
International Scholarly Research Network
ISRN Software Engineering
Volume 2012, Article ID 598150, 20 pages
doi:10.5402/2012/598150

Research Article

Prioritizing Program Elements: A Pretesting Effort to
Improve Software Quality

Mitrabinda Ray and Durga Prasad Mohapatra

Department of CS&E, National Institute of Technology Rourkela, Orissa 769008, India

Correspondence should be addressed to Mitrabinda Ray, mitrabindaray@yahoo.co.in

Received 28 September 2011; Accepted 27 October 2011

Academic Editors: K. Framling and G. Visaggio

Copyright © 2012 M. Ray and D. P. Mohapatra. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Improving the efficiency of a testing process is a challenging task. Prior work has shown that often, a small number of bugs
account for the majority of the reported software failures; and often, most bugs are found in a small portion of the source code of
a program. First, prioritizing the code elements according to their criticality and then conducting testing, will promote to reveal
the important bugs at the early phase of testing. Keeping it in view, we propose an efficient test effort prioritization method that
give a chance to the tester to focus more on the parts of the source code that are highly influenced towards the system failures or
in which, the failures have high impact on the system. We consider five important factors such as influence towards system failures,
average execution time, structural complexity, severity, and business value associated with a component and estimates the criticality
of the component within a system. We have experimentally proved that our proposed test effort prioritization approach is effective
in revealing important bugs at the early phase of testing as it is linked to external measure of defect severity and business value,
internal measure of frequency, complexity, and coupling.

1. Introduction

There are two major challenges faced by the testing team in
a software industry. The first one is the size of possible test
cases which is infinite and the second one is the time-box set
for the testing. Sometimes, the testing time get squeezed due
to delay in upstream task duration (design and coding). In
this situation, testing effort prioritization helps the tester to
do the best possible job within the limited test resources [1].
The tester gets the best possible chance to reveal the defects
that are occurring frequently or have a negative impact on
the user. Bugs in some parts of the source code may cause
more severe and frequent failures compared to that in other
parts. For example, if a method of a class produces crucial
data that is used by many other classes, then a bug in this
method will affect many other classes. A component with
high-execution time tends more to failures [2, 3]. Upon ana-
lyzing the software failure history data from nine large IBM
software products, Adams [4] demonstrated that a relatively
small proportion of bugs in the software account for the vast
majority of reported failures in the field. Boehm and Basili

[5] have also proposed a Pareto distribution in which 80% of
all defects within a software are found in 20% of the modules.
Then, the question arises: how to identify the critical parts
(a part is critical if it is responsible for frequent failures or
serious type of failures.) of a program which is needed to be
bug free?

Our aim is to identify the critical parts in the source code.
A part of the source code is critical if the chance of failure
is high in that part or the severity of failures in that part
is high. For this, we prioritize the program elements within
the source code for testing according to their criticality. A
bug in a critical part may cause severe failure whereas the
same bug in a low critical part may cause a minor or neg-
ligible failure. We consider two important criteria such as
risk and business value associated with a component for
estimating criticality. Risk of a component is determined
by checking the likelihood of fault occurrence within a
component (complexity) and the impact of failure (severity)
of the component in the system. Similarly, a technical staff
cannot guess which high-level functions are important to
the customer. A customer also cannot estimate the cost and

2 ISRN Software Engineering

technical difficulties in implementing a specific high-level
function. So, the adoption of value-based testing [6, 7],
where the information from the market and the customer is
gathered to gain the knowledge of the importance of high-
level function, increases the return on investment (ROI) on
testing. In our approach, we consider the business value asso-
ciated with a component as a factor for computing criticality.

In an object-oriented program, a component may be a
class which is the smallest executable unit or it may be elab-
orated as a collection of classes in a package. However, a
component may be a collection of many other things. For
example, a mixture of some source code templates with relat-
ed documentation might be called as a component. After all,
everything is a class in an object-oriented program, every
component is a class too. In our approach, we take a class as a
component and write class and component interchangeably
throughout our paper.

We compute the criticality of a component based on the
following factors.

(1) Average execution time of a component within a
system.

(2) Influence value of a component (influence metric)
showing that the component is providing services to
how many components directly or indirectly within a
system.

(3) Structural Complexity of a component: response for
a Class (RFC), and Weighted methods in a Class
(WMC).

(4) All possible types of system failures for which the
component is responsible and the severity associated
with each failure.

(5) Business value associated with a component.

User’s perception is a good indicator on the acceptance of
a system. User’s view on the reliability of a system is improved
and almost cheaper, when faults which occur in the most
frequently used parts of the software are almost removed
[2, 3, 8, 9]. The reliability of a system is related to the prob-
ability that a fault leads to a failure that occurs during soft-
ware execution [10]. It is because the data input supplied by
the user decides which parts of the source code will be ex-
ecuted. A bug existing in the nonexecuted parts will not affect
the output. So for a class, it is required to know how many
other classes are requesting services from the class and also,
how often these requests are executed at run time. The idea
behind the consideration of average execution time for a class
as a parameter is that when, a class is executed for longer
time or more frequently compared to other classes during a
typical run of the software, any existing bugs in the class are
more likely to be executed during the run and will cause the
frequent failure of the system.

However, the length of time a component is executed
does not wholly determine the importance of the part in
the perceived reliability of the system. It is possible that the
results produced by a function which is executed only for a
small duration is saved and extensively used by many other
functions. Sometimes, a function whose produced results are

widely used by many other functions, would have a very
high impact on the reliability of the system even though it is
itself getting executed only for a small duration. For this, we
consider the interlink with other elements (an element may
be as small as a statement and as elaborate as a class or couple
of related classes (component).) through coupling. We have
introduced a metric called influence metric [11, 12] for an
element that shows the degree of influence of the element
towards system failures. It is decided by checking how many
elements within a system are directly or indirectly using the
result that is produced by the element.

The idea of including structural complexity is to estimate
the probability of presence of faults in a component. This
can be determined through the existing metrics: response
for a class (RFC) and weighted method per class (WMC)
[13]. For evaluating the structural complexity, Chidamber
and Kemerer [13] have proposed six metrics. We found that
consideration of all six metrics at a time is complicated, time
consuming, and also sometimes not useful for a particular
purpose. At the same time, a single metric is also not suf-
ficient for complexity estimation. At least the use of two
or three CK metrics gives a proper estimation of potential
problems [14]. For our purpose, we are using two CK
metrics: RFC and WMC. RFC gives an idea about the longest
sequence call of methods, and WMC provides the cyclomatic
complexity of each method implemented in a class.

We are including severity of the failure of a component
within a system as another factor for computing criticality.
It is because, there are some components which have low
complexity, but the failure of any one of that may have a
catastrophic impact on the system. For example, a critical
code my be called in case of an emergency, which happens
infrequently, but the existence of bug in that part may cause
severe failure. The impact of the failure may cause severe
damage to the system (causality, loss of important data)
or a huge financial loss. The severity factor is dependent
on the nature of the application. It is basically assessed by
domain analyst, who have knowledge on the environment in
which the software will be used. The basic input for severity
assessment is the costs of various failure modes. Detailed
procedure of severity estimation is addressed in [15].

There is also a close relationship between testing and
business value that comes from market or from customers
[16]. Each use case of a system should not be treated with
equal importance [17]. Boehm [17] has proposed a value-
based software engineering (VBSE) practice that integrates the
value coming from customers and market to the software
engineering practices. Many times, it is decided based on
who within the organization, the use case is important to. It is
purely subjective rather than objective. We estimate the Value
(business value) of a component by checking its interaction
within various use cases. Based on the values of use cases, a
component’s value is estimated.

