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This paper deals with the problem of the usage of formal techniques, based on model checking, where models are large and formal
verification techniques face the combinatorial explosion issue. The goal of the approach is to express and verify requirements
relative to certain context situations. The idea is to unroll the context into several scenarios and successively compose each scenario
with the system and verify the resulting composition. We propose to specify the context in which the behavior occurs using a
language called CDL (Context Description Language), based on activity and message sequence diagrams. The properties to be
verified are specified with textual patterns and attached to specific regions in the context. The central idea is to automatically split
each identified context into a set of smaller subcontexts and to compose them with the model to be validated. For that, we have
implemented a recursive splitting algorithm in our toolset OBP (Observer-based Prover). This paper shows how this combinatorial
explosion could be reduced by specifying the environment of the system to be validated.

1. Introduction

Software verification is an integral part of the software devel-
opment lifecycle, the goal of which is to ensure that software
fully satisfies all the expected requirements. Reactive systems
are becoming extremely complex with the huge increase
in high technologies. Despite technical improvements, the
increasing size of the systems makes the introduction of a
wide range of potential errors easier. Among reactive systems,
the asynchronous systems communicating by exchanging
messages via buffer queues are often characterized by a vast
number of possible behaviors. To cope with this difficulty,
manufacturers of industrial systems make significant efforts
in testing and simulation to successfully pass the certification
process. Nevertheless, revealing errors and bugs in this huge
number of behaviors remains a very difficult activity. An
alternative method is to adopt formal methods, and to use
exhaustive and automatic verification tools such as model-
checkers.

Model checking algorithms can be used to verify require-
ments of a model formally and automatically. Several model
checkers as [1–5] have been developed to help the verification

of concurrent asynchronous systems. It is well known that
an important issue that limits the application of model
checking techniques in industrial software projects is the
combinatorial explosion problem [6–8]. Because of the
internal complexity of developed software, model checking
of requirements over the system behavioral models could
lead to an unmanageable state space.

The approach described in this paper presents an
exploratory work to provide solutions to the problems
mentioned above. The proposed approach consists to reduce
the set of possible behaviors (and then indirectly the state
space) by closing the system under verification with a
well-defined environment. For this, we propose to specify
the behavior of the entities that compose the system
environment. These entities interact with the system. These
behaviors are described by use cases (scenarios) called here
contexts. They describe how the environment interacts with
the system. Indeed, in the context of embedded reactive
systems, the environment of each system is finite and well
known. We claim that it is more efficient to ask the engineers
to explicitly and formally express this context, than to search
to reduce the state space of the system to explore facing an
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unspecified environment. In other words, the objective is to
circumvent the problem of the combinatorial explosion by
restricting the system behavior with a specific surrounding
environment describing the different configurations in which
one wants to verify the system. Moreover, properties are
often related to specific use cases (such as initialization,
reconfiguration, and degraded modes) so that it is not
necessary for a given property to take into account all
possible behaviors of the environment, but only the subpart
concerned by the verification. The context description thus
allows a first limitation of the explored space search, and
hence a first reduction of the combinatorial explosion.The
second idea exploited is that, if the context is finite (i.e., there
is a noninfinite loop in the context) and in case of safety
(invariant) properties, then the two following verification
processes are equivalent: (a) compose the context and the
system, and then verify the resulting global system; (b) unroll
the context into N scenarios (i.e., a sequence of events),
and successively compose each scenario with the system and
verify the resulting composition. In other words, the global
verification problem can be transformed into N smaller
verification subproblems.

Our approach is based on these two ideas. This paper
presents a DSL (domain-specific language). called CDL
(Context Description Language) for formally describing the
environment of the system to be verified. This language
serves to support our approach to reduce the state space. We
illustrate our reduction technique with our OBP (Observer-
based Prover) (OBP is available on http://www.obpcdl.org/.)
tool connected to two tools: the first is an academic model
checker TINA-SELT (http://projects.laas.fr/tina/) [3] and the
second is an explorer called OBP Explorer, integrated in OBP.
We illustrate our approach with a partial case study provided
by a industrial partner in the aeronautics domain.

This paper is organized as follows: Section 2 presents
the related techniques to improve model checking by state
reduction. Section 3 presents the principles of our approach
for context aware formal verification. Section 4 describes the
CDL language for contexts specification and property spec-
ification. Our toolset used for the experiments is presented
Section 5. In Section 6, we give results on the industrial
case study. In Section 7, we discuss our approach and we
conclude.

