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We will give generalized definitions called type II n-cocycles and weak quasi-bialgebra and also
show properties of type II n-cocycles and some results about weak quasi-bialgebras, for instance,
construct a new structure of tensor product algebra over a module algebra on weak quasi-
bialgebras.

1. Introduction

We will introduce a new generalized definition called type II n-cocycle; the namely, relax the
invertible condition of associator in n-cocycle up to adding an associator satisfies all forms in
definition of n-cocycle together with the original associator, and both need not to be invertible
for each other; then we give examples to illustrate it clearly. Majid have shown many results
about n-cocycle in [1], and we obtain some results including cohomologous concept through
this new definition, main properties of type II n-cocycles, and its simple classification.

It is well known that quasi-bialgebras and quasi-Hopf algebras play important roles
in quantum group theory, and these concepts were introduced by Drinfel’d in [2] who
relaxed the coassociative law of Δ up to conjugation. In this paper, we will show a new
definition called weak quasi-bialgebra, a generalization of quasi-bialgebras, and there are
simple examples to illustrate. Authors show results for weak quasi-bialgebras in place of
quasi-bialgebras (cf. [1, 3]), including that there exists an algebra structure on A ⊗ H, a
generalization of the algebra product in [3], where H is a weak quasi-bialgebra and A is
aH-module algebra.

We follow all the notation and conventions in [1], throughout the paper. In the
following, k will be a fixed field throughout, and all algebras, coalgebras, vector spaces, and
so forth are over k automatically unless specified. We recall definitions as follows.
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Definition 1.1. For any bialgebra, if there is an invertible element θ ∈ H⊗n such that

∂θ = (Δ0θΔ2θ · · ·Δsθ)(Δ1θΔ3θ · · ·Δtθ) = 1, (1.1)

where integers s and t are max even number and max odd number, respectively, in
{0, 1, . . . , n}, we call θ an n-cocycle. If εi(θ) = 1 (0 � i � n), then the cocycle is counital.
We define Δi = id ⊗ · · · ⊗ Δ ⊗ · · · ⊗ id, εi = id ⊗ · · · ⊗ ε ⊗ · · · ⊗ id (1 � i � n),Δ0 = 1 ⊗ θ, and
Δn+1 = θ ⊗ 1.

Definition 1.2. LetH be a k-algebra with unit and homomorphismsΔ : H → H⊗H, ε : H →
k. If there exists a counital 3-cocycle Φ ∈ H⊗3 rendering that, for all h ∈ H,

(id ⊗Δ)Δh = Φ(Δ ⊗ id)(Δh)Φ−1,

(ε ⊗ id)Δh = 1k ⊗ h, (id ⊗ ε)Δh = h ⊗ 1k.
(1.2)

Then H is called a quasi-bialgebra together with coproduct Δ and counit ε, and call Φ an
associator.

We will denote the tensor components of Φ, φ with big and small letters, respectively,
for instance,

Φ =
∑

X1 ⊗X2 ⊗X3 =
∑

Y 1 ⊗ Y 2 ⊗ Y 3 =
∑

Z1 ⊗ Z2 ⊗ Z3 etc.,

φ =
∑

x1 ⊗ x2 ⊗ x3 =
∑

y1 ⊗ y2 ⊗ y3 =
∑

z1 ⊗ z2 ⊗ z3 etc.,
(1.3)

where xi is the ith factor.

Definition 1.3. LetH be a quasi-bialgebra and A a vector space. If A has a multiplication and
the unit 1A obeying that

a(bc) =
∑(

X1 · a
)[(

X2 · b
)(
X3 · c

)]
,

h · (ab) =
∑

(h1 · a)(h2 · b), h · 1A = ε(h)1A,
(1.4)

for any a, b, c ∈ A and h ∈ H, where · :< H ⊗ A → A is the H-module structure map of A,
then say A is a leftH-module algebra.