This work comes as a continuation of our previous work
presented in [11, 12, 18]. In our previous work [12], we
have only considered two internal factors of a component-
Influence value (influence of a component towards system
failures) and average execution time for computing critical-
ity. In this paper, we add the external factors: severity and

ISRN Software Engineering 3

business value and also include the internal factor: structural
complexity, for criticality computation. The case studies
in [19] show that the residual bugs location is strongly
correlated with module size and complexity. Our approach
is adding the structural complexity which is priorly used as
a fault prediction method. Our approach does not only
show the classes with high structural complexity within
a program but also the likelihood of these classes to fail
in the operational environment through the factor, average
execution time of a class. Once the criticality of a component
is estimated through our approach, more exhaustive testing
has to be carried out to minimize bugs in high-critical com-
ponents. This means we can cut down testing in less-crit-
ical components. The total test effort is distributed among
various components according to their criticality. As a result,
not only the postrelease failures will be minimized but also
the severed types of postrelease failures will be also mini-
mized within the available test budget.

Please note that we use the terms bug, fault, and defect
interchangeably, when no confusion arises. An error done by
a programmer results in a defect (fault, bug) in the software
source code. The execution of a defect may cause one or more
failures. As per the IEEE standard, failure is the inability of
a system or component to perform its required functions
within specified performance requirements. A failure in a
system can be observed by the user externally. Failure is
neither a coding fault in the development process nor a defect
that put an element of the program or the system into an
erroneous state that does not lead to a visible failure.

This paper is organized as follows. Section 2 gives a
short discussion on ESDG (intermediate representation of an
object-oriented program), slicing, and the influence metric
on which our methodology is based. Section 3 discusses
the proposed methodology for ranking components. In
Section 4, experimental studies are conducted to test the
effectiveness of our approach. Section 5 summarizes the
related work. The paper is concluded in Section 6.

2. Background

The work in this paper is based on our earlier work on
analysis of source code for test effort prioritization [12]. We
have used influence metric [12] as one factor in our previous
test effort prioritization methodology. The influence metric
is derived from the intermediate representation of an object-
oriented program called extended system dependence graph
(ESDG) through forward slicing. In the following sections,
we give a quick overview on ESDG, program slice, and
influence metric. For more details, the reader is referred to
[11, 12].

2.1. ESDG. ESDG models the main program with all other
methods. Each class in a given program is represented by a
class dependence graph. Each method in a class dependence
graph is represented by procedure dependence graph. Each
method has method entry vertex that represent the entry
in the method. The class dependence graph contains a class
entry vertex that is connected with the method entry vertex

Class Task {
puplic:

2 int add (int x,int y){
3 return (x + y); }
4 int incr (int i){
5 i=i+1;}
6 void fun () {
7 int sum=0;

8 int i=1;

9 while (i < 11){
10 sum=add (sum,i);
11 i = incr (i);}
12 cout<< “SUM=”<<sum;
}
main () {

Task ob;
1 ob.fun ();

}

Algorithm 1: An object-oriented program.

of each method in the class by a special edge known as
class member edge. To model parameter passing, the class
dependence graph associates each method entry vertex with
formal-in and formal-out vertices.

The class dependence graph uses a call vertex to represent
a method call. At each call vertex, there are actual-in
and actual-out vertices to match with the formal-in and
formal-out vertices of the called method. If the actual-in
vertices affect the actual-out vertices, then summary edges
are added at the call-site, from actual-in vertices to actual-
out vertices to represent the transitive dependencies. To
represent inheritance, we construct representations for each
new method defined by the derived class and reuse the
representations of all other methods that are inherited
from the base class. To represent the polymorphic method
call, the ESDG uses a polymorphic vertex. A polymorphic
vertex represents the dynamic choice among the possible
destinations. The detailed procedure for constructing an
ESDG is found in [20]. Each node can be a simple statement,
a call statement, a class entry, or a method entry. An example
of an object-oriented program with its ESDG is shown in
Algorithm 1 and Figure 1, respectively.

2.2. Program Slice. A program slice is a part of the code
that contributes in computation of certain variables at a
program point of interest. For a statement s and variable v,
the slice of a program P with respect to the slicing criterion
〈s, v〉 includes only those statements of P that are needed to
capture the behavior of v at s [21]. Slicing can be static or
dynamic. Static slicing technique uses static analysis to derive
slicing. That is, the source code of the program is analyzed,
and the slices are computed for all possible input values.
No assumptions are made about the input values. Since the
predicates may evaluate either to true or false for different
values, conservative assumptions have to be made, which
may lead to relatively large slices. So, a static slice may contain

4 ISRN Software Engineering

Main

Task

F3 in F3 out
F1 in

F out

A1 in A2 in A out A3 in A3 out

Control dependence edge
Data dependence edge

Summary edge

1

2

3

4

5

6

7 8
9

10
11

12

F2 in

Parameter passing and
procedure call edge

Figure 1: ESDG of Algorithm 1.

1 main()

2 {
3 int i, sum;

4 cin>> i;

5 sum = 0;

6 while(i<= 10)
7 {
8 sum=sum+i;

9 ++ i;

10 }
11 cout<< sum;
12 cout<< i;

13 }

Algorithm 2: An example program.

statements that might not be executed during an actual run
of a program, whereas dynamic slicing makes use of the
information about a particular execution of a program. The
execution of a program is monitored, and the dynamic slices
are computed with respect to execution history. A dynamic
slice with respect to a slicing criterion 〈s, v〉, for a particular
execution, contains only those statements that actually affect
the slicing criterion in the particular execution. Therefore,
dynamic slices are usually smaller than static slices and are
more useful in interactive applications such as program
debugging and testing.

Consider the C++ example program given in
Algorithm 2. The static slice with respect to the slicing
criterion 〈11; sum〉 is the set of statements {4, 5, 6, 8, 9}.
Consider a particular execution of the program with the
input value i = 15. The dynamic slice with respect to the
slicing criterion 〈11; sum〉 for the particular execution of the
program is {5}.

Slices can be backward or forward. A backward slice
contains all parts of the program that might directly or
indirectly affect the slicing criterion but a forward slice with
respect to a slicing criterion 〈s, v〉 contains all the parts of the
program that might be affected by the variables in v used or
defined at the program points. A forward slice provides the
answer to the question: “which statements will be affected by
the slicing criterion?,” whereas a backward slice provides the
answer to the question: “which statements affect the slicing
criterion?” [22].

2.3. Influence Metric. In a program, the incorrect results
computed by a called method may affect other calling
methods. This is because the value returned by the called
method may be used by a calling method, for taking any
further action or for some computation, in which inaccuracy
may lead to catastrophic consequence. The influence of a
given method M, Influence of method (M), is the set on
nodes of ESDG that are directly or indirectly using the
result computed by M, and the set is called the set of nodes

ISRN Software Engineering 5

influenced by M. If the influence set of a method is high, then
a bug in M makes the chance of the overall system failure
too high. First, we have represented the input program as an
intermediate representation (ESDG). Then, we have applied
our proposed algorithm in [12] on the ESDG to compute
the influence of a method in a program. We have counted
the number of nodes marked as influenced by a method M
in a program from the data dependent set of that method’s
formal parameter-out nodes.

The influence value of a method M is expressed as:

influence value (M) = # nodes influenced in ESDG by M

Total # nodes in ESDG
.