2. Related Works

Model checking is a technique that relies on building a finite
model of a system of interest, and checking that a desired
property, specified as a temporal logic formula, holds in
that model. Since the introduction of this technology in the
early 1980s, several model checkers have been developed to
help the verification of concurrent asynchronous systems.
For example, the SPIN model checker [1] based on the
formal language PROMELA allows the verification of LTL
properties encoded in “never claim” formalism and further
converted into Buchi automata. Since its introduction, model
checking has advanced significantly. For instance the state
compression method or partial-order reduction contributed

to the further alleviation of combinatorial explosion [9].
In [10], the partial-order algorithm based on a depth-first
search (DFS) has been adapted to the breadth first search
(BFS) algorithm in the SPIN model checker to exploit
interesting properties inherent to the BFS. Partial-order
methods [9, 11, 12] aim at eliminating equivalent sequences
of transitions in the global state space without modifying
the falsity of the property under verification. These methods,
exploiting the symmetries of the systems, seemed to be
interesting and were integrated into many verification tools
(for instance SPIN).

In the same way, the development of more efficient
data structure, such as binary decision diagrams (BDD)
[13], allows for automatic and exhaustive analysis of finite
state models with several thousands of components or state
variables.

Another approach deals with compositional verifica-
tion, for example, assume/guarantee reasoning or design-
by-contract techniques. A lot of work exist in applying
these techniques to model checking including, for example,
[14–17]. These works deal with model checking/analyzing
individual components (rather than whole systems) by
specifying, considering, or even automatically determining
the interactions that a component has or could have with
its environment so that the analysis can be restricted to
these interactions. Design-by-contract proposes to verify a
system by verifying all its components one by one. Using a
specific composition operator preserving properties, it allows
assuming that the system is verified.

Many other techniques have been proposed for com-
bating state explosion. On-the-fly verification constructs
the state space in a demand-driven way, thus allowing the
detection of errors without a priori building the entire
state space. Distributed verification [18] uses the computing
resources of several machines connected by a network, thus
allowing to scale up the capabilities of verification tools. In
the same objective, methods exploiting heuristic search [19]
have been proposed for improving constraint satisfaction
problem and more generally for optimizing the exploration
for the behaviour of a model to verify.

Combined together, the successful application of these
methods to several case studies (see for instance [20] for
noncritical application, or [21, 22] for aerospace examples)
demonstrates their maturity in the case of synchronous
embedded systems. However, if these techniques are useful
to find modelling errors, they still suffer from combinatorial
explosion in the case of large and complex asynchronous
systems (see [23] for an experiment of SPIN on a real asyn-
chronous function showing that the verification does not
complete despite all the optimizations mentioned above).

Our approach presented in this paper explores another
way for reducing the combinatorial explosion. Conversely to
“traditional” techniques in which contexts are often included
in the system model, we choose to explicit contexts separately
from the model. It is about using the knowledge of the
environment of a whole system (or model) to conduct a
verification to the end. We propose to formally specify the
context behavior in a way that allows a fully automatic
divide-and-conquer algorithm.



Advances in Software Engineering 3

Another difficulty is about requirement specification.
Embedded software systems integrate more and more
advanced features, such as complex data structures, recur-
sion, and multithreading. Despite the increased level of
automation, users of finite-state verification tools are still
constrained to specify the system requirements in their spec-
ification language which is often informal. While temporal
logic-based languages (example LTL or CTL [6]) allow a
great expressivity for the properties, these languages are
not adapted to practically describe most of the require-
ments expressed in industrial analysis documents. Modal
and temporal logics are rather rudimentary formalisms for
expressing requirements, that is, they are designed having in
mind the straight for wardness of its processing by a tool
such as a model checker rather than the user-friendliness.
Their efficient use in practice is hampered by the difficulty
to write logic formula correctly without extensive expertise
in the idioms of the specification languages.

In literature, many approaches have been proposed to
enable software and hardware engineers to use temporal
logic with ease and rigor. For instance [24, 25] proposed a
graphical interval logic (RTGIL) allowing visual an intuitive
reasoning on real-time systems. From a textual point of view,
[26–28] proposed to formulate requirements using textual
patterns, that is, textual templates that capture common
logical and temporal properties and that can be instantiated
in a specific context. They represent commonly occurring
types of real-time properties found in several requirement
documents for embedded systems. These two approaches
have been recently combined by De Francesco et al. in [29].
The authors propose a user-friendly interface with the aim of
simplifying the writing of concurrent system properties. This
interface supplies a set of patterns from the natural language
which are then automatically translated into the mu-calculus
temporal logic.

In this paper, we choose to follow this approach. In order
to be as simple as possible, we only consider safety properties
expressed by using an extension of textual Dwyer’s patterns
and translated into observer automata and invariants. The
work could be extended to other types or properties as
proposed in [29]. Such an extension is out of the scope of
this article.

3. Context Aware Verification

To illustrate the explosion problem, let us consider the exam-
ple in Figure 1. We are trying to verify some requirements
by model checking using the TINA-SELT model checker [3]
and OBP Explorer. We present the results for a part of the
S CP model, which consists in reducing the set of. Then, we
introduce our approach based on context specifications.

3.1. An Illustration. We present one part of an industrial case
study: the software part of an antiaircraft system (S CP). This
controller controls the internal modes, the system physical
devices (sensors, actuators) and their actions in response to
incoming signals from the environment. The S CP system
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Figure 1: S CP system: partial description during the initialization
phase.

interacts with devices (Dev) that are considered to be actors
included in the S CP environment called here context.

