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The dynamical complexity of a system of ordinary differential equations (ODEs) modeling the dynamics of a neuron that interacts
with other neurons through on-off excitatory and inhibitory synapses in a neural system was investigated in detail. The model
used Morris-Lecar (ML) equations with an additional autonomous variable representing the input from interaction of excitatory
neuronal cells with local interneurons. Numerical simulations yielded a rich repertoire of dynamical behavior associated with this
three-dimensional system, which included periodic, chaotic oscillation and rare bursts of episodic periodicity called the transient
periodicity.

1. Introduction

In this paper, we studied a three-dimensional extension of the
Morris-Lecar (ML) system [1, 2]. The ML system is a two-
dimensional representation of the four-variable Hodgkin-
Huxley system [3]. It assumes that the conductivity of Na+

ions is very high. The ML system supports only two types
of dynamics, resting and sustained spiking activity and does
not exhibit chaotic oscillations. In this paper, we explored the
dynamics of a model system that had an extra variable added
to the ML system. The model described a condition in which
excitatory principal cells interacted with local inhibitory
inter neurons. These cells are present in a small volume of
physiological space. Hence, the effect of the spatial structure
of individual cells on the model dynamics was ignored.

The emergent behavior of a population of neurons
was studied by considering population of neurons as the
basic unit of an excitatory pathway connecting to inhibitory
interneurons. The feedback inhibition present in (1) and
(3) is an important part of the system architecture. Thus,
by defining a population of neurons as a dynamical system
[4], we studied the temporal behavior of neurons interacting
with each other as well as with the other population. The V-
W subsystem was governed by a faster time scale compared
to that of state variable Z. All interesting behavior of the
model system resulted from an interaction between the faster

subsystem and a slower one with the population of inhibitory
inter-neurons. The differential equations that represent the
dynamical system were derived by considering the behavior
of prototypical single neurons (ML neurons).

The mean field equations describing the time evolution
of neural system are given as follows:

dV

dt
= − gCam∞(V − 1)− gKW

(
V −VK

)

− gL
(
V −VL

)
+ I − αinh(Z)Z,

(1)

dW

dt
= φ(W∞ −W)

τW
, (2)

dZ

dt
= b(cI + αexc(V)V), (3)

where V and Z are the mean membrane potentials for the
excitatory and inhibitory cells. W is the fraction of open
potassium channels in the population of principal cells. VK

and VL are the Nernst potentials for the potassium ions and
leakage channels. τW , a voltage dependent constant, is given
by

τW = 1
cosh((V −V3)/2V4)

(4)
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where V3 and V4 are the midpoint potentials at which the
potassium and calcium currents are half-activated. The gCa
and gK are the total conductances for the population of cal-
cium and potassium channels, respectively. The constant gL
denotes “leakage conductance,” and it measures the effect of
the channels that are always open. The parameter c represents
the relative strength of current into the inhibitory interneu-
rons to the current into principal cells. The parameter I , the
applied current, is maintained as a constant stimulus. The
changing polarity of the mean membrane potential of the
principal cells ensured that the mean membrane potential of
the inhibitory cells did not grow beyond manageable limit.

The important variables in the model are

m∞(V) = 0.5
[

1 + tanh
(
V −V1

V2

)]
, (5)

W∞(V) = 0.5
[

1 + tanh
(
V −V3

V4

)]
, (6)

αexc(V) = αexc

[
1 + tanh

(
V −V5

V6

)]
, (7)

αinh(Z) = αinh

[
1 + tanh

(
Z −V7

V6

)]
. (8)

m∞ and W∞ are nondimensionalized functions to describe
the voltage-regulated calcium and potassium ion channels,
respectively. The parameters b and φ are temperature scaling
factors. The hyperbolic tangent function describes the col-
lective behavior of a large number of channels. On the right-
hand sides of (7) and (8), αexc and αinh are dimensionless
synaptic strengths of excitatory principal cells and inhibitory
inter-neurons. On the left of these equations are functions
that are parameterized by these dimensionless constants.
These functions were assumed to be of tangent hyperbolic
form. V6 is the steepness parameter for both the functions.
V5 and V7 are the thresholds for the synaptic strength
functions of the excitatory principal cells and inhibitory
interneurons. Both the functions have the same functional
properties. The negative sign in (1) signifies an inhibitory
effect from the interneurons with mean membrane potential
Z on the principal cells. Parameter values for V1, V2, V3,
and V4 are chosen in such a way that nondimensionalized
functions m∞ and W∞ reach their equilibrium values almost
instantaneously. The aim of the paper is to report the rich
dynamical repertoire displayed by the system of ODEs.