(1)

Influence of a Class. The nodes in the set influence of class (c)
for the class c is the union of all the sets influence of method
(mi), where mi is the ith method of class c.

Influence of class (c) = ⋃k
i=1 Influence of method (mi),

where k is the number of methods in class c.

3. Testing Effort Prioritization Methodology

Our proposed methodology is defined by the following
steps.

(1) Computing the influence value of a component
within a system (discussed in our previous work
[12]).

(2) Estimating the average execution time of a compo-
nent by executing the test data based on operational
profile (Section 3.1).

(3) Computing the structural complexity for a compo-
nent (Section 3.2).

(4) Analyzing the severity associated with a component
through simulation runs (Section 3.3).

(5) Estimating the business value associated with a
component (Section 3.4).

(6) Performing priority estimation and ranking compo-
nents based on their priority value (Section 3.5).

3.1. Average Execution Time of a Component within a System.
The average execution time of a component within a system
is estimated based on the operational profile [2] designed for
the system and a tool called profiler [23]. Profiler shows the
average time in which different functions are executed. The
average execution time for a class ci is defined as:

ET(ci) =
nos∑

j=1

pj ∗
(

Time(ci)
j
)

, (2)

where nos is the total number of scenarios in a system under
test, pj is the probability of jth scenario, and Time(ci)

j is
the total activation time of ci in jth scenario. The probability
of execution of a scenario in a system is determined from
operation profile developed for a system, and the total
activation time of a component within a scenario is obtained
through profiler.

3.2. Analyzing the Structural Complexity of a Component.
Our aim is to find the complexity associated with a
component by analyzing the complexity of various services
provided by the component. So for simplicity, we consider
only two CK metrics (RFC and WMC), out of six metrics
proposed in [13]. It is experimentally proved that a class
with high RFC and high WMC is associated with fault-
proneness [24]. Hence, these two chosen metrics (RFC and
WMC) are used as inputs to derive the complexity for our
purpose. Response for a class (RFC) contains a set of member
functions directly or indirectly called by the class, whereas
WMC is checking the complexity associated with all member
functions of a class through cyclomatic complexity.

RFC metric measures the cardinality of a set of methods
that can potentially be executed in response to a message
received by an object of that class [13]. In RFC, the basic unit
is method, which refers to the message passing concept in OO
programming. The RFC value for a class c is

|RS| =
M∑

i=1

Ri, (3)

where RS, M, and Ri represent the response set for the class
c, number of methods in the class c and the set of methods
called by ith method. A high value of RFC indicates that the
complexity of services provided by the class is increased and
the understandability is decreased. When a larger number
of methods are invoked from a class through messages, it
complicates the testing and debugging process, and also it
is difficult to change a class due to the potential for a rip-
ple effect. As testing and maintenance are complicated, the
chance of failure increases. We have derived Ri through the
intermediate representation of the source code (ESDG). We
start traversing from each method-entry vertex of a class
and traverse only the call-edges in a forward direction and
generate a set of nodes called by each method of a class.
We repeat this process for each method of a class and finally
merge the sets to get RS for the class.

Luke [25] argued that there is really no way to know
a software failure rate at any given point in time because
the defects have not yet been discovered. According to
his statement, the design complexity is positively linearly
correlated to defect rate. Hence, the occurrence of software
defects should be estimated based on McCabe’s complexity
value or Halstead’s complexity measure [25]. Therefore, we
are considering WMC metric that gives a rough estimation
of total complexity associated with a class. WMC metric is
correlated with defect rates [14]. It counts local methods
and calculate the sum of the internal complexity of all local
methods in a class [13]. The internal complexity of each
method is decided through cyclomatic complexity. WMC
value for a class c is

WMC =
M∑

i=1

Wi, (4)

where, M and Wi stand for number of methods in a class
and cyclomatic complexity of ith method. It helps to evaluate
the minimum number of test cases needed for each method.

6 ISRN Software Engineering

Therefore, it is used as a guideline by test manager to
estimate how much time and effort is required to develop
and maintain a class.

We estimate the probability of faults in a class based on
two parameters such as RFC and WMC. First, we assign
threshold value to each metric as defined in [26]. For each
parameter, we use only three weights: low (0.3), medium,
(0.5), and high (1). The assignment of points to the three
weights is a rough guideline. The following threshold values
are assigned to the two parameters:

(1) Weighted methods per class (WMC): �25 preferred
and �40 acceptable [26].

(2) Response for class (RFC): �40 preferred and �50
acceptable. It has been observed that very few classes
with RFC over 50 exist within a system [26].

The complexity information for case studies, LMS and
TAS, are shown in Tables 1 and 2, respectively. The classes
that are within preferred (acceptable) limit are low (medium)
in complexity and exceed the acceptable limits are high in
complexity. Out of these two parameters, if one parameter is
in low range and the other one is in medium range, we are
accepting the whole complexity of the class as medium, the
higher one between the two factors. The intent of computing
the structural complexity of a component is to show the
probability of existence of faults within the component,
whereas the intent to compute the influence value of a
component is to show how many other components will be
affected by the faulty behavior of the component.

3.3. Severity Analysis. Severity is a rating and is basically
applied to the effect of a failure. It shows the serious-
ness/impact of the effects of a failure within a system.
Severity of a failure within a system decides how badly a
bug within a component affects the whole system. We have
inserted some bugs in different components of a system and
executed the system for some duration in the operational
environment. We observed that similar types of bugs in
different components cause failures with different severities.
Hence, we use the severity factor of a component as a
measure to the overall quality of the product. We consider
that a component is critical, if the failure of the component
causes severe effect on the whole system. In our proposed
criticality evaluation method, our aim is to first reveal bugs
from high critical component and, then reveal from a low
critical component. If there is an urgency to release the
system before time or the testing time is shortened due to
some unavoidable circumstances then, the test manger will
be sure that the bugs responsible for severe type of failures
are revealed and fixed.

Though, more testing focus should be given to the parts
of the code which are executed frequently [2, 3, 27]; however,
there is also a need for severity analysis for better quality
of a system. There are some critical codes exist within a
system, which are called in case of an emergency. Though
these critical codes execute rarely, the existence of a bug
with them may cause a severe failure. For example, let us
consider a component which is providing exception handling

Table 1: Structural complexity of various entity classes within
library management system.

Class WMC RFC Complexity

Borrower 29 (Medium) 42 (Medium) Medium

Title 18 (Low) 39 (Low) Low

Item 29 (Medium) 33 (Low) Medium

Loan 32 (Medium) 52 (High) High

Reserve 15 (Low) 30 (Low) Low

Table 2: Structural complexity of various entity classes within
trading-house automation system.

Class WMC RFC Complexity

Productinfo. 25 (Low) 18 (Low) Low

Category-Mgr 28 (Medium) 37 (Low) Medium

Order handler 33 (Medium) 58 (High) High

InventoryMgr 27 (Medium) 46 (Medium) Medium

of rare but critical conditions. In this case, the component
is generally executed rarely. The influence of the component
towards failure is low, and the structural complexity of
the component is also low but, a bug in the component
could cause catastrophic failure. Therefore, the severity of
a component is included as an important factor for testing
effort prioritization in our approach.