The sequence diagrams of Figure 2 illustrate interactions
between context actors and the S CP system during an
initialization phase. This context describes the environment
we want to consider for the validation of the S CP controller.
This context is composed of several actors Dev running
in parallel or in sequence. All these actors interleave their
behavior. After the initializing phase, all actors Devi (i ∈
[1, . . . ,n]) wait for orders goInitDev from the system.
Then, actors Devi send logini and receive either ackLog(id)
(Figures 2(a) and 2(c)) or nackLog(err) (Figure 2(b)) as
responses from the system. The logged devices can send
operate(op) (Figures 2(a) and 2(c)) and receive either
ackOper(role) (Figure 2(a)) or nackOper(err) (Figure 2(c)).
The messages goInitDev can be received in parallel in any
order. However, the delay between messages logini and
ackLog(id) (Figure 1) is constrained by maxD log. The
delay between messages operate(op) and ackOper(role)
(Figure 1) is constrained by maxD oper. And finally all Devi
send logouti to end the interaction with the S CP controller.

As example, let’s see two requirements on the S CP
system. These requirements were found in a document of our
partner and are shown in Listings 1 and 2.

The first requirement R1 is expressed by Listing 1.
We choose to specify this requirement with SELT lan-

guage for the device Dev 1. It is expressed by the following
formula:

Inv1: []((SM 1 voperateAccepted1) =>
(SM 1 vdevLogged1));

SM 1 is a process of S CP and operateAccepted1
and devLogged1 are variables of this process. To verify
this requirement, we used the TINA-SELT model checker
(Figure 3).

Let’s see in Listing 2, the second requirement R2.
We choose to specify this requirement with an observer

automaton (Figure 4). An observer is an automaton which
observes the set of events exchanged by the system S and
its context C (and thus events occurring in the executions
(runs) and which produces an event reject whenever the
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Table 1: Table highlighting the verification complexity for the case study with TINA-SELT.

N (Number of devices) Exploration and model checking time (sec) Number of LTS configurations Number of LTS transitions

1 1 22,977 103,354

2 3 172,095 759,094

3 10 718,623 3,127,468

4 27 2,174,997 9,371,560

5 Explosion — —
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Figure 2: An example of S CP context scenario with 3 devices.
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Figure 4: Observer automaton for requirement R2.

property becomes false. With observers, the properties we
can handle are of safety and bounded liveness type. The
accessibility analysis consists of checking if there is a reject
state reached by a property observer. In our example, this
reject node is reached after detecting the event sequence of
S CP hasReachState Init and login1, in that order, if the
sequence of one or more of ackLog is not produced before
maxD log time units. Conversely, the reject node is not
reached either if S CP hasReachState Init or login1 are never
received, or if ackLog event above is correctly produced
with the right delay. Consequently, such a property can be
verified by using reachability analysis implemented in our
OBP Explorer.

This observer is checked with OBP Explorer (Figure 5).
In both cases, the system model (Here by system model,

we refer to the model to be validated) is translated into
Fiacre format [30] to explore all the S CP model behaviors by
simulation, S CP interacting with its environment (devices).
Model exploration generates a labeled transition system
(LTS) which represents all the behaviors of the controller in
its environment.

3.2. Model Checking Results. Table 1 shows (tests were
executed on Linux 32 bits—3 Go RAM computer, with
TINA vers.2.9.8 and Frac parser vers.1.6.2.) the TINA-SELT
exploration time and the amount of configurations and
transitions in the LTS for different complexities (N indicates
the number of considered actors). Over four devices, we
see a state explosion because of the limited memory of our
computer.

Table 2 shows (tests were executed on Linux 32 bits—
3 Go RAM computer, with OBP Explorer vers.1.0.) the
OBP Explorer exploration analyze time and the amount of
configurations and transitions in the LTS. Over three devices,
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R1: A device (Dev) can be authorized to execute a command “operate” if it
has previously connected to the system.

Listing 1: Permission requirement for command “operate”.

R2: During initialization procedure, S CP shall associate an identifier to
each device (Dev), after login request and before maxD log time units.

Listing 2: Initialization requirement for the S CP system.

Transition
system

Observers

Context

System
model

Explorer
(OBP

explorer)
Fiacre
code

Results

Figure 5: Verification with OBP Explorer.

we see also a state explosion because of the limited memory
of our computer.

Note that the size of the LTS explored by OBP Explorer
for verifying R2 is greater than the size of the related LTS
explored by TINA-SELT for verifying R1. This is due to
the way chosen for modeling these two requirements. R1
is formalized as a SELT formula, and R2 is modeled as an
observer automaton. In the second experiment (R2 with OBP
Explorer), the explorer begins by building the synchronized
product between the model of the system, each context and
the observer automaton. If this automaton contains several
locations and several clocks, taking into account the observer
as an input of the synchronized product could significantly
increase the number of states and transitions explored.