In bialgebras, the composition of any two algebra homomorphisms Δi,Δj satisfies the
equality ΔiΔj = Δj+1Δi for all i ≤ j. We will use this equation frequently.

2. Type II Cocycles and Weak Quasi-Bialgebras

Definition 2.1. An associative algebra H with unit over a commutative ring R called a fake
bialgebra, if there are two algebra homomorphisms Δ : H → H ⊗H and ε : H → R.
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Definition 2.2. LetH be a fake bialgebra, and elements Φ, φ ∈ H⊗n. Denote

∂
(
Φ, φ

)
= (Δ0ΦΔ2Φ · · ·ΔsΦ)

(
Δ1φΔ3φ · · ·Δtφ

)
,

χ
(
Φ, φ

)
= (ΔtΦΔt−2Φ · · ·Δ1Φ)

(
ΔsφΔs−2φ · · ·Δ0φ

)
,

(2.1)

where integers s and t in {0, 1, . . . , n} are max even number and max odd number,
respectively. If there exists an element ψ(Φ, φ) ∈ H⊗n+1 with ψ(Φ, φ)∂(Φ, φ) = χ(Φ, φ), which
makes ∂(Φ, φ) and Φ, φ satisfy all equalities that one side of equalities is not a single item
at least, similar to (1.1). Then call the pair (Φ, φ) a type II n-cocycle for H and denote it by
(Φ, φ)IIn . The cocycle (Φ, φ)

II
n is called counital, if both Φ and φ are counital.

There is a nature way to define type I n-cocycle (Φ, φ)In similarly. If we require the type
II n-cocycle (Φ, φ)IIn for H to satisfy all transformations of (1.1), but each side of formulas
must have one item at least, then the type II n-cocycle (Φ, φ)IIn is called type I n-cocycle and
denoted by (Φ, φ)In.

We write ∂, ψ, and χ briefly for ∂(Φ, φ), ψ(Φ, φ), and χ(Φ, φ) without confusions,
respectively. To clarify a new definition above, we give simple examples on a fake bialgebra
H. In the following, we discuss type II n-cocycles (Φ, φ)IIn only.

Example 2.3. Cocycle (Φ, φ)II1 means both Φ and φ are inH, obeying that

∂Δ1Φ = Δ0ΦΔ2Φ, Δ0φ∂ = Δ2ΦΔ1φ. (2.2)

And there is ψ ∈ H⊗2 such that

Δ2φΔ0φ = Δ1φψ, Δ1ΦΔ2φ = ψΔ0Φ, (2.3)

where ∂ = Δ0ΦΔ2ΦΔ1φ.

Example 2.4. Cocycle (Φ, φ)II3 and ∂ = Δ0ΦΔ2ΦΔ4ΦΔ1φΔ3φ, ψ ∈ H⊗4, where Φ, φ ∈ H⊗3,
satisfy that

∂Δ3ΦΔ1Φ = Δ0ΦΔ2ΦΔ4Φ, ∂Δ3ΦΔ1ΦΔ4φ = Δ0ΦΔ2Φ,

∂Δ3Φ = Δ0ΦΔ2ΦΔ4ΦΔ1φ,
(
Δ0φ

)
∂Δ3ΦΔ1Φ = Δ2ΦΔ4Φ, etc.,

Δ3ΦΔ1Φ = ψΔ0ΦΔ2ΦΔ4Φ, Δ3ΦΔ1ΦΔ4φ = ψΔ0ΦΔ2Φ,

Δ3ΦΔ1ΦΔ4φΔ2φ = ψΔ0Φ, Δ1ΦΔ4φΔ2φ =
(
Δ3φ

)
ψΔ0Φ, etc.

(2.4)

Observing examples, we can see that ∂ and Φ are replaced by ψ and φ, respectively,
after moving to a corresponding place in the other side of equations, and vice versa. Obvi-
ously, n-cocycle θ must be a type II 2-cocycle (θ, θ−1)IIn and ∂(θ, θ−1) = ψ(θ, θ−1) = 1.