We estimate the severity of a component within a system
through failure mode effect analysis (FMEA) [28]. This is a
bottom-up approach. FMEA is applied to a component to
get the deficiency and hidden design defects. It focus on
two points: (i) analyzing the potential failure modes of a
component (how a component fails) and (ii) determining
the effect of the failure modes on the system as a whole
(consequences of failures). For a hardware component
(electrical/mechanical), the failure modes are well known,
but this case is not true for a software component. Nowadays,
more and more system functions are implemented on
software level, and hence, there is a need to apply FMEA
methodology on software-based systems for determining
the severity factor of a component. For a hardware com-
ponent, the failure modes are weary, design flaws and
unintentional environmental phenomena. Sometimes, the
component manufacturing company discloses the possible
failure modes and also the estimated frequencies of failures
for their products. This is not possible in case of a software
component. For a software component, the analyst decides
the failure modes based on the design and development
process. Software is not a physical entity, it is a logical
construct. The analyst identifies the system level hazards
both at the analysis, design, and implementation phase and
translate it into software terms. Now, we discuss software
FMEA.

Software Failure Mode and Effect Analysis (SFMEA). The
detailed SFMEA focuses on the classes or modules. Several
error conditions are checked in SFMEA. Table 3 shows

ISRN Software Engineering 7

Table 3: Possible error conditions within a class/module.

Error condition Examples

Error in computation

Wrong Algorithm
The module may carry out estimations
wrongly due to faulty requirements or
wrong coding of requirements

Calculation of
underflow or overflow

The algorithm may produce in a divide
by zero state

Error in data

Unacceptable data

The module may accept out of range or
wrong input data, no data, wrong data
type or size, or premature data; produce
wrong or no output data; or both

Input data trapped at
some value

A sensor may read zero, one, or some
other value

Bulky data rates
The module may not be able to handle a
vast amounts of data or many input
requests simultaneously

Error in logic

Wrong or unpredicted
commands

The module may receive improper data
but continue to execute a process. It may
be intended to do the proper thing under
improper situation/state

Failed to issue a
command

The module may not call a routine under
certain circumstances

various types of errors that may occur within a software
module/class at the design or coding stage.

Ozarin [29] has discussed the advantages of performing
SFMEA at various levels: (i) method-level analysis, (ii) class-
level analysis, (iii) module-level analysis, and (iv) package-
level analysis. According to him, SFMEA process is more
accurate and effective at the method-level, which is the lowest
level analysis. The authors of [30] have considered that a
method within a software system is equivalent to a part of
hardware system in which, there is a chance of failure under
certain conditions. It is because, if a method within a class
does not perform according to its predefined specification
then, there is a chance of failure of the whole system under
some conditions.

At the time of testing, the debugger analyzes the root
cause of a bug and extracts the method within a class and
more specifically the instruction within a method, which one
is the source of bug. If any failure is occurred at the testing
phase, then significant amount of searching is conducted to
find exactly the faulty parts in the source code and more
specifically the search is conducted to find the exact faulty
instructions of a method.

As the source code is available in this stage, we conduct
the operation level or method level SFMEA in this paper.
During the execution of a scenario, a number of objects
communicate through message passing. The message passing
mechanism is implemented through method calls. A method
within a class may or may not has formal parameters and may
or may not has return value. To identify the severity of a
class within a system, we have to identify the various types
of failure modes within a method of a class, and also we

have to estimate the severity of each failure mode by seeding
some bugs, observing the failures and estimating the impact
of failures. To estimate the severity level of a failure mode, we
take the views of domain experts.

Method-Level Failure Modes and Effect Analysis. A method
which is performing important tasks is generally viewed
as an agent, which has to fulfill a contract to perform its
operation. There may or may not be any formal parameter
in a method, and a method may or may not return any value.
A method maintains some preconditions and postconditions
that explicitly state the agreement of a method for perform-
ing a task. A precondition is the entry condition to perform
a task, and a postcondition is a condition that must be true
after the completion of the task. Similarly, a class invariant
states some constraints that must be true for its objects, at
each instance of time during the life time of an object. A
method job is divided into two parts: (i) constraint checking
part and (ii) actual logic to perform a task. We assume that
there is no time constraint, when a method is performing its
task. In this paper, we have considered four failure modes of
a method as defined in [30]. These are

(1) Precondition violation failure modes, F1: there are
two subfailure modes: (i) pre-condition is not satis-
fied but its corresponding exception is not raised, F1.1

and (ii) pre-condition is satisfied but its correspond-
ing exception is raised, F1.2.

(2) Parametric failure modes, F2: we check any failures
regarding to formal parameters declared in a method.
We only check the constraints on parameter values
and do not consider the type of a parameter. If
any parameter constraint is already stated in the
precondition of the method, then we do not include
that failure mode under the parametric failure mode.
For any other parameter constraint, we check the
response of the method. If any protection is not
provided within the body of the method, then we
consider the constraint itself as the failure mode. If
any alarm is raised by the method in the form of
exception, then we include two failure modes for
two individual cases: (i) the constraint is false but its
corresponding exception is not raised, F2.1 and (ii)
the constraint is true but its corresponding exception
is raised, F2.2.

(3) Method call or invoke failure modes, F3: it consists of
two subcases.

(a) A Method m1 invokes method m2 of the same
class or super class, then there is a possibility of
the following failure modes in the list of failure
modes of m1, and F3.1:

(i) m1 invokes m2 in the wrong order (when
the invocation of m2 is condition based),
F3.1.1.

(ii) m1 invokes m2 by wrong parameters
(when m2 contains parameters. We con-
sider only parameter’s value not the type),
F3.1.2.

8 ISRN Software Engineering

Table 4: SFMEA at method level for some components within the withdraw scenario.

Triggered hazard Component Failure mode Effect Severity

A fault in dispensing
cash

Cash dispenser
Cash dispenser is empty
but not raising any
exception

Money will be deducted from the account
immediately, though the customer is not able to
withdraw the said amount. As all transactions are
maintained in the Log, the account will be updated
by the banker later on

Critical

A fault in completing
transaction

Withdrawal
The object of withdrawal
component fails to create a
new receipt

Receipt will not be printed Minor

A fault in reading menu
choice from the screen

Withdrawal

Failed to call the read menu
choice method of an object
of component customer
console

Transaction cannot be performed Marginal

(b) A Method m1 of class A invokes method m2
of class B then, there is a possibility of the
following failure modes in the list of failure
modes of m1, and F3.2:

(i) m1 fails to invoke m2 (because of the lack
of instance of object of class B), F3.2.1.

(ii) m1 invokes m2 in wrong order (when the
invocation of m2 is condition based), F3.2.2.

(iii) m1 invokes m2 by wrong parameters
(when m2 contains parameters. We con-
sider only parameter’s value not the type),
F3.2.3.

(4) Postconditional failure modes, F4.

We first obtain the FMEA of a component within a
scenario and then, we assign severity through FMEA and
hazard analysis. Severity of a component within a scenario
shows how its failure affects the execution of the scenario.
Domain experts play a vital role in hazard analysis and
estimate the severity level of a component within a scenario.
We rate the severity of a component within a scenario based
on the worst effect of the failure of providing services by the
component within that scenario.

As per the recommendation of [28], the severity is
classified as:

(1) Catastrophic: a failure may cause death or total
system loss.

(2) Critical: a failure may cause very serious effects (sys-
tem may loose functionality, security concerns, etc.).

(3) Marginal: a failure may cause minor injury, minor
property damage, minor system damage, and delay
or minor loss of production, like loosing some data.

(4) Minor: defects that can cause small or negligible
consequences for the system (e.g. displaying results
in some different format).

We assign severity weight of 0.25, 0.50, 0.75, and 0.95 to
minor, marginal, critical, and catastrophic severity classes,
respectively. Researchers [31, 32] are accepting these selec-
tion of linear scale values for the severity classes. The damage

may be classified into different classes as mentioned above or
it may be quantified into money value, whatever the analyst
feels better. For example, if a large volume data to be sent by
mail are wrong, then the cost of remailing will be horrible.