3.3. Combinatorial Explosion Reduction. When checking the
properties, a model checker explores all the model behaviors
and checks whether the properties are true or not. Most
of the time, as shown by previous results, the number of
reachable configurations is too large to be contained in
memory (Figures 3 and 5). We propose to restrict model
behavior by composing it with an environment that interacts
with the model. The environment enables a subset of the
behavior of the model. This technique can reduce the
complexity of the exploration by limiting the scope of the
verification to precise system behaviors related to some
specific environmental conditions.

This reduction is computed in two stages: contexts
are first identified by the user (contexti, i ∈ [1, . . . ,N]

Model
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Context2
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Context1

State space 1

State space 2

State space N

···

···

···

×

CDL

CDL

CDL

Figure 6: Context-aware model checking.

in Figure 6). They correspond to patterns of use of the
component being modeled. The aim is to circumvent the
combinatorial explosion by restricting the behavior system
with an environment describing different configurations in
which one wishes check the requirements. Then each context
contexti is automatically partitioned into a set of subcontexts.
Here, we precisely define these two aspects implemented in
our approach.

3.3.1. Context Identification. The context identification
focuses on a subset of behavior and a subset of properties. In
the context of reactive embedded systems, the environment
of each component of a system is often well known. It is
therefore more effective to identify this environment than
trying reduce the configuration space of the model system to
explore. The proof relevance is based on a strong hypothesis:
it is possible to specify the sets of bounded behaviors in a
complete way. This hypothesis not formally justified in our
work. But, in this approach, the essential idea is the designer
can correctly develop a software only if he knows the constraints
of its use. So, we suppose that the designer is able to
identify all possible interactions between the system and its
environment.

It’s particularly true in the field of embedded systems,
with the fact that the designer of a software component needs
to know precisely and completely the perimeter (constraints,
conditions) of its system for properly developing it.
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Table 2: Table highlighting the verification complexity for the case study with OBP Explorer.

N (Number of devices) Exploration and analyze time (sec) Number of LTS configurations Number of LTS transitions

1 1 43,828 321,002

2 4 350,256 2,475,392

3 19 1,466,934 6,430,265

4 Explosion — —

We also consider second hypothesis. It expresses that the
contexts we describe are finite. There are no infinite loops
in the interactions between the system and its environment.
It is particularly true for instance with command systems or
communication protocols.

It would be necessary to study formally the validity of
these working hypothesis based on the targeted applications.
In this paper, we do not address this aspect that gives rise to
a methodological work to be undertaken.

Moreover, properties are often related to specific use
cases (such as initialization, reconfiguration, and degraded
modes). Therefore, it is not necessary for a given property to
take into account all possible behaviors of the environment,
but only the subpart concerned by the verification. The
context description thus allows a first limitation of the
explored space search, and hence a first reduction in the
combinatorial explosion.

3.3.2. Context Automatic Splitting. The second idea is to
automatically split each identified context into a set of
smaller subcontexts (Figure 7). The principle of splitting
is as following: each context is represented by an acyclic
graph as mentioned earlier. This graph is composed with the
model for exploration. In case of explosion, this context is
automatically split into several parts taking into account a
parameter for the depth in the graph for splitting until the
exploration succeeds.

To reach that goal, we implemented a recursive splitting
algorithm in our OBP tool. Figure 7 illustrates the function
explore mc() for exploration of a model, with a contexti and
model checking of a set of properties pty.

We illustrate one execution of this algorithm in
Figures 8 and 9. One context contexti, represented by an
acyclic graph, is composed with the model S for exploration.
In case of explosion, contexti is automatically split into
several parts (taking into account a parameter d which
specifies the depth in the graph for splitting) until the
exploration succeeds. For example in Figure 8, the graph of
contexti is split in four graphs contexti1; contexti2, contexti3,
and contexti4. After splitting of contexti, the subcontexts are
composed with the model for exploration. If exploration
fails, one subcontext is split, as contexti3 into contexti31 and
contexti32, taking into account parameter d.

In Figure 9, we illustrate contexti which is split into
Ci1,Ci2, and Ci3 subcontexts and composed with model S.
the exploration of model‖Ci1 successes (we note ‖ as
composition operator). The explorations of model‖Ci2 and
model‖Ci3 fail. So, Ci2 (resp., Ci3) is split into subcontexts
Ci21 and Ci22 (Ci31 and Ci32 resp.,). In the same way,

Ci31 is split into subcontexts Ci311, Ci312, and Ci313. This
algorithm is executed until all the explorations succeed.
Since the property set pty is associated with the context
contexti, pty is checked during the explorations with all
subcontexts. We demonstrated in [31] that the verification of
property set (as pty) taking into account of model‖contexti
exploration is equivalent union of verifications taking into
account each model‖Ck exploration (Ck is each subcon-
text Ci1,Ci21,Ci22,Ci32,Ci311,Ci312, andCi313 as illustrated in
Figure 9).