The key parameters of the model are b, c, and I . The
parameter b ensures that the inherent time scale of the group
of inhibitory cells is different from the rest of the system. The
parameter c measures the strength of feedforward inhibition.
When V > V5 (a fixed threshold potential), the connection
between the principal cell and the interneuron is opened. The
parameter I represents constant external current. It turned
out to be useful for studying the effects of disinhibition
factors on model dynamics. Yet another key parameter of this
model system is V6, which controls the steepness of the “on-
off” switch in αexc(V) and αinh(Z). For a single presynaptic
terminal, excitatory or inhibitory, one would expect “all
or none” behavior. In that case, one could have a simple
representation of the on/off switch via a Heaviside step

Table 1: Parameter values and units for the Morris-Lecar system of
equations.

Parameter Value Units

V1 −0.01 mV

V2 0.15 mV

V3 0.03 mV

V4 0.3 mV

V5 0.0 mV

V6 0.4 mV

V7 0.05 mV

VK −0.7 mV

VL −0.5 mV

φ 0.4 Dimensionless

I 0.3 μA/cm2

b 0.15 1/ms

c 0.238 ohm cm2

gCa 1.1 mmho/cm2

gK 2.0 mmho/cm2

gL 1.0 mmho/cm2

αexc 1.0 Dimensionless

αinh 1.0 Dimensionless

function. In a population of cells, the connection strengths
vary smoothly as distributions of thresholds exist and the
values of parameters V5 and V7 represent the end points of
this distribution.

Inhibitory inter-neurons are found in many brain
regions. The ML system does not consider the effect of the
inhibitory inter-neurons on the excitatory principal cells.
Since it is based on two primary system variables, the M-
L system cannot support deterministic chaos. We explored
regular and chaotic dynamics, which resulted from an inter-
action of principal cells with inhibitory inter-neurons. When
the values for parameters of the M-L system of equations
(as described above) were suitably chosen, we observed Ca++

and K+ oscillations. The action of inhibitory inter-neurons
on the excitatory system (equations (1) without the last term
and (2)) generated chaotic dynamics as the third variable
(Z) was added to the system. The base parameter values
were chosen in such a way that the M-L system displayed
sustained spiking activity, which has a stable limit cycle as the
underlying attractor. The remaining parameters were set in
such a way that dynamics of the model system unfolded on a
chaotic attractor. The base parameter set for which the model
system (equations (1), (2) and (3) displayed oscillations is
given in Table 1.

The Morris-Lecar equations are applicable to a spatially
isopotential patch of membrane injected with a constant
current. Transition from single shot firing to a stable limit
cycle (tonic firing) occurred as the excitation current was
varied. At very low or very high values of the stimulus, it
had a single stable fixed point. The neurons of the inhibitory
system provided an additional degree of freedom as it is
well known that a minimum of three degrees of freedom are
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Figure 1: Points in the two-dimensional parameter space where
deterministic chaos was observed.

required for a system to support complex dynamics including
chaos. We chose the set of values presented in Table 1 for
the system parameters as base values. At these values of
parameters the system displayed oscillatory behavior. Table 1
gives the chosen parameter values.

2. Simulations

Two-dimensional parameter scans were performed for (b,
VK ) parameter space with b in the range of 0.1 to 0.15 with
a step size of 0.01 and Vk in the range of −0.9 to −0.6 with a
step size of 0.05, and the results of these scans are presented
in Figure 1. The figure plots points at which the system of
differential equations exhibited chaotic solutions and nearby
points in the system exhibited other dynamical behavior.
We used the characteristic signature of deterministic chaos:
sensitive dependence on initial conditions to detect chaos in
the system. Chaotic dynamics was detected when two time
series (collected after transients were allowed to die out)
generated at the same set of parameter values, but, for
two different initial conditions which were nearby, did not
overlap. Computations of the largest Lyapunov exponents
were also performed to confirm the regular or chaotic
behavior observed at a chosen set of parameters. Figures
2(a) and 2(b) demonstrate the onset of chaos through
period doubling route. We have also examined bifurcation
diagrams varying the parameter Vk and confirmed that the
system exhibits period doubling route to chaos. This portrays
sustained spiking activity displayed by the neuronal system
for a given combination of temperature scaling factor and
the Nernst potential for potassium in the node. The chaotic
oscillations of the system are shown in Figures 3(a) and 3(b),
and the largest Lyapunov exponent for the attractor is 0.0621.