Table 4 shows a part of SFMEA at the method level for
some components within withdraw scenario of ATM system.
The column triggered hazard shows the occurrence of failure
when an event is triggered and some action is performed. The
column component shows the component in which there is
an occurrence of fault. In the table, failure mode is any one
failure mode out of the four failure modes (F1, F2, F3, and
F4) discussed above. The column effect shows the effect of
the failure mode on the system. Severity is any one out of the
four severities (catastrophic, critical, marginal, and minor)
discussed above.

There can be more than one severity level for a compo-
nent within a scenario. For example, the component with-
drawal has two severity levels (minor and marginal) as shown
in Table 4. We consider only the worst-case consequence of
a failure as the severity level for the component. For the
component withdrawal, we consider the marginal severity
level within the withdraw scenario.

3.4. Business Value Estimation for a Use Case. We consider
that the functionality of any system can be modeled through
a set of use cases [33]. Each component of a system belongs
to one or more use cases. That is, each use case is typically
implemented by interaction among several components, and
a component may participate in several use cases. Each
use case has a main scenario and a number of alternative
scenarios. We only consider the main scenario and assume
that the business value (value) of a use case is same as
the value of its main scenario. Let us consider the example
of ATM system. The use cases could be deposit, withdraw,
inquiry balance, and transfer money.

The following steps show a simple method adopted in
various software industries for estimating the business value
associated with a high-level function [16, 34].

(1) The relative benefit that each feature provides to the
customer/business is estimated on a scale from 1 to
9, where 1 and 9 indicate the minimum benefit and
the maximum possible benefit. The best people to

ISRN Software Engineering 9

Table 5: Value (business importance) assignment.

Relative weights 2 1 — —

Use case Benefit Penality Total value Value%

Withdraw 8 9 25 33

Deposit 7 5 19 24

Transfer money 9 5 23 30

Inquiry balance 9 9 27 13

Sum — — 94 100

judge these benefits are the domain expert and the
customer representatives.

(2) We estimate the relative penalty that the customer or
business would suffer by not including a feature. For
this penalty, we also use a scale from 1 to 9, where
1 stands for no penalty and 9 shows a very serious
problem.

(3) The sum of the relative benefit and penalty gives
the total value. By default, benefit and penalty are
weighted equally. The weights for these two factors
can be changed. We have rated the benefit twice as
heavily as the penalty ratings as defined in [6, 7].

The business values for various use cases of ATM system are
shown in Table 5. We consider only the use cases that are used
by the customer. start up and shut down use cases are not
considered as they are the basic use cases to run the system.

Once, the values for all use cases of a system under test are
estimated, the next job is to estimate the Values for various
components of a system under test.

3.4.1. Value Estimation for a Component. The proposed
methodology consists of the following steps.

(1) Constructing the Component Dependence Diagram
(CDD) from the source code.

(2) Extracting slices of various scenarios from the CDD
and use this for estimating Value (business value) for
a component.

Component Dependence Diagram. A component depen-
dence diagram (CDD) is a directed graph. Each node of
a CDD corresponds to a component of the program. A
component is a basic executable unit. In a procedure-
oriented program, a component can be a function whereas
it is as simple as a class in object-oriented program. The
edges of the graph represent either control dependency or
data dependency among the nodes. These dependencies are
represented by directed arrows. We do not use different
symbols to represent these two types of dependencies since
our prioritization algorithm treats both the dependencies
identically. If both data and control dependencies exist
between two components, we draw only one arrow between
the corresponding nodes. Figure 2 shows an example pro-
gram and its CDD. In the example shown in Figure 2(a),
the statement, store (d) in function f 2 indicates saving of

latest value of the variable d to a memory location. Similarly,
the statement read (d) in function f 3 indicates reading of
the value of variable d that was last saved by function f 2.
This diagram is similar to a data-flow diagram (DFD) [35].
However, unlike a DFD which represents a program in a
hierarchy of diagrams, a CDD represents a program in a
single diagram. Also, a CDD captures control aspects unlike
DFDs which represent data flows alone. Further, the nodes
of a DFD may or may not correspond to the functions of a
program [35].

We view a CDD as a simplified form of a system
dependence graph (SDG) [36], but a CDD does not have
as many types of edges as SDG [36]. Unlike SDG, a
CDD does not represent the individual statements of a
program because inclusion of individual statements make
the graph looking complicated. In extended control-flow
graph (ECFG) [37], nodes refer to methods in an object-
oriented program whereas it refers to components in CDD.
The aim of referring a node of CDD to a component instead
of a method in an object-oriented program is to make the
graph simple and easily understandable. We compare CDD
with the component dependence graph (CDG) proposed by
Yacoub et al. [38] where, nodes refer to components. They
have adapted control flow graph principally to represent
the dependency between two components and possible
execution paths. Unlike our approach, Yacoub et al. have
considered only control dependency between components.
In their approach, the components are assumed to be
independent (the existence of bug in one component is not
responsible for the failure of another component). As we
consider the data dependency between two components,
a bug in one component may have an effect on other
components.

The CDD generated in our approach is satisfying all the
following constraints.

(i) No node is isolated.

(ii) All use cases put together cover all nodes.

(iii) No self-loops.

(iv) The node at which a use case starts execution is not
control dependent on other nodes of the graph.

(v) The nodes tested by any one test case are a subset of
nodes belonging to slice of a scenario.

Once the intermediate graph, CDD, is constructed, we use
it to extract slices with respect to various scenarios for
prioritizing components.

Extracting Slices of CDD with Respect to Various Scenarios
and Estimating the Value of a Component. Each use case has
one main scenario and a number of alternative scenarios.
Let us consider a single use case say withdraw of ATM
system. This use case has main scenario correct transaction
and a number of alternative scenarios: insufficient balance
and requested amount exceeds maximum withdrawal limit per
day. For simplicity, we only consider the main scenario and
do not consider the alternative scenarios. The value of a use
case is same as the value of its main scenario.

10 ISRN Software Engineering

main(){

}
f1(){

··
·

f2();
}

f2(){

··
·

store(d);
print(o1);

}
f3(){
read(d);

··
·

print(o2);

}

int d[10];

else f3();
==1) f1();

=readUserOption();i
int i;

if(i

(a) An example program

Main

f1

f2

f3

O1

O2

ii

(b) Component dependence diagram of the example program

Figure 2: A program with its CDD.

We compute the slice Si of the CDD with respect to
scenario Si. The slice of a scenario, Slice (Si), contains the
set of all components within a system that influence the
execution of the scenario Si. Thus, slice (Si) contains the
set of components that are either get executed during the
execution of scenario Si or the results of the components,
saved in different variables, are used during the execution of
Si. Please note that we use the terms node of a CDD and a
component interchangeably when no confusion arises.

Value Estimation Scheme. Once the business values for all
scenarios of a system are determined, we estimate the
business value Value (Ci) for a component Ci as follows.

Value (Ci) =
nos∑

j=1
qj ,

qj = Value j , if Ci ∈ slice
(
Sj
)

else, qj = 0,

(5)

where nos is the number of scenarios within a system. Value j

is the probability of jth scenario, and slice (Sj) is the slice
of the CDD with respect to jth scenario. The priority value
of a component intuitively indicates the priority of its being
used during an actual operation of the program. We now
algorithmically present our business value estimation scheme
for various components within a system.