The following verification processes are then equivalent:
(i) compose the context contexti and the system, and then
verify the resulting global system, (ii) partition the context
contexti into Ki subcontexts (scenarios), and successively
deal each scenario with the model and check the properties
on the outcome of each composition. Actually, we transform
the global verification problem for contexti into Ki smaller
verification subproblems. In our approach, the complete
context model can be split into pieces that have to be
composed separately with the system model.

In summary, the context aware method provides three
reduction axes: the context behavior is constrained, the
properties are focused, and the state space is split into pieces.
Finally, the N verifications for the set of N contexts is
transformed into N ′ verifications with N ′ = ∑N

i=1 Ki small
verifications.

The reduction in the model behavior is particularly
interesting while dealing with complex embedded systems,
such as in avionic systems, since it is relevant to check
properties over specific system modes (or use cases) which
is less complex because we are dealing with a subset
of the system automata. Unfortunately, only few existing
approaches propose operational ways to precisely capture
these contexts in order to reduce formal verification com-
plexity and thus improve the scalability of existing model
checking approaches. The necessity of a clear methodology
has also to be identified, since the context partitioning
is not trivial, that is, it requires the formalization of the
context of the subset of functions under study. An associated
methodology must be defined to help users for modeling
contexts (out of scope of this paper).

4. CDL Language for Context and
Property Specification

We propose a formal tool-supported framework that com-
bines context description and model transformations to
assist in the definition of requirements and of the environ-
mental conditions in which they should be satisfied. Thus,
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explore mc (model, contexti , pty, d)
{ //---- exploration -----

lts explore (model, contexti);
//---- model-checking -----
if lts ! error model check (lts, pty);
else
{ set c split (context, d); // splitting

for k: 0 to size of set c
explore mc (model, set ck, pty, d);

}
}

Model
to be

validated
(fiacre)

Contexti

Splitting

Global contexti

Unfolding,
interleaving

Ki explorations
and verifications

Set of Ki subcontexts

CDL

=

=

=

Figure 7: Context splitting and verification for each partition (subcontext).
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Figure 8: Context splitting algorithm.

we proposed [32] a context-aware verification process that
makes use of the CDL language. CDL was proposed to fill
the gap between user models and formal models required
to perform formal verifications. CDL is a (domain specific
language) presented either in the form of UML like graphical
diagrams (a subset of activity and sequence diagrams) or in
a textual form to capture environment interactions.

4.1. Context Hierarchical Description. CDL is based on Use
Case Charts of [33] using activity and sequence diagrams.
We extended this language to allow several entities (actors)
to be described in a context (Figure 10). These entities run in
parallel. A CDL (For the detailed syntax, see [34] available
on http://www.obpcdl.org/.) model describes, on the one
hand, the context using activity and sequence diagrams
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Figure 9: An example of context splitting execution.

and, on the other hand, the properties to be checked using
property patterns. Figure 10 illustrates a CDL model for the
partial use cases of Figures 1 and 2. Initial use cases and
sequence diagrams are transformed and completed to create
the context model. All context scenarios are represented,
combined with parallel and alternative operators, in terms
of CDL.

A diagrammatical and textual concrete syntax is created
for the context description and a textual syntax for the
property expression. CDL is hierarchically constructed in
three levels: level 1 is a set of use case diagrams which
describes hierarchical activity diagrams. Either alternative
between several executions (alternative/merge) or a paral-
lelization of several executions (fork/join) is available. Level
2 is a set of scenario diagrams organized in alternatives.
Each scenario is fully described at level 3 by sequence
diagrams. These diagrams are composed of lifelines, some
for the context actors and others for processes composing
the system model. Counters limit the iterations of diagram
executions. This ensures the generation of finite context
automata.

From a semantic point of view, we can consider that the
model is structured in a set of sequence diagrams (MSCs)
connected together with three operators: sequence (seq),
parallel (par), and alternative (alt). The interleaving of
context actors described by a set of MSCs generates a graph
representing all executions of the actors of the environment.
This graph is then partitioned in such a way as to generate
a set of subgraphs corresponding to the subcontexts as
mentioned in Section 3.3.

The originality of CDL is its ability to link each
expressed property to a context diagram, that is, a lim-
ited scope of the system behavior. The properties can
be specified with property pattern definitions described
in [32, 34]. For checking, properties are linked to one
or several context descriptions. Listing 3, we illustrate
an example (textual version) of a scenario (scenario ex)
with linked properties: three observer-based properties
P1, P2, and P3 (Pi (i ∈ [1, . . . ,3]) property specifying
requirement R2) and three invariants Inv1, Inv2, and Inv1
(Invi (i ∈ [1, . . . , 3]) property specifying requirement

R1). As example, properties P1 and Inv1 are specified at
Section 4.2.

The clause init specifies an initialization with an activity.
Actors DEV1, DEV2, and DEV3 are specified with activities,
by Listing 4.