Example 2.5. Let A be an associative algebra with an idempotent q ∈ A over a field k. Define
Δ : A → A ⊗A by Δ(a) = a ⊗ a and ε : A → k by ε(a) = 0k, for all a ∈ A. It is clear that A is
a fake bialgebra. We set Φ = φ = q and ψ = q ⊗ q, then ∂ = χ = q ⊗ q. It is easy to check that
(Φ, φ) is a type II 1-cocycle.
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Proposition 2.6. Let (Φ, φ)IIn be a cocycle for a fake bialgebraH, and denote

∂ = (Δ0ΦΔ2Φ · · ·ΔsΦ)
(
Δ1φΔ3φ · · ·Δtφ

)
,

χ = (ΔtΦΔt−2Φ · · ·Δ1Φ)
(
ΔsφΔs−2φ · · ·Δ0φ

)
,

(2.5)

where integers s and t in {0, 1, . . . , n} are max even number and max odd number, respectively. Then
one has the following.

(1) χ = ψΔ0(Φφ) = Δt(Φφ)ψ = (ΔtΦΔt−2Φ · · ·Δ1Φ)(Δ1φΔ3φ · · ·Δtφ) = χ∂ = χ2, and
∂ = Δ0(Φφ)∂ = ∂Δt(Φφ) = (Δ0ΦΔ2Φ · · ·ΔsΦ)(ΔsφΔs−2φ · · ·Δ0φ) = ∂χ = ∂2.

(2) If ∂ is commutative with χ, then χ = ∂. Especially, if either ∂ or χ is zero, then the other
one is zero too. On the other hand, if either of elements ∂ and χ is not zero, then the rest
elements in set {∂, χ, ψ} are not zero.

(3) If Δ0(Φφ) − 1 is a left unit and Φ is not a right zero divisor, then ∂ = χ = ψ = 0.

(4) If Φ has a right inverse Φ−1
R , so do ∂, ψ, and χ. Similarly, if φ has a left inverse φ−1

L , so do
∂, ψ, and χ.

Proof. (1) We obtain that χ = Δt(Φφ)ψ by

(
Δtφ

)
ψ = Δt−2Φ · · ·Δ3ΦΔ1ΦΔsφ · · ·Δ2φΔ0φ (2.6)

and χ = ψΔ0(Φφ) by

ψΔ0Φ = ΔtΦ · · ·Δ3ΦΔ1ΦΔsφ · · ·Δ4φΔ2φ, (2.7)

since Δi is a homomorphism. And

χ = ψ∂ =
(
ψΔ0Φ · · ·ΔsΦ

)
Δ1φ · · ·Δtφ = (ΔtΦ · · ·Δ1Φ)

(
Δ1φ · · ·Δtφ

)
. (2.8)

Analogously, we have that

Δ0
(
Φφ

)
∂ = Δ0Φ

((
Δ0φ

)
∂
)
= Δ0Φ

(
Δ2Φ · · ·ΔsΦΔ1φ · · ·Δtφ

)
= ∂,

∂Δt

(
Φφ

)
= (∂ΔtΦ)Δtφ =

(
Δ0Φ · · ·ΔsΦΔ1φ · · ·Δt−2φ

)
Δtφ = ∂.

(2.9)

Then, we get easily that χ = ψ∂ = ψΔ0(Φφ)∂ = χ∂ and

∂χ = (∂ΔtΦΔt−2Φ · · ·Δ1Φ)Δ1φ · · ·Δt−2φΔtφ

= Δ0ΦΔ2Φ · · ·ΔsΦΔ1φ · · ·Δt−2φΔtφ = ∂.
(2.10)

Finally, there is the equality that

∂ = ∂χ = (∂ΔtΦΔt−2Φ · · ·Δ1Φ)
(
ΔsφΔs−2φ · · ·Δ0φ

)

= (Δ0ΦΔ2Φ · · ·ΔsΦ)
(
ΔsφΔs−2φ · · ·Δ0φ

)
.