Value Estimation Algorithm

(1) Construct the CDD of the program.

(2) Determine the business value Valuei for
each scenario Si within a system.

(3) For each component Cj of CDD let
Value(Cj)=∅.

(4) For each scenario Si of the program:

(a) Compute the slice of scenario Si
from the CDD.

(b) for each component Cj in slice(Si) let
Value(Cj) = Value(Cj) + Valuei.

(5) Print the value computed for each
component.

We now explain our value estimation method using a
simple example. Let us assume that the program shown in
Figure 2(a) has two use cases: U1 and U2, and each use case
has only one scenario. Let the business values associated with
scenarios S1 and S2 be 0.8 and 0.2, respectively. Figure 3(a)
shows the computation of the slice, Slice1, the slice of CDD
with respect to S1. Each component that is executed within
the slice Slice1 is getting marked by 0.8, which is the value of
scenario S1. Next, the slice of CDD with respect to scenario
S2, Slice2, is computed. The values (business values) of
various components after slicing the CDD with respect to
both scenarios are obtained as shown in Figure 3(b). In the
figure, the functions main and f 2, each has value 1. This
means that both the functions main and f 2 are either getting
executed or their results are used by both the scenarios S1 and
S2. It may be noted that the business value of 1 for a function
indicates that it is required for all scenarios of the system.
Table 6 shows the business values associated with various
components of ATM system.

3.5. Priority Calculation. For assigning priority, the com-
monly used method is to do a proper weight assignment and
then calculate a weighted sum for a class [1]. We assign a rel-
ative weight for each chosen factor of a class. For each factor,
we assign equal weight. The weight may vary depending on
the nature of the system. An example of priority calculation
for a component is shown in Table 7. The headings used for
different columns of the table are Inf: influence value, EEC:
expected execution time, SC: structural complexity, Severity:
impact of component failures, Val: business value, and TP:
total priority of a component within a system. The priority
value for a component is normalized by dividing the total
priority value of a component with the sum of the total
priorities of all components within a system.

There are a lot of technical, productive, and environmen-
tal complexity factors that exist within a component. For

ISRN Software Engineering 11

Main
0.8

f1
0.8 f2

0.8

f3
0

O1

O2

i

(a) Priority values after slicing scenario S1

Main
1

f1
0.8

f2
1

f3
0.2

O1

O2

i

(b) Priority values after slicing scenarios S1 and S2

Figure 3: Priority of each component after slicing S1 and S2.

simplicity, we are only considering five factors. Considera-
tion of more factors makes the priority calculation method
more accurate, but it will make the process more complicated
and more confusing. In Table 7, we are assigning the weight
of 1 to each priority factor. It may vary from application to
application, and it is purely a subjective matter.

4. Experimental Studies

We have applied our proposed test effort prioritization
method on three case studies implemented in JAVA, library
management system (LMS), trading-house automation sys-
tem (TAS), and automatic teller machine (ATM). The aim of
the experiment is to check the effectiveness of our proposed
prioritization-based testing method over the commonly used
approach. The design part of these case studies is well
explained in [35]. These are neither very small nor very large,
but of moderate size. We present a brief summary of these
case studies in Table 8 so that the size of each can be well
understood. In this table, object points shown in Column
4 are estimated based on how many individual screens are
displayed, how many reports are produced, and number of
3GL modules developed in the system [39, 40]. The value of
#Cl shown in Column 3 is from user classes. System classes
are not considered here. For better understanding of the
above case studies, the use case diagrams of the case studies
are shown in Figure 4.

Table 6: Business values associated with various components of
ATM system.

Component Value

Session 0.93

Withdrawal 0.77

Deposit 0.69

Transfer 0.39

Inquiry 0.58

Card reader 1

Envelope accepter 0.69

Customer console 1

Log 0.86

Table 7: Priority calculation.

Inf EEC SC Severity Val TP

0.67 0.3 0.3 0.75 0.36 2.38

First, we applied our proposed influence algorithm [12]
to get the influence of classes of each case study. For this,
we have developed a tool using ANTLR in the ECLIPSE
framework to get the intermediate graph (ESDG) of the
program. Average execution time of a class in a case study was
decided by executing a case study 100 times (100 test cases
were selected randomly based on operational profile data),
collecting total execution time of a class at each run by the
help of Profiler [23], and then calculating the average of total
execution time. We calculated WMC for a class manually
through the source code. To get the RFC, we have developed
an algorithm that traverse the ESDG and generated RFC for
a class in a case study. The severity of a class in a case study
was decided by seeding faults in a chosen class and observing
the type of system failures by executing the system in the
operational environment. The group of students those have
done the requirement analysis and design was assigned to
check the severity of a class in a system. Domain experts were
also involved for taking a proper decision on failure types.
Finally, we have calculated priority value for each class as
shown in Table 7 and generated a list of critical classes based
on their priority value, in each case study. Once the critical
classes in a system have been decided, our aim was to validate
our result. For this, we have conducted experiments to check
how the faults in these classes are affecting the reliability of
the system. The experiment is described below.

We have used fault seeding for evaluating the effec-
tiveness of our proposed approach. It has been shown
that fault seeding is an effective practice for measuring
the testing method efficiency [41]. We have used some
mutation operators to seed bugs randomly. The fault density
is considered as a constant equal to 0.05 for each case study.
This means that in a case study consisting of 1000 lines,
50 bugs were inserted. The seeded bugs are class mutation
operators [42] and interface mutation operators [43, 44].
The class mutation operators are targeted at object-oriented
specific features which java provides such as class declaration
and references, single inheritance, interface, information

12 ISRN Software Engineering

Table 8: Brief summary of our case studies.

System LOCs
Use Cases
number

Scenarios
number

Classes
number

Object-points
number

LMS 2486 16 56 18 153

SMA 1137 09 23 10 31

ATM 4217 12 30 22 82

≪Include≫

≪Include≫

≪Include≫
≪Include≫
≪Include≫≪Include≫

≪Include≫

≪Include≫
≪Include≫

≪Include≫

≪Include≫

Package data [

Search title

Make reservation

Search user

Return loan

Renew loan Borrow loan

Borrower

Add user

Remove user

Add title

Add item

Remove item

Remove titleCheck reservation

Collect fine

Find loan

LibrarianCancel reservation

library management system]

(a) Use case diagram for LMS

Package data [

Process order

Progress order

Check price and
stuck

Manage stock level

Accept new stock

Get sales
information

Maintain catalog
Print sales report

Store manager

Sales assistant

Stock manager

Warehouse employee

Regional warehouse

Head officer

Card handle system

Handle return

SMA]

(b) Use case diagram for SMA

Package data [

Insert card

Do transaction

Transfer
Get pin

Perform trans Deposit

InquiryPrint receipt

Customer

Cancel

Operator

≪Include≫
≪Include≫

≪Include≫
≪Include≫≪ ≫

ATM shutdown

ATM startup

Withdraw

ATM]

Extend

(c) Use case diagram for ATM

Figure 4: Use case diagrams of the case studies.

hiding, and polymorphism and also provide coverage criteria
with regard to these features. In this paper, the four classes
mutation operators considered to simulate faults are

(i) CRT (compatible reference type) operator-type
replacement: this operator replaces a reference type
with all the compatible types (the name of other
classes and interfaces) found from a cluster. There is
a chance of subtle type errors by this mutant.

(ii) CON (constructor) operator-initial states and object
replacement: a java class usually provides one or more
constructors to capture the different ways of creat-
ing objects (constructor overloading). This operator
replaces a constructor with other overloaded con-
structors. Some times, constructor of subclass may
be replaced by constructor of super class by this
operator. Object initialization error is related to this
operator which happens frequently.