In Listing 4, the operators “;” and “[]” are respectively
the sequence (seq) and alternative (alt) operators. CDL
is designed so that formal artifacts required by existing
model checkers could be automatically generated from it.
This generation is currently implemented in OBP described
briefly in Section 5. The CDL formal syntax and semantics
are presented in [35].

4.2. Property Specification Patterns. Property specifying
needs to use powerful yet easy mechanisms for expressing
temporal requirements of software source code. As example,
requirements as R1 or R2 of the S CP system described in
Section 3.1 can refer to many events related to the execution
of the model or environment. Also, a requirement can
depends on an execution history that has to be taken into
account as a constraint or precondition.

If we want to express these kinds of requirements with
a temporal logic based language as LTL or CTL, the logical
formulas are of great complexity and become difficult to read
and to handle by engineers. So, for the property specification,
we propose to reuse the categories of Dwyer patterns [26] and
extend them to deal with more specific temporal properties
which appear when high-level specifications are refined.
Additionally, a textual syntax is proposed to formalize
properties to be checked using property description patterns
[28]. To improve the expressiveness of these patterns, we
enriched them with options (Prearity, Postarity, Immediacy,
Precedence, Nullity, and Repeatability) using annotations as
[27]. Choosing among these options should help the user
to consider the relevant alternatives and subtleties associated
with the intended behavior. These annotations allow these
details to be explicitly captured. During a future work, we
will adapt these patterns taking into account the taxonomy
of relevant properties, if this appears necessary.

We integrate property patterns description in the CDL
language. Patterns are classified in families, which take
into account the timed aspects of the properties to be
specified. The identified patterns support properties of
answer (Response), the necessity one (Precedence), of absence
(Absence), of existence (Existence) to be expressed. The
properties refer to detectable events like transmissions or
receptions of signals, actions, and model state changes. The
property must be taken into account either during the entire
model execution, before, after, or between occurrences of
events. Another extension of the patterns is the possibility of
handling sets of events, ordered or not ordered similar to the
proposal of [36]. The operators AN and ALL, respectively,
specify if an event or all the events, ordered (Ordered) or not
(Combined), of an event set are concerned with the property.

We illustrate these patterns with our case study. The
given requirement R2 (Listing 2) must be interpreted and
can be written with CDL in a property P1 as follow (cf.
Listing 5). P1 is linked to the communication sequence
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Level 2

Level 1

Level 3

Dev i

Dev i

Dev i

Dev i
Dev i

Dev i

Dev i

Dev i

S CP

S CP

S CP
S CP

S CP

S CP

S CPlogout i

ackOper(role) nackOper(err)

nackLog(err)

operate(op)

ackLog(id)

goInitDev

alt

alt

Dev1 Dev2 Dev3

P3P1

par

seq

login i

≪scope≫ ≪scope≫

Figure 10: S CP case study; partial representation of the context.

cdl scenario ex is

{
properties P1, P2, P3 // references to observers

assert Inv1, Inv2, Inv3 // references to invariants

init is { initDevs } // initialization sequence

main is { DEV1 || DEV2 || DEV3 } // body of scenario

}

Listing 3: A CDL scenario with several observer-based properties and invariants.

between the S CP and device (Dev1). According to the
sequence diagram of Figure 10, the association to other
devices has no effect on P1.

P1 specifies an observation of event occurrences in
accordance with Figure 10. login1 refers to login1 reception
event in the model, ackLog refers to ackLog reception event
byDev1. S CP hasReachState Init refers a state change in the
model under study.

In CDL, we specify properties with events and predicates.
For example, the event S CP hasReachState Init is defined
with predicate S CP State Init as follows:

event S CP hasReachState Init is
{S CP State Init becomes true}

The predicate S CP State Init is defined as follows:
predicate S CP State Init is {{SM}

1@State Init}
with State Init as a state of process SM 1.

Invariants are specified with CDL predicats. As example,
invariant Inv1 is specified as in Listing 6.

5. OBP Toolset

To carry out our experiments, we used OBP tool (Figure 11).
OBP is an implementation of a CDL language translation
in terms of formal languages, that is, currently Fiacre [30].
As depicted in Figure 11, OBP leverages existing academic
model checkers such as TINA-SELT [3] or simulators such
as OBP Explorer. From CDL context diagrams, the OBP
tool generates a set of context graphs which represent the
sets of the environment runs. Currently, each generated
graph is transformed into a Fiacre automaton. Each graph
represents a set of possible interactions between model and
context. To validate the model under study, it is necessary
to compose each graph with the model. Each property on
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activity DEV1 is
{

{ event send login1; {event recv ack log1 [] event recv nack log1}};
{ event send operate1; {event recv ack oper1 [] event recv nack oper1}};
{ send logout1 to { SM }1}

}

Listing 4: An CDL activity.