(2.11)
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We, last, compute that

∂2 =
(
∂χ

)
∂ = ∂

(
χ∂

)
= ∂χ = ∂, χ2 =

(
χ∂

)
χ = χ

(
∂χ

)
= χ∂ = χ. (2.12)

Therefore ∂ and χ are idempotent.
(2) Obviously, we get this by statement (1). Let ∂/= 0 and assume χ = 0, from the

previous part, that yields to ∂ = 0 contradicting ∂/= 0. Therefore χmust be zero, and ψ = 0 for
the same reason.

(3) The equality (Δ0(Φφ) − 1)∂ = 0 suggests that ∂ = 0, and then χ = 0. It is clear
that Δ0Φ · · ·ΔsΦ = 0 because ∂ΔtΦ · · ·Δ1Φ = Δ0Φ · · ·ΔsΦ. In addition, ΔtΦ · · ·Δ3ΦΔ1Φ =
ψΔ0ΦΔ2Φ · · ·ΔsΦ = 0 implies that

ψΔ0Φ = ΔtΦ · · ·Δ3ΦΔ1ΦΔsφ · · ·Δ4φΔ2φ = 0. (2.13)

As a result, we have ψ = 0 if Φ is not a right zero divisor.
(4) It is easy to obtain that ∂ΔtΦ · · ·Δ3ΦΔ1ΦΔsΦ−1

R · · ·Δ2Φ−1
R Δ0Φ−1

R = 1 and
ψΔ0Φ · · ·ΔsΦΔ1Φ−1

R · · ·ΔtΦ−1
R = 1 as ∂ΔtΦ · · ·Δ1Φ = Δ0Φ · · ·ΔsΦ and ψΔ0Φ · · ·ΔsΦ =

ΔtΦ · · ·Δ1Φ, respectively. But then χ = ψ∂ and χ has a right inverse. Likewise, we can prove
the rest part.

Furthermore, if ∂ or χ has a one-side inverse, it makes sense that ∂ = χ = ψ = 1 since
both ∂ and χ are idempotent. We also have that Φφ = 1 which indicates Φ is a left unit and
φ a right unit, by Δ0(Φφ)∂ = ∂ if ∂ = 1. Hence ∂ and χ cannot be anything but the identity
element if one of them is a one-side unit.

Corollary 2.7. The following statements are equivalent.

(1) Φ has a right inverse.

(2) ∂ = χ = ψ = 1.

(3) φ has a left inverse.

(4) ∂ is a one-side unit.

(5) χ is a one-side unit.

(6) ψ has a left inverse.

Proof. (Sketch of Proof).
Check by (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (5) ⇒ (6) ⇒ (1).

Equality (Δ0(Φφ) − 1)∂ = 0 suggests that classification of ∂ is divided into three types.
The first type ∂ = 0, and the second ∂ = 1 if Δ0(Φφ) = 1, that is, Φφ = 1. The last one is that ∂
is a right zero divisor.

Example 2.8. In algebra Z6 over the integer ring Z, we define Δ : Z6 → Z6 ⊗ Z6 given by
Δ3 = 3⊗ 3 and Δx = x ⊗ 3 for any x ∈ Z6 − {3}, and ε : Z6 → Z by ε(y) = y for all y ∈ Z6 such
that (Z6,Δ, ε) is a fake bialgebra. Set Φ = φ = 3 ∈ Z6 such that ∂ = 3 ⊗ 3. The product of any
two elements in the set {ΔiΦ, ∂} (i = 0, 1, 2) equals 3 ⊗ 3, obviously. We also set ψ = ∂; then, it
is easy to prove that (Φ, φ)II1 is a cocycle and a right zero-divisor ∂.
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Proposition 2.9. Let H be a fake bialgebra with counital law of ε. If Φ, φ ∈ H and ε(Φ) = 1
(ε(φ) = 1, resp.), then ∂(Φ, φ) (χ(Φ, φ), resp.) is counital if and only if Φφ = 1 (φΦ = 1, resp.).