The dynamical behavior of the system was sensitive to
changes in both the parameters. It changed from simple
periodic oscillations to complex periodic ones and at times
transitioned to chaos. Two-dimensional parameter scans
showed how sensitive the dynamics of the model system was

when it encountered a change in an intrinsic attribute of
the system. At certain points (e.g., 0.12, −0.7), the system
exhibited bistable behavior; a periodic attractor coexisted
with a chaotic attractor. A few points represented bistability,
especially those at the outer edges of the parameter regions,
and chaotic behavior was observed at discrete points in
closed intervals.

The other two-dimensional parameter scan was carried
out in (b, V6) with b range from 0.10 to 0.15 with a step size
0.01 and V6 range from 0.3 to 0.8 with a step size 0.1. We
found that chaotic behavior exists at (0.1, 0.40), (0.11, 0.3),
(0.12, 0.3), (0.13, 0.3), (0.14, 0.4), (0.15, 0.35), and (0.15,
0.4). At a few points, neuronal dynamics displayed resting
behavior.

Figures 4(a) and 4(b) show stable limit cycle attractor and
corresponding time-series at the point where bi-stability was
detected.

The third parameter scan was performed in (c, VK ) with
the following ranges and step sizes. The range for c was from
0.165 to 0.25 with step size 0.002, and for VK the range
was from −0.85 to −0.7 with a step size of 0.05. Chaos
was observed at the following points: (0.236, −0.85) (0.238,
−0.7), (0.238, −0.85), (0.238, −0.80), and (0.24, −0.80).
Figures 4 and 5 show period-2 cycle and suggest that the
system exhibited period doubling route to chaos.

The fourth and the final parameter scan was performed
in (αexc, αinh), and it showed chaos at the following points:
(1, 0.9), (1.0, 1.1), (1.1, 0.8), (1.1, 0.9), (1.1, 1.0), (1.2, 0.8),
(1.2, 0.9), (1.2, 1.0), (1.3, 0.8), (1.3, 0.9), and (1.3, 1.0).
Figure 6 shows the presence of “edge of chaos” in the neural
system. Edge of chaos is a dynamical phenomenon that is
characterized by the existence of chaotic behavior in finite
but arbitrarily small parameter ranges. This suggests that
smooth changes in the strengths of excitatory and inhibitory
synapses cause dynamical transitions from chaotic behavior
to regular oscillatory dynamics. The model system also show
chaotic saddle which is shown in Figure 7.

Results of time series comparisons were verified by
computing the largest Lyapunov exponents (λmax) using the
Wolf et al. algorithm [5]. We present λmax with standard error
computed from 20 trials of random initial conditions of the
system in Table 2. The choice of the delay for reconstruction
of the dynamics from the time series was made by choosing
the first minimum of mutual information.

We present an interesting finding of transient periodicity
displayed by this neural system, which was detected in the (b,
V6) parameter space which is shown in Figure 8.

3. Results

Chaotic dynamics is characterized by sensitive dependence
on initial conditions. The error committed in fixing initial
conditions grows exponentially with respect to time. The
largest Lyapunov exponent is a quantity that characterizes
the rate of separation of infinitesimally close trajectories. The
time series is termed as chaotic if it returns a positive value
for the Lyapunov exponent. Computer simulations of our
model system suggested that deterministic chaos manifests
itself as short-term recurrent phenomenona.
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Figure 2: (a) Bifurcation diagram where b is the bifurcation parameter and Vk = −0.75. (b) Bifurcation diagram where b is the bifurcation
parameter and Vk = −0.7.
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Figure 3: (a) The strange chaotic attractor at b = 0.15 and VK = −0.7. (b) The time histories for two nearby initial conditions. The
nonoverlap between the two signals and positive Lyapunov establishes that the underlying attractor supports chaotic dynamics.