Property P1;
ALL Ordered

exactly one occurrence of S CP hasReachState Init

exactly one occurrence of login1

end

eventually leads-to [0..maxD log]

AN

one or more occurrence of ackLog (id)

end

S CP hasReachState Init may never occurs

login1 may never occurs

one of ackLog (id) cannot occur before login1

repeatability: true

Listing 5: A response pattern from R2 requirement.

each graph must be verified. In the case of TINA-SELT, the
properties are expressed with SELT logic formula [3]. With
OBP Explorer, OBP generates an observer automaton [37]
from each property for OBP Explorer. With OBP Explorer,
the accessibility analysis is carried out on the result of the
composition between a graph, a set of observers and the
system model as described in [32]. If for a given context,
we face state explosion, the accessibility analysis, or model-
checking is not possible. In this case, the context is split into
a subset of contexts and the composition is executed again as
mentioned in Section 3.3.

To import models with standard format such as UML,
SysML, AADL, and SDL, we necessarily need to imple-
ment adequate translators such as those studied in Top-
Cased (http://www.topcased.org/) or Omega (http://www-
omega.imag.fr/.) projects to generate Fiacre programs.

6. Experiments and Results

Our approach was applied to several embedded systems
applications in the avionic or electronic industrial domain.
These experiments were carried out with our French indus-
trial partners. In [32], we reported the results of these
experiments. For the S CP case study, we constructed several
CDL models with different complexities depending on the
number of devices. The tests are performed on each CDL
model composed with S CP system.

Table 3 shows the amount of TINA-SELT exploration and
model checking (tests with same computer as for Table 1) for
checking of requirement R1 with the use of context splitting.
The first column depicts the number N of Dev asking for
login to the S CP. The third one indicates the number
of subcontext after splitting by OBP. The other columns
depict the exploration time and the cumulative amount of
configurations and transitions of all LTS generated during
exploration by TINA with context splitting. For example,
with 7 devices, we needed to split the CDL context in 56 parts
for successful exploration. Without splitting, the exploration
is limited to 4 devices by state explosion as shown Table 1.
It is clear that device number limit depends on the memory
size of used computer.

Table 4 shows the amount of OBP Explorer exploration
and analyze (tests with same computer as for Table 2) for
checking of requirement R2 with the use of context splitting.
With 7 devices, we needed to split the CDL context in
344 parts for successful exploration. Without splitting, the
exploration is limited to three devices by state explosion as
shown Table 2.

As mentioned previously in Section 3.2, the size of the
LTS explored by OBP Explorer for verifying R2 is greater
than the size of the related LTS explored by TINA-SELT for
verifying R1. In that case, being able to split the contexts
in order to overcome this new source of combinatorial
explosion, as proposed by OBP, is of greater importance.
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predicate Inv1 is
{ ({SM}1:operateAccepted1 = false) or ({SM}1:devLogged1 = true) }

Listing 6: A CDL invariant.

OBP

Model specification
(SysML, AADL, SDL)

Context and
requirements

(informal)

Results

Results

TINA
SELT

OBP
explorer

Model to be
validated
(SysML,

AADL, SDL)
Fiacre
code Fiacre

code

DataCDL

Figure 11: CDL model transformation with OBP.

The example given (Figure 1) illustrates a case where
there are lots of asynchrony in the behavior of environment
actors, causing an explosion in the number of states and thus
an increase in the number of contextes generated. We obtain
a good performance with this method in case the one hand,
the contexts restrict significantly the behavior of the model
to be validated (space-complexity reduction) and, secondly,
in case the context number is not too large (time-complexity
reduction).

Exploration can easily be parallelized. In fact, the split-
ting method allows contexts to be distributed on machine
network. We do not yet implement this parallelization tech-
nique, but it can be very effective. Suppose we have a network
of N similar machines. We can divide by N time of global
exploration. This is an approximation by considering that the
context transfer delays and result return delays are negligible
compared to the exploration time on a machine. We should
take into account the exploration time is not identical
for all contexts. But parallelization can significantly improve
the proof execution time. For example, in case shown in
Table 4, with 20 machines (resp., 100), we can hope to
obtain an execution time of approximately 5 minutes (resp. 1
minute) instead of two hours on a single machine. We believe
our method of context splitting is complementary with other
reduction methods. On some machine, for one subcontext,
we can use another technique complementary way.

7. Discussion and Conclusion

CDL is a prototype language to formalize contexts and
properties. However, CDL concepts can be implemented in

another language. For example, context diagrams are easily
described using full UML2. CDL permits us to study our
methodology. In future work, CDL can be viewed as an
intermediate language. Today, the results obtained using the
currently implemented CDL language and OBP are very
encouraging. For each case study, it was possible to build
CDL models and to generate sets of context graphs with OBP.

During experiments, we noted that some contexts and
requirements were often described in the available docu-
mentation in an incomplete way. During the collaboration
with us, these engineers responsible for developing this
documentation were motivated to consider a more formal
approach to express their requirements, which is certainly a
positive improvement.