Proof. Since that ∂(Φ, φ) = Δ0ΦΔ2ΦΔ1φ = (Φ ⊗ Φ)Δφ, we have εi∂(Φ, φ) = εi(Φ ⊗ Φ)εiΔφ =
ε(Φ)Φφ = Φφ rendering that εi∂(Φ, φ) = 1 if and only if Φφ = 1, where i = 1, 2.

Proposition 2.10. LetH be a fake bialgebra with coassociative law of Δ and there are elements Φ, φ
in H. If ∂(Φ, φ) obeys ∂Δ1Φ = Δ0ΦΔ2Φ, then Δ3∂Δ1∂ = Δ0∂Δ2∂. Especially, ∂ is a 2-cocycle if ∂
is invertible ifH is a bialgebra.

Proof. To obtain the result, we observe that

Δ3∂Δ1∂ = (∂ ⊗ 1)(Δ ⊗ id)∂ = (∂ ⊗ 1)(Δ ⊗ id)((Φ ⊗Φ)Δ1φ
)

= (∂ ⊗ 1)(ΔΦ ⊗Φ)
(
Δ1Δ1φ

)
= (∂ ⊗ 1)(ΔΦ ⊗Φ)

(
Δ2Δ1φ

)

= (∂ΔΦ ⊗Φ)
(
Δ2Δ1φ

)
= (Φ ⊗Φ ⊗Φ)Δ2Δ1φ

= (1 ⊗ ∂)(Φ ⊗ΔΦ)Δ2Δ1φ = (1 ⊗ ∂)Δ2(Φ ⊗Φ) Δ2Δ1φ

= Δ0∂Δ2∂.

(2.14)

We have known that θγ = (γ ⊗ γ)θΔγ−1 is cohomologous to θ for a bialgebraH if θ is a
counital 2-cocycle, which was mentioned by Majid in [1]. LetH be a bialgebra, Φ, φ ∈ H and
cocycle (σ, δ)II2 for H. Denote that σ(Φ,φ) = Δ0ΦΔ2ΦσδσΔ1φ and δ(Φ,φ) = Δ1ΦδσδΔ2φΔ0φ.
Then we have the following.

Proposition 2.11. If equality ∂(σ, δ)Δ2δΔ0δΔ3σ = Δ1δ holds and ∂(σ, δ) is a commutative
element in set {Δ1σ,Δ3δ,Δ3σ}, and 1 ⊗ Δ(φΦ)(= Δ(φΦ) ⊗ 1) commutes with any element in set
{Δ1σ,Δ1δ,Δ2σ,Δ2δ} as well, then

Δ0σ
(Φ,φ)Δ2σ

(Φ,φ) = Δ3σ
(Φ,φ)Δ1σ

(Φ,φ). (2.15)

Proof. A long equality showed that

Δ0σ
(Φ,φ)Δ2σ

(Φ,φ) =
(
1 ⊗ (Φ ⊗Φ)σδσΔφ

)
(id ⊗Δ)

(
σδσΔφ

)

