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Sign data are the signs of signal added to noise. It is well known that a constant signal can
be recovered from sign data. In this paper, we show that an integral over variant signal can
be recovered from an integral over sign data based on the variant signal. We refer to this as a
generalized sign data average. We use this result to derive a Green’s theorem for sign data. Green’s
theorem is important to various seismic processing methods, including seismic migration. Results
in this paper generalize reported results for 2.5D data volumes in which Green’s theorem applies
to sign data based only on traditional sign data recovery.

1. Introduction

In certain cases, data, consisting of coherent signal and random noise, is summed repeatedly
in order to enhance the signal and reduce the noise. It has been found that when the signal-to-
noise ratio is between 0.1 and 1, if only the signs of the data are retained prior to summation,
then the signal can be recovered [1]. We refer to this type of data as sign data. Sign data
has advantages in significantly reducing the amount of space needed to record the data. The
reduction in space can amount to a ratio of 20 to 1 bits of data storage [1].

In the seismic industry, it has been discovered that most of the data processing
methods used on regular data are also effective on sign data [2]. Many of these data
processing methods are dependent on Green’s theorem. In particular, Kirchhoff migration is
dependent on Green’s theorem. Migration is a seismic process that corrects data coordinates
which are distorted by attributes of the seismic experiment. In accordance with Green’s
theorem, we show that an integral of an operation on sign data over a volume is equal to
an integral of an operation of the original data over a surface.

This result generalizes the work of Houston and Richard [3] in which, based only on
traditional sign data recovery, it was shown that Green’s theorem is satisfied when the sign
data encompasses a 2.5D volume. 2.5D data is data which is three-dimensional but only has
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Figure 1: A synthetic signal (sin c(x/3)e−(x/15)
2
) and the computer-generated uniform random noise used

to examine sign-bit amplitude recovery. This test has noise of unit magnitude (a = 1) and a signal-to-noise
ratio of one. Shown from bottom to top is the signal, the signal plus noise, the sign of the signal plus noise,
the average over 200 iterations of signal plus noise, and the average over 200 iterations of the sign of signal
plus noise.

variations along two dimensions. In this paper, we find that Green’s theorem is satisfied for
sign data when the data volume is largely symmetric. For cases in which the data volume is
of arbitrary shape we have derived a variant of Green’s theorem.

2. A Generalized Sign Data Average

It was shown by O’Brien et al. [1] that there is a recovery of amplitude from sign data in
the presence of uniform random noise. If the random noise Xj has amplitude a, the signal is
designated by the function fk, and the number of iterations is M =

∑
j , then we can write

fk =
a

M

∑

j

sgn
(
fk +Xj

)
, (2.1)

where

sgn
(
y
)
=

⎧
⎪⎪⎨

⎪⎪⎩

+1, y > 0
0, y = 0
−1, y < 0.

(2.2)

Figure 1 illustrates the data recovery process including sign data.
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Multiply both sides of (2.1) by the function gk:

gkfk =
a

M

∑

j

gk sgn
(
fk +Xj

)
. (2.3)

Now sum both sides of (2.3) over the k index:

∑

k

gkfk =
a

M

∑

k

∑

j

gk sgn
(
fk +Xj

)
. (2.4)

If we allow k → j, then (2.4) becomes

∑

j

gjfj =
a

M

∑

j

∑

j

gj sgn
(
fj +Xj

)
(2.5)

or

∑

j

gjfj = a
∑

j

gj sgn
(
fj +Xj

)
. (2.6)

It is clear that if fj → f and gj → g, then (2.6) becomes

f =
a

M

∑

j

sgn
(
f +Xj

)
, (2.7)

which is essentially (2.1). A continuous version of (2.6)might be written as

∫

g(v)f(v)dv = a

∫

g(v) sgn
(
f(v) + v

)
dv. (2.8)

An argument for the consistency of (2.8) is as follows. Let f(v) → f . Then we have

f =
a
∫
g(v) sgn

(
f + v

)
dv

∫
g(v)dv

. (2.9)

Now integrate over all values of v:

f =
a
∫∞
−∞ g(v) sgn

(
f + v

)
dv

∫∞
−∞ g(v)dv

. (2.10)

Let g(v) be a uniform probability density, ρ(v).
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That implies

∫∞

−∞
g(v)dv = 1, (2.11)

and (2.10) becomes

f = a

∫∞

−∞
ρ(v) sgn

(
f + v

)
dv, (2.12)

which was shown by Houston et al. [4].

