the following decomposition:

Lq-KdV(u2) = Lq-burgers(u1) ◦ Lq-burgers(v1), (2.21)

with v1 = −ηq(u1) and u2 = ∂q(−ηq(u1))−u1ηq(u1). This decomposition is called q-deformed Miura
transformation. one can see this mapping under the following form:

Lq-burgers(u1) ↪→ Lq-KdV(u2) = Lq-burgers(u1) ◦ Lq-burgers
(−ηq(u1)

)

with u2 = ∂q
(−ηq(u1)

) − u1ηq(u1).
(2.22)

Proposition 2.2. As basing on the conforms weights of the operators derivatives: [∂tq-KdV ] = 3 and
[∂tq-Burgers] = 2, one can make the following correspondence:

∂tq-Burgers ↪→ ∂tq-KdV = α∂q ◦ ∂tq-Burgers + β∂3q, (2.23)

where α and β are arbitrary real constants.

Proposition 2.3 (Généralisation). Being given an q -deformed Burgers operator Lq-Burgers and an
q-deformed sln-KdV operator of type:

Lq-sln-KdV = ∂nq + u2∂
n−2
q + u3∂

n−3
q + · · · + un, (2.24)



ISRN High Energy Physics 11

then we can make the following decomposition:

Lq-sln−KdV = Lq-Burgers(v1) ◦ Lq-Burgers(v2) ◦ · · · ◦ Lq-Burgers(vn), (2.25)

where vi, i = 1, . . . , n are the fields of conformal weight 1 and which can be written in functions of the
fields uj , j = 2, . . . , n and their q-derivatives.

3. Conclusion

The importance of the theory of pseudodifferential operators in the study of nonlinear
integrable systems is point out. Principally, the algebra of nonlinear (local and nonlocal)
differential operators acte on the ring of analytic functions us(x, t).

In This paper, we have devoted to a brief account of the basic properties of the space
of q-pseudo differential Lax operators in the bosonic case. Presently, we know that any q-
pseudodifferential operator is completely specified by a conformal spin s, s ∈ Z, two integers
p, and q = p + n, n ≥ 0 defining the lowest and the highest degrees, respectively, and finally
(1 + q − p) = n + 1 analytic fields uj(z). We recall that the space qA of all local and nonlocal q-
pseudodifferential operators admits a Lie algebra’s structure with respect to the commutator
buildout of the Leibnitz product. Moreover, we find that A splits into 3 × 2 = 6 subalgebr as
qAj+ and qAj−, j = 0, ±1 related to each others by two types of conjugations, namely, the
spin.

Finally, we have focused in this work to present the basics steps towards constructing
the q-deformed integrable systems and the associated Lax generating technique. Particular
interest is devoted to the q-Burgers and the q-KdV systems and their underlying mapping.
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