= (Φ ⊗Φ ⊗Φ)Δ0(σδσ)Δ0Δ1φΔ2Δ0ΦΔ2(σδσ)Δ2Δ1φ

= (Φ ⊗Φ ⊗Φ)Δ0(σδσ)Δ2Δ0
(
φΦ

)
Δ2(σδσ)Δ1Δ1φ

= (Φ ⊗Φ ⊗Φ)Δ0(σδσ)Δ2(σδσ)Δ1Δ2
(
φΦ

)
Δ1Δ1φ

= (Φ ⊗Φ ⊗Φ)Δ0(σδ)Δ0σΔ2σΔ2δΔ2σΔ1Δ2
(
φΦ

)
Δ1Δ1φ

= (Φ ⊗Φ ⊗Φ)Δ0(σδ)∂(σ, δ)Δ3σΔ1σΔ2δΔ2σΔ1Δ2
(
φΦ

)
Δ1Δ1φ

= (Φ ⊗Φ ⊗Φ)∂(σ, δ)Δ3σΔ3δψ(σ, δ)Δ0σΔ2σΔ1Δ2
(
φΦ

)
Δ1Δ1φ



ISRN Algebra 7

= (Φ ⊗Φ ⊗Φ)Δ3(σδ)∂(σ, δ)ψ(σ, δ)∂(σ, δ)Δ3σΔ1σΔ1Δ2
(
φΦ

)
Δ1Δ1φ

= (Φ ⊗Φ ⊗Φ)Δ3(σδ)∂(σ, δ)Δ3σΔ1σΔ2δΔ0δΔ3σΔ1σΔ1Δ2
(
φΦ

)
Δ1Δ1φ

= (Φ ⊗Φ ⊗Φ)Δ3(σδσ)Δ1σ∂(σ, δ)Δ2δΔ0δΔ3σΔ1σΔ1Δ2
(
φΦ

)
Δ1Δ1φ

= (Φ ⊗Φ ⊗Φ)Δ3(σδσ)Δ1(σδσ)Δ1Δ2
(
φΦ

)
Δ1Δ1φ

= (Φ ⊗Φ ⊗Φ)(σδσ ⊗ 1)
(
Δ
(
φΦ

) ⊗ 1
)
(Δ ⊗ id)(σδσΔφ)

=
(
(Φ ⊗Φ)σδσΔφ ⊗ 1

)
(Δ ⊗ id)((Φ ⊗Φ)σδσΔφ

)

= Δ3σ
(Φ,φ)Δ1σ

(Φ,φ).

(2.16)

There exists a similar version for δ(Φ, φ), namely, the following preposition.

Proposition 2.12. If there is the equation Δ1δΔ3δψ(σ, δ)Δ0σ = Δ2δ and ∂(σ, δ) commutes with
any element in set {Δ0σ,Δ0δ}, and 1 ⊗ Δ(φΦ)(= Δ(φΦ) ⊗ 1) is a commutative element in set
{Δ0σ,Δ0δ,Δ3σ,Δ3δ} as well, then

Δ1δ
(Φ,φ)Δ3δ

(Φ,φ) = Δ0δ
(Φ,φ)Δ2δ

(Φ,φ). (2.17)

Proposition 2.13. LetH be a bialgebra and (Φ, φ)II2 a counital cocycle forH, and define Δ(Φ,φ)(h) =
ΦφΦΔ(h)φΦφ for all h ∈ H, then the algebraH with original ε and Δ(Φ,φ) consists a new coalgebra
if χΔ3ΦΔ1Φ = Δ0ΦΔ2Φ. Moreover, Δ(Φ,φ) is an algebra map if (φΦ)3 = 1, then algebra H is a
bialgebra with comultiplication Δ(Φ,φ).

Proof. It is clear that (ε ⊗ id)Δ(Φ,φ)(h) = (id ⊗ ε)Δ(Φ,φ)(h) = h. So we only need to show the
coassociative law of Δ(Φ,φ). For all h ∈ H, we obtain

(
Δ(Φ,φ) ⊗ id

)
Δ(Φ,φ)(h) =

(
Δ(Φ,φ) ⊗ id

)(
ΦφΦΔ(h)φΦφ

)

= Δ3
(
ΦφΦ

)
Δ1

(
ΦφΦ

)
Δ1Δ1(h)Δ1

(
φΦφ

)
Δ3

(
φΦφ

)

= Δ3
(
Φφ

)
ψΔ0ΦΔ2ΦΔ1φΔ1ΦΔ2Δ1(h)Δ1φΔ1ΦΔ2φΔ0φ∂Δ3

(
Φφ

)