In case studies, context diagrams were built, on the one
hand, from scenarios described in the design documents
and, on the other hand, from the sentences of requirement
documents. Two major difficulties have arisen. The first is
the lack of complete and coherent description of the envi-
ronment behavior. Use cases describing interactions between
the system (S CP for instance) and its environment are often
incomplete. For instance, data concerning interaction modes
may be implicit. CDL diagram development thus requires
discussions with experts who have designed the models
under study in order to explicate all context assumptions.
The problem comes from the difficulty in formalizing system
requirements into formal properties. These requirements
are expressed in several documents of different (possibly
low) levels. Furthermore, they are written in a textual form,
and many of them can have several interpretations. Others
implicitly refer to an applicable configuration, operational
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Table 3: Exploration and model checking of R1 with TINA-SELT with context splitting using OBP.

Number of devices Exploration time (sec) Number of sub-contexts Number of LTS configurations Number of LTS transitions

5 112 3 2,233,959 9,875,418

6 2,150 42 32,185,530 158,230,583

7 4,209 56 66,398,542 330,148,458

Table 4: Exploration and analyze of R2 with OBP Explorer with context splitting using OBP.

Number of devices Exploration time (sec) Number of sub-contexts Number of LTS configurations Number of LTS transitions

4 954 22 16,450,288 75,362,832

5 1,256 28 33,568,422 156,743,290

6 3,442 242 68,880,326 368,452,864

7 6,480 344 126,450,324 634,382,590

phase, or history without defining it. Such information,
necessary for verification, can only be deduced by manually
analyzing design and requirement documents and by inter-
viewing expert engineers.

The use of CDL as a framework for formal and explicit
context and requirement definition can overcome these two
difficulties: it uses a specification style very close to UML
and thus readable by engineers. In all case studies, the
feedback from industrial collaborators indicates that CDL
models enhance communication between developers with
different levels of experience and backgrounds. Addition-
ally, CDL models enable developers, guided by behavior
CDL diagrams, to structure and formalize the environment
description of their systems and their requirements.

One element highlighted when working on embedded
software case studies with industrial partners, is the need
for formal verification expertise capitalization. Given our
experience in formal checking for validation activities it
seems important to structure the approach and the data
handled during the verifications. That can lead to a better
methodological framework, and afterwards a better integra-
tion of validation techniques in model development pro-
cesses. Consequently, the development process must include
a step of environment specification making it possible to
identify sets of bounded behaviors in a complete way.

Although the CDL approach has been shown scalable
in several industrial case studies, the approach suffers from
a lack of methodology. The handling of contexts, and then
the formalization of CDL diagrams, must be done carefully
in order to avoid combinatorial explosion when generating
context graphs to be composed with the model to be
validated. The definition of such a methodology will be
addressed by the next step of this work.
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Université de Rennes I., December 2006.

[32] P. Dhaussy, P. Y. Pillain, S. Creff, A. Raji, Y. Le Traon, and B.
Baudry, “Evaluating context descriptions and property defi-
nition patterns for software formal validation,” in Proceedings
of the 12th IEEE/ACM Conference Model Driven Engineering
Languages and Systems (Models ’09), vol. 5795 of Lecture Notes
in Computer Science, pp. 438–452, Springer, 2009.

[33] J. Whittle, “Specifying precise use cases with use case charts,”
in Proceedings of the International Conference on Satellite Events
at the MoDELS (MoDELS ’06), vol. 3844 of Lecture Notes in
Computer Science, pp. 290–301, 2006.

[34] P. Dhaussy and J. C. Roger, “Cdl (context description lan-
guage): syntax and semantics,” Tech. Rep., ENSTA, Bretagne,
France, 2011.

[35] P. Dhaussy, F. Boniol, and J.-C. Roger, “Reducing state explo-
sion with context modeling for model-checking,” in Proceed-
ings of the 13th IEEE International High Assurance Systems
Engineering Symposium (Hase ’11), Boca Raton, Fla, USA,
2011.

[36] W. Janssen, R. Mateescu, S. Mauw, P. Fennema, and P. Van Der
Stappen, “Model checking for managers,” in Proceedings of the
International SPIN Workshop on Model Checking of Software,
pp. 92–107, 1992.

[37] N. Halbwachs, F. Lagnier, and P. Raymond, “Synchronous
observers and the verification of reactive systems,” in Proceed-
ings of the 3rd International Conference on Algebraic Method-
ology and Software Technology (AMAST ’93), M. Nivat, C.
Rattray, T. Rus, and G. Scollo, Eds., Workshops in Computing,
Springer, Twente, The Netherlands, June 1993.



Submit your manuscripts at
http://www.hindawi.com

Computer Games 
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed 
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied 
Computational 
Intelligence and Soft 
Computing

 Advances in 

Artificial 
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Journal of

Computer Networks 
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in 

Multimedia

 International Journal of 

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational 
Intelligence and 
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014