(iii) OVM (overriding method) operator-method
replacement: this operator generates a mutant
by deactivating the overriding method so that a
reference to the overriding method actually goes
to the overridden method. Actually an overriding
method in a subclass has different functionality to
the overridden method in a super class. So there is a
chance of some semantic errors by this operator.

(iv) AMC (access modifier changes) access mode replace-
ment: this operator replaces a certain Java access
mode with three other alternatives such as private,
protected and public. For example, a field declared
with a protected access mode can be muted to private
and public.

There is a number of interactions among components in
an object-oriented application. Therefore, there are more
opportunities for integration/interface faults. Delamaro et al.
[43] have proposed interface mutation (IM) with the aim to

ISRN Software Engineering 13

test thoroughly the interactions among various units. Sup-
pose, there are three functions f 1, f 2, and f 3 within a
system and to test the connection between f 1 and f 3, we
insert mutants inside the component f 3. In this case, these
mutants may be identified through the test cases that execute
calls to f 3 from f 2. As a result, the connection between f 1–
f 3 is not tested. For this, there is a need to consider the
proper place from where a function is called. Keeping this in
view, we have carefully considered some interface mutation
operators from the mutant set proposed in [43]. The IM is as
follows.

(1) Applying mutants within the called function: the
mutants considered under this category are direct
variable replacement operator, indirect variable oper-
ator, and return statement operators.

(2) Applying mutants inside the calling function: it is
applied to the call arguments. The mutants consid-
ered under this category are unary operator insertion
and function call deletion. The last operator is a
missing transition. It is not applied to the argument
but to the whole function call. In a connection f 1- f 2,
it deletes the call to the function f 2. At the time
of implementing the mutant inside an expression,
special care is taken to replace it by an appropriate
value if the deleted function is returning any value.

First, the testing time for each case study was decided
based on the number of classes, complexity of each class,
and number of object points [40] in the case studies.
Then, we made two copies of the source code of each case
study and applied two different testing methods. In the
first testing method, the components are prioritized based
on their structural complexity [13], whereas in the second
testing method, the components are prioritized based on our
proposed prioritization approach. The first testing method
was applied to the first copy, and the second testing method
was applied to the second copy of each case study.

Two separate groups were set for testing the two different
copies of a case study. It is assumed that the competency
level of both the groups are nearly equal. Same testing

time was allocated for each copy of a case study. At this
point, we emphasize the fact that our aim is not to achieve
complete fault-coverage with this much test resources, but
to check the efficiency of our proposed testing method. The
number of test cases designed for a component at the unit
level is decided based on their priority values (based on the
complexity of a class in first copy and based on our proposed
ranking method in the second copy). As a class with high
influence value provides more services to others (due to high
influence value), a single bug in the class may cause more
interface bugs, which we cannot detect at the unit level.
Interface bugs can be detected at the integration level to
assure that the classes have communicated correctly. So, at
the integration level, we have applied coupling-based testing
techniques (client-server) [45]. In this approach [45] when,
a class (client) is calling another classes (server) first, some
method sequences of the client class are considered. These
method sequences are subset of the set of method sequences
decided at unit testing. Then, for each method sequence, the
method sequences of the called class (server) are decided. At
a time, one server class is considered for each client class.
For one client method sequence, there can be number of
server method sequences. In this level, the testing will be
more effective if the method sequences of the client class
will be more complete. As we have tested thoroughly the
classes with high-priority value at the unit level in the second
copy of a case study, we have considered the coupling-based
integration testing [45] to cover all the possible interface
faults of critical classes. We have taken the help of a coverage
analysis testing tool JaBUTi [46] for getting the coverage
analysis of test cases at the unit level for a case study. The
example of the coverage report by two test cases at the unit
level through JaBUTi is shown in Figure 5.

At the unit and integration level, though testing time
is the same for the two copies of a case study, but the
test set is different as the priority level of a component is
different in different testing methods. After the completion
of integration testing, we checked the mutation score S of the
test set generated for each copy of a case study.

The mutation score for a test set T is as follows:

Mutation Score (S,T) = Total number of dead mutants
Total number of mutants seeded− Total number of equival entmutants

. (6)

Table 9 shows the mutation score of generated test sets by two
different testing methods.

From Table 9, it is observed that MST and MSP are nearly
equal. In LMS case study, mutation score by first testing
method is more, whereas in TAS and ATM case studies, the
mutation score by second testing method (our proposed
prioritization-based testing method) is more. Hence, we can-
not argue that our proposed method is better in finding
mutants, but we found that our proposed testing method is
also equally competent in finding mutants. We have claimed
that though our proposed method is not able to expose more

bugs as compared to the first testing method (test efforts
decided based on complexity), but we are sure that our
method is able to expose important bugs which are
responsible for frequent failures and severe failures as we
are considering both internal (average execution time, influ-
ence value, and also structural complexity) and external fac-
tors (severity and business value) for testing effort prioritiza-
tion. We have conducted experiments to prove this.

After resolving the detected bugs, we found that some
residual bugs are existing in both copies of the case studies.
A few bugs were detected towards the end of testing, which

14 ISRN Software Engineering

(a) Test cases executed for the component Cash dispenser of ATM

(b) Coverage shown by JaBUTi test tool

Figure 5: Test execution details of component Cash dispenser in ATM.

Table 9: Mutation score by two testing methods.

Test TC# Mu# EMu# MST MSP

LMS 112 22 2 0.89 0.82

TAS 73 17 0 0.74 0.77

ATM 211 31 7 0.8 0.89

TC#: number of test cases, Mu#: number of mutants, EMu#: number of
equivalent mutants, MST : mutation score by first testing method (compo-
nents are prioritized based on complexity), and MSP : mutation score by
second testing method (components are prioritized based on our proposed
approach).

could not be fixed due to the shortage of testing time. At
this point, we again emphasize the fact that our aim is not
to achieve complete fault-coverage with a minimal test suite
size. We have fixed a test budget for each case study before
the testing phase and our aim is to ensure the efficiency
of both testing methods within the available test budget.
Therefore, after the completion of testing phase, we observed
the effect of those residual bugs in both copies of each case
study by invoking random services. For this, new system level
test cases were randomly generated based on operational
profile [2] for observing the behavior of the system at
postrelease stage. At this point, we did not fix any detected

bug. Analytical comparison of the two testing methods was
done by running the same input set on the tested copies
(one copy was tested by the traditional approach where
the components are prioritized according to their structural
complexity, and the other copy was tested by our proposed
approach (discussed in Section 3) of each case study.

4.1. Result Analysis. The results of our simulation studies are
summarized in Table 10. The headings used for the different
columns of the table are listed below.

Test# is number of test cases in the test set.

Failt# denotes the number of failures observed in the
first copy (testing efforts were assigned to various
components based on the structural complexity).

Failp# is the number of failures observed in the
second copy (testing efforts were assigned to various
components based on our proposed testing effort
prioritization technique).

CS is case study.

FCa, FCr, FMa, and FM represent the number of
catastrophic, critical, marginal, and minor failures.

From Table 10, it is observed that the postrelease fail-ures
are less in the second copy of a case study, to which our

ISRN Software Engineering 15

Table 10: Failure observation at the time of release.