= χ∂Δ3ΦΔ1ΦΔ2Δ1(h)Δ1φΔ3φψ∂

= χΔ3ΦΔ1ΦΔ2Δ1(h)Δ1φΔ3φχ

= ∂Δ3ΦΔ1ΦΔ2Δ1(h)Δ2φΔ0φ∂χ

= ∂ψΔ0ΦΔ2ΦΔ2Δ1(h)Δ2φΔ2ΦΔ1φΔ3φχ

= Δ0
(
Φφ

)
∂Δ3ΦΔ1ΦΔ2ΦΔ2Δ1(h)Δ2φΔ2ΦΔ1φΔ3φψΔ0

(
Φφ

)
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= Δ0
(
Φφ

)
Δ0ΦΔ2ΦΔ2

(
φΦ

)
Δ2Δ1(h)Δ2

(
φΦ

)
Δ2φΔ0φΔ0

(
Φφ

)

= Δ0
(
ΦφΦ

)
Δ2

(
ΦφΦ

)
Δ2Δ1(h)Δ2

(
φΦφ

)
Δ0

(
φΦφ

)

= Δ0
(
ΦφΦ

)
(id ⊗Δ)

(
ΦφΦΔ(h)φΦφ

)
Δ0

(
φΦφ

)

=
(
id ⊗Δ(Φ,φ)

)
Δ(Φ,φ)(h).

(2.18)

Finally, for any g ∈ H,

Δ(Φ,φ)
(
hg

)
= ΦφΦΔ

(
hg

)
φΦφ

= ΦφΦΔ(h)φΦφΦφΦΔ
(
g
)
φΦφ

= Δ(Φ,φ)(h)Δ(Φ,φ)
(
g
)
.

(2.19)

Definition 2.14. Let (H,Δ, ε) be a fake bialgebra. If there exists a cocycle (Φ, φ)II3 forH obeying
that

(id ⊗Δ)Δ(h)Φ = Φ(Δ ⊗ id)Δ(h), φ(id ⊗Δ)Δ(h) = (Δ ⊗ id)Δ(h)φ,

(id ⊗ ε)Δ(h) = (ε ⊗ id)Δ(h) = h,
(2.20)

for all h ∈ H, thenH is called a weak quasi-bialgebra.

Example 2.15. Let H be an associate algebra over field k, where the characteristic of k is not
2. AndH is a 4-dimensional vector space with basis {1, i, j, ij} obeying that i2 = i, j2 = j, and
ij = ji. We define homomorphisms Δ : H → H ⊗H given by Δ(i) = i ⊗ j, Δ(j) = j ⊗ 1 and
ε : H → k given by ε(i) = ε(j) = 0. Obviously, H is a fake bialgebra. Set Φ = j ⊗ j ⊗ j and
ψ = j ⊗ 1 ⊗ 1 ⊗ j, then (Φ,Φ)II3 is a cocycle with holding ∂ = χ = j ⊗ j ⊗ j ⊗ j. It is routine to
check (H,Δ, ε, (Φ,Φ)II3 ) is a weak quasi-bialgebra.

We relax Definition 1.3 by setting that H is a weak quasi-bialgebra so that we can
define an algebra structure on A ⊗H, if A is a left H-module algebra and H a weak quasi-
bialgebra, given by

(a#h)
(
b#g

)
=
∑(

y1X1x1 · a
)(
y2X2x2h1 · b

)
#y3X3x3h2g (2.21)

for all a, b ∈ A, h, g ∈ H, while a#h is equal to a ⊗ h here.