We discovered rare bursts of “periodic” motion at b =
0.12, V6 = 0.3 (cf. 8b). This phenomenon is known as
“transient periodicity” in the dynamical systems literature.
This is caused by the presence of semiperiodic saddles
(unstable invariant sets) in the chaotic attractor. Motion in
the vicinity of these sets is periodic. In the case of EEG time
series obtained by recording averaged action potentials of
epochs of epileptic seizure [6], burst pattern often contains
nearly periodic dynamics. In chaotic systems, such transient
periodicity can reflect the existence of semi-periodic saddles
contained in the attractor. Motion in the vicinity of such
objects has a prominent periodic component as trajectories
are temporarily attracted to these neighborhoods before
exiting.

4. Discussion

Model simulations and animal experiments suggest that
seizure activity occurs when a critical mass of neurons join
and get involved in time-linked high frequency discharging
[4]. An asynchronous-to-synchronous transition (longer-
time state) is caused either by deterministic changes in
system parameters or spontaneous dynamical shifts from
chaos to order caused by transient periodicity in chaotic
saddles. This situation has a parallel in our model system
wherein the dynamics switched to sustained spiking activity
or to resting behavior from chaotic behavior when small
changes in crucial parameters occurred. This dynamical
behavior is known as “edge of chaos.” Chaotic saddles are
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Figure 4: (a) The period-2 cycle found at b = 0.14 and V6 = 0.4. (b) The corresponding time series obtained for two close initial conditions.
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Figure 5: (a) Period-2 cycle. The attractor was detected at b = 0.12 and V6 = 0.3. Other parameters were fixed at their base values. (b) Time
series for two nearby initial conditions.

Table 2: Values of the largest Lyapunov exponents.

αinh αexc λmax

1 0.9 0.044± 0.008
1 1.1 0.068± 0.006
1.1 0.8 0.019± 0.006
1.1 0.9 0.052 ± 0.005
1.1 1.0 0.069 ± 0.003
1.2 0.8 0.031 ± 0.005
1.2 0.9 0.053 ± 0.006
1.2 1.0 0.068± 0.004
1.3 0.8 0.024± 0.062
1.3 0.9 0.091± 0.013
1.3 1.0 0.065± 0.004

semiperiodic semiattractors that are distinct from the better
known attractors in nonlinear dynamical systems which are
created during boundary crisis [7]. Presence of these unstable
invariant sets generates strong episodic periodic components
embedded in chaotic dynamics. This has been found in
epidemiological models and also in EEG time series from
patients of epilepsy [8, 9].

We envision that chaos is vital for functioning of a
healthy brain and synchronization of the neuronal system
occurs when all its regions are in transient periodicity
represented by chaotic saddles in state space. This is how the
intermittent pathology of epileptic seizures is created. It is
understood that lack of inhibition [6, 10] caused either by
a reduction in the number density of excitatory cells that
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Figure 6: Points in two-dimensional parameter space (αexc,αinh)
where system dynamics displays chaotic behavior. The system sup-
ports regular equilibrium dynamics and sustained periodic oscilla-
tions at intervening points.
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synapse on the inhibitory cells in the focal region or by the
diminished release of neurotransmitter γ-amino butyric acid
in a nearby region leads to seizures (transient periodicity).
The ictal period is represented by periodic oscillations and
the interictal period by chaotic phase. Stable limit cycles
and complex periodic dynamics observed in a narrow range
of model parameter, c, correspond to a biophysical state
of partial dis-inhibition. Biophysical experiments performed
previously [11, 12] have attempted to simulate dynamics
observed in this range. The transient periodicity, which
was detected for higher values of this parameter, has been
observed in electrographic recordings from depth and sub-
dural electrodes performed in epilepsy patients [8].
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Figure 8: (a) Two-dimensional view of the chaotic saddle at b =
0.12, V6 = 0.3 in (V ,Z) plane. (b) Two signals starting from
two nearby initial conditions. The non-overlap between the two
(except in the time domain (700–900)) confirms that the dynamical
behavior displayed by the system is chaos. The transient periodicity
manifests itself in the time domain 700–900.
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