3. A Generalized Average for Sign Data Derivatives

Consider the following nth order forward finite difference [5]:

Δn
hf(v) =

n∑

i=0
(−1)i

(
n
i

)

f(v + (n − i)h), (3.1)

with ( n
i ) = n!/i!(n − i)!.
If we make the variable, v discrete by choosing a small real interval, q and writing

fj = f
(
jq
)
, (3.2)

where j is an integer index, then (3.1) becomes

Δn
hfj =

n∑

i=0
(−1)i

(
n
i

)

f
(
jq + (n − i)h

)
. (3.3)

Because the finite difference is a linear operator, we can use (2.6) to derive

∑

j

gjΔn
hfj = a

∑

j

gjΔn
h sgn

(
fj +Xj

)
. (3.4)

Equation (3.4) takes into account the fact that

∑

j

g
(
jq
)
f
(
jq + lh

)
= a
∑

j

g
(
jq
)
sgn
(
f
(
jq + lh

)
+Xj

)
, (3.5)

where l is an arbitrary index.
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Since

dn

dvn
= lim

h→ 0

Δn
h

hn
, (3.6)

(3.4) suggests the following equation:

∫

g(v)
dn

dvn
f(v)dv = a

∫

g(v)
dn

dvn
sgn
(
f(v) + v

)
dv. (3.7)

Let dn/dvn → dn/dun and f(v) → f(u).
Then from (3.7)we have

dn

dun
f(u) =

a
∫
g(v)(dn/dun) sgn

(
f(u) + v

)
dv

∫
g(v)dv

. (3.8)

Once again, integrate over all v, let g(v) = ρ(v), and (3.8) becomes

dn

dun
f(u) = a

∫∞

−∞
ρ(v) sgn

(
f(u) + v

)
dv, (3.9)

which was shown by Houston et al. [4].

4. The Application to Green’s Theorem

Equation (3.7) implies the special case:

∫

g(v)
d2

dv2
f(v)dv = a

∫

g(v)
d2

dv2
sgn
(
f(v) + v

)
dv. (4.1)

Employing three variables in (4.1) yields

∫

g(v1, v2, v3)
∂2

∂v2
i

f(v1, v2, v3)dv1dv2dv3

= a

∫

g(v1, v2, v3)
∂2

∂v2
i

sgn
(
f(v1, v2, v3) + vi

)
dv1dv2dv3,

(4.2)

which can be simplified if g = g(v1, v2, v3), f = f(v1, v2, v3), and dV = dv1dv2dv3:

∫

g
∂2

∂v2
i

f dV = a

∫

g
∂2

∂v2
i

sgn
(
f + vi

)
dV. (4.3)
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Summation over the variables yields

∑

i

∫

g
∂2

∂v2
i

f dV = a
∑

i

∫

g
∂2

∂v2
i

sgn
(
f + vi

)
dV. (4.4)

Consequently, (4.4) can be written as

∫

g∇2f dV = a

∫

g
∑

i

∂2

∂v2
i

sgn
(
f + vi

)
dV. (4.5)

If we make the mapping

g(v) −→ ∂2

∂v2
i

g, (4.6)

then (2.8) becomes

∫

f
∂2

∂v2
i

g dV = a

∫

sgn
(
f + vi

) ∂2

∂v2
i

g dV. (4.7)

Summation over the variables yields

∑

i

∫

f
∂2

∂v2
i

g dV = a
∑

i

∫

sgn
(
f + vi

) ∂2

∂v2
i

g dV, (4.8)

which can be written as

∫

f∇2g dV = a

∫∑

i

sgn
(
f + vi

) ∂2

∂v2
i

g dV. (4.9)

Subtracting (4.9) from (4.5) yields

∫(
g∇2f − f∇2g

)
dV = a

∫(

g
∑

i

∂2

∂v2
i

sgn
(
f + vi

) −
∑

i

sgn
(
f + vi

) ∂2

∂v2
i

g dV

)

. (4.10)

Green’s theorem is
∮

S

(

U1
∂U2

∂n
−U2

∂U1

∂n

)

dS =
∫

V

(
U1∇2U2 −U2∇2U1

)
dV. (4.11)

Consequently, we can write a variant of Green’s theorem for sign data as

∮

S

(

g
∂f

∂n
− f

∂g

∂n

)

dS = a

∫(

g
∑

i

∂2

∂v2
i

sgn
(
f + vi

) −
∑

i

sgn
(
f + vi

) ∂2

∂v2
i

g

)

dV. (4.12)
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If the spatial intervals are uniform, that is, v1 ∈ [a1, b1], v2 ∈ [a2, b2], v3 ∈ [a3, b3] and
[a1, b1] = [a2, b2] = [a3, b3], then (4.12) becomes