Theorem 2.16. Let H be a weak quasi-bialgebra and A a left H-module algebra. Then A#H is an
associative algebra under the multiplication mentioned above and 1A#1H is the unit.
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Proof. For all a, b, and c ∈ A and h, g, and l ∈ H, we easily get that, by properties of ε,

(1#1)(a#h) =
(
y1X1x1 · 1

)(
y2X2x2 · a

)
#y3X3x3h

= ε
(
y1X1x1

)(
y2X2x2 · a

)
#y3X3x3h = a#h,

(a#h)(1#1) =
(
y1X1x1 · a

)(
y2X2x2h1 · 1

)
#y3X3x3h2

=
(
y1X1x1 · a

)
ε
(
y2X2x2h1

)
#y3X3x3h2 = a#h.

(2.22)

Now we show the associative law:

[
(a#h)

(
b#g

)]
(c#l) =

[(
y1X1x1 · a

)(
y2X2x2h1 · b

)
#y3X3x3h2g

]
(c#l)

=
(
w1Y 1z1 ·

(
y1X1x1 · a

)(
y2X2x2h1 · b

))

×
(
w2Y 2z2

(
y3X3x3h2g

)
1
· c
)
#w3Y 3z3

(
y3X3x3h2g

)
2
l

(2.23)

=
((
w1

1Y
1
1z

1
1y

1X1x1 · a
)(
w1

2Y
1
2z

1
2y

2X2x2h1 · b
))

×
(
w2Y 2z2y3

1X
3
1x

3
1h21g1 · c

)
#w3Y 3z3y3

2X
3
2x

3
2h22g2l.

(2.24)

But

Δ1φΔ1ΦΔ1φΔ3φΔ3ΦΔ3φ = Δ1φΔ1ΦΔ4φΔ2φ
(
Δ0φ

)
∂Δ3ΦΔ3φ

= Δ1φΔ1ΦΔ4φΔ2φ
(
Δ0φ

)
∂

= Δ1φ
(
Δ3φ

)
ψ∂,

(2.25)

and then we obtain that (2.23) is

((
z11x

1ψ1∂1 · a
)(
z12x

2ψ2∂2h1 · b
))(

z2x3
1ψ

3∂3h21g1 · c
)
#z3x3

2ψ
4∂4h22g2l

=
(
Y 1z11x

1ψ1∂1 · a
)((

Y 2z12x
2ψ2∂2h1 · b

)(
Y 3z2x3

1ψ
3∂3h21g1 · c

))
#z3x3

2ψ
4∂4h22g2l.

(2.26)

On the other hand, the equation

Δ4ΦΔ1φ
(
Δ3φ

)
ψ∂ = Δ2φ

(
Δ0φ

)
∂ψ∂ = Δ2φ

(
Δ0φ

)
∂χ

= Δ2φ
(
Δ0φ

)
∂ψΔ0ΦΔ0φ

= Δ2φΔ2ΦΔ4ΦΔ1φ
(
Δ3φ

)
ψΔ0ΦΔ0φ

= Δ2φΔ2ΦΔ2φΔ0φΔ0ΦΔ0φ

(2.27)
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makes (2.26) equal

(
w1Y 1z1 · a

)((
w2

1Y
2
1z

2
1y

1X1x1h1 · b
)(
w2

2Y
2
2z

2
2y

2X2x2h21g1 · c
))

#w3Y 3z3y3X3x3h22g2l

=
(
w1Y 1z1 ·a

)((
w2

1Y
2
1z

2
1h11y

1X1x1 ·b
)(
w2

2Y
2
2z

2
2h12y

2X2x2g1 ·c
))

#w3Y 3z3h2y
3X3x3g2l

=
(
w1Y 1z1 · a

)(
w2Y 2z2h1 ·

((
y1X1x1 · b

)(
y2X2x2g1 · c

)))
#w3Y 3z3h2y

3X3x3g2l

= (a#h)
[(
b#g

)
(c#l)

]
.

(2.28)

Hence, [(a#h)(b#g)](c#l) = (a#h)[(b#g)(c#l)].

If φ is an inverse of Φ, then the multiplication becomes that

(a#h)
(
b#g

)
=
∑(

x1 · a
)(
x2h1 · b

)
#x3h2g, (2.29)

which is as exact as the one in [3].
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