∮

S

(

g
∂f

∂n
− f

∂g

∂n

)

dS = a

∫(
g∇2 sgn

(
f + vi

) − sgn
(
f + vi

)∇2g
)
dV. (4.13)

In the case of (4.13), we see that Green’s theorem is satisfied by replacing the function f with
sign data and dividing the surface integral by the noise amplitude. Therefore, all processing of
real data based on Green’s theoremwill be effective for sign data with an associated variance.
We also note that the effectiveness of Green’s theorem on sign data is enhanced by operating
over a symmetric volume. When the volume is not symmetric, we can apply the variant of
Green’s theorem given by (4.12).

5. The 2.5D Case

Now let us consider the special case for which the functions f and g have only two-
dimensional variation. That is,

f −→ f(v1, v2)g −→ g(v1, v2). (5.1)

Without using a generalized sign data average, this implies

a

∫(
g∇2 sgn

(
f + vi

) − sgn
(
f + vi

)∇2g
)
dV = (b3 − a3)

∫(
g∇2f − f∇2g

)
dv1dv2 (5.2)

or

∮

S

(

g
∂f

∂n
− f

∂g

∂n

)

dS = (b3 − a3)
∫(

g∇2f − f∇2g
)
dv1dv2. (5.3)

Equation (5.3) is Green’s theorem for sign data when the data encompasses a 2.5D volume
and is consistent with results reported in Houston and Richard [3].

6. Computational Tests

Equation (2.6) derives from a weighted average of the function yj = sgn(fj +Xj). We can thus
write the expectation value of yi as

E(Y ) =

∑
j gjyj
∑

j gj
. (6.1)
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We find that

E(Y ) =

∑
j gjfj

a
∑

j gj
. (6.2)

The variance, Var(Y ), can be written as

Var(Y ) = E(Y − E(Y ))2. (6.3)

This can be reduced to a simpler form by using the fact that

E
(
Y 2
)
= 1. (6.4)

Thus, we have

Var(Y ) = 1 − (E(Y ))2. (6.5)

We can demonstrate (2.6),

∑

j

gjfj = a
∑

j

gj sgn
(
fj +Xj

)
, (6.6)

computationally. Let

fj = sin
(
jq
)
,

gj = cos
(
jq
)
.

(6.7)

Consequently, we want to demonstrate that

∑

j

cos
(
jq
)
sin
(
jq
)
= a
∑

j

cos
(
jq
)
sgn
(
sin
(
jq
)
+Xj

)
. (6.8)

We can compute the average percentage error β as

β = 100

√
√
√
√
√
√
√

〈(∑
j cos

(
jq
)
sin
(
jq
) − a

∑
j cos

(
jq
)
sgn
(
sin
(
jq
)
+Xj

))2
〉

(∑
j cos

(
jq
)
sin
(
jq
))2

. (6.9)
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Table 1: Twenty trials which compare the values of the indicated expressions forM iterations per trial. The
trials are divided into ten trials for two different noise amplitudes. Recall thatM =

∑
j . LetM = 10000 and

q = 0.0001.
∑M

j=1 cos(jq) sin(jq) a
∑M

j=1 cos(jq) sgn(sin(jq) +Xj)

a = 1
3540.594404 3529.425407 (1)
↓ 3569.469208 (2)

3460.5978 (3)
3540.394914 (4)
3542.955134 (5)
3644.993387 (6)
3441.978126 (7)
3510.495952 (8)
3544.098984 (9)
3645.64803 (10)

β = 0.56447%,Var(Y ) = 0.822949

a = 2
3540.594404 3578.540737 (1)
↓ 3468.32837 (2)

3063.26568 (3)
3629.793227 (4)
3562.692845 (5)
3605.376332 (6)
3284.005063 (7)
3375.67384 (8)
3356.467161 (9)
3500.608956 (10)

β = 1.731154%,Var(Y ) = 0.955737

We should see a correlation between β and Var(Y ). The results of this comparison are shown
in Table 1.

7. Conclusions

Using the results of sign data signal recovery leads to a derivation of a generalized sign
data average. Extending these results to incorporate derivatives leads to a variant of Green’s
theorem for sign data. We find that Green’s theorem directly applies to sign data when the
data volume is symmetric and the surface integral is divided by the noise amplitude. A
specific application of this result is that Green’s theorem applies to sign data when the data
volume is 2.5D and a generalized sign data average is not required.
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