CS Test#
Failt# FailP#

FCa FCr FMa FM FCa FCr FMa FM

LMS
50 0 2 3 0 0 0 2 1

100 0 5 3 4 0 0 3 3

150 1 6 3 5 0 2 3 4

TAS
50 0 1 1 4 0 0 1 3

100 1 1 1 4 0 0 2 4

150 1 2 1 4 0 1 2 4

ATM
50 0 2 3 6 0 0 2 2

100 0 2 4 6 0 0 4 2

150 0 2 4 4 0 0 4 4

method is applied. Not only the number of failures is less,
but also catastrophic and critical failures are rarely observed.
Only some minor failures are observed in the copy tested
by our approach (Failp#) such as displaying results in some
different format. This type of failures has very less effect
on the system and also on customer. Some highly severed
failures are observed in the first copy of each case study. It
is because some critical bugs were detected towards the end
of test cycle, which were not fixed due to shortage of testing
time, whereas these critical bugs were detected at the early
stage of test cycle in the second copy of a case study to which
our approach was applied.

We are explaining a critical failure that is observed in the
first copy of the case study “LMS”, as shown in Table 10. As
per the business rule of “LMS”, a borrower can issue only
one book, but we have violated this constraint by seeding a
fault. As the first testing method gives importance to a class
based on only the structural complexity not the value, the
seeded bug (missing transition) could not be recovered due
to a constraint in testing time. As a result, it allowed the same
borrower to issue another book, who has already issued a
book.

Through a detailed analysis of the results of both testing
methods (testing effort prioritization based on complexity,
testing effort prioritization based on our proposed method),
we conclude that our proposed test effort prioritization
helps to minimize the post-release failures of a system and
also helps in minimizing the catastrophic and critical types
of failures at the operational environment. As a result of
this, user’s perception on overall reliability of the system is
improved. The efficiency of our proposed method will be
increased if we run the software for long duration by taking
more number of test cases based on operational profile.

In the discussed three case studies, we observed that the
performance rate is drastically increased by our method,
when the system is executed for a long time.

4.2. Threats to Validity of Results. In order to justify the
validity of the results of our experimental studies, we got the
following list of threats.

(i) Biased test set design and influencing results.

(ii) Seeding-biased errors in both the copies of each case
study.

(iii) Testing only for selected failures and loosing general-
ity of results.

(iv) Competency level of two testing groups are not same.

Measures Taken to Overcome the Threats. In order to over-
come the above mentioned threats and validate the results for
most common and real life cases, we have taken the following
corrective measures.

(i) At the testing phase, same test efforts was allocated
for both testing methods.

(ii) We have taken care that the seeded bugs match with
commonly occurring bugs. For this, we have inserted
some class mutation operators to seed bugs. Using
mutation operators, we can ensure that a wide variety
of faults are systematically inserted in a random
fashion. While traditional mutation operators are re-
stricted to a unit level, class mutation operators [42]
have impact on cluster level.

(iii) We have taken in consideration the kind of failures
which include almost all variety of bugs.

(iv) Each testing group contains five members. The com-
petency level of each tester was tested based on ques-
tionnaires and formed two groups. Both groups have
same competency level.

5. Related Work

Researchers have proposed a variety of prioritization-based
testing techniques in order to do the best possible job with
limited resources. These techniques make the testing process
more effective and cheaper. An effective test could find more
number of defects or more important defects in the same
amount of time. As testing is expensive and time consuming,
the test manager has to choose among alternatives, not use
them all. A lot of work has been done on test case priori-
tization, but work on source code prioritization has scarcely
been reported. It is a research area on improving testing
before test case generation. First, we discuss the work on

16 ISRN Software Engineering

Table 11: Comparison of existing work on code prioritization with our work.

Comparison criteria Li’s work [47] This work

Aim of code prioritization
Quickly improve code coverage
(control-flow-based coverage)

Quickly improve user’s perception on the
reliability of the system

Priority level Line of code or block Method or class

Analysis point Structural Structural and behavioral

Factors for prioritization Number of lines of code covered
Influence, execution time, structural
complexity, severity, and business value

Intermediate graph used Control flow graph ESDG (both data and control flow)

Fault criticality
Equal importance to the discovery of
each fault

Faults in high-priority areas are more critical
and hence are given more importance.

Effectiveness Finding more numbers of bugs
Finding bugs that have more contribution to
unreliability

source code prioritization and compare it with our proposed
work. Then, we discuss the work on fault-proneness of a
component which discuss the methods to identify faulty
components within a system. Finally, we discuss on another
related research area on pretesting efforts, usage-based testing,
with the objective to improve the reliability of a system.
Lastly, we present a review on the reported work on some
test case prioritization techniques.

5.1. Code Prioritization. The basic aim of this technique is to
focus on testing efforts before the generation of test cases. It
helps to prioritize the testing efforts based on test objectives.
With a prioritized testing effort and focused test architecture,
test cases are created and executed.

Li [47] has proposed a priority calculation method
that prioritizes and highlights the important parts of the
source code based on dominator analysis, that need to be
tested first to quickly improve the code coverage. Before test
construction, Li’s method decides which line of code will
be tested first to quickly improve code coverage. According
to his approach, first the intermediate representation of
the source code, known as control flow graph (CFG) is
constructed. Then, a node (a node is a basic block in the
source code.) of the CFG is prioritized based on measuring
quantitatively how many lines of code are covered by testing
that node. A weight is calculated for each node considering
only the coverage information. It does not take into account,
for instance, the complexity or the criticality of a given part
of the program. A test case covering the highest weight
node will increase the coverage faster (the tester, based on
his/her experience, may desire to cover first a node with a
lower weight but that has higher complexity or criticality.).
There are two kinds of code coverage such as control-flow
based and data flow based. Li’s work focuses on control flow
coverage. Code coverage helps the developers and vendors
to indicate the confidence level in the readiness of their
software, but the limitation is that it gives equal importance
to the discovery of each fault. So, no information is gained
on how much it affects the reliability of a system by detecting
and eliminating a failure during testing process, as different
failures have different contribution to the reliability of a
system. Though Li’s work [47] is more effective at finding
bugs, but it oftenly spends more resources by uncovering

many failures having occurrence rate very much negligible
during actual operation. As a result of this, some times
test efforts are wasted without appreciably improving the
reliability of the software. Therefore, this code prioritization
technique could not always detect the bugs, which are
responsible for frequent failures, when the system is executed
for some duration by providing some random inputs. Unlike
Li’s work [47] on code prioritization, our code prioritization
strategy analyzes failure-prone parts in the source code and
able to focus first on detecting the faults that cause the most
frequent failures. The failure-prone parts are identified based
on influence metric and operational profile. We compare
our work with the existing work on code prioritization [47]
according to the following six criteria given in Table 11.

Li et al. [48] presented a methodology for code coverage-
based path selection and test data generation, based on Li’s
previous work [47]. They [48] proposed a path selection
technique that considers the program priority and call
relationships among class methods to identify a set of
paths through the code, which has high-priority code unit.
Then, constraint analysis method is used to find object
attributes and method parameter values for generating tests
to traverse through the selected sequence of paths. It helps to
automatically generate tests to cover high priority points and
minimize the cost of unit testing.

We have proposed a few testing effort prioritization
approach [11, 12, 18] based on code analysis and also
on UML models. In that work, we have proposed a code
prioritization method based on only internal parameters.
In that approach, we have assumed that the effect of
each failure is equal, which is not true. In this paper, the
external parameters: severity and business value are added
for prioritizing components.

5.1.1. Fault-Proneness-Based Testing. The work on fault-
proneness identifies faulty components in a system, and
testing effort prioritization is done accordingly. It estimates
the probability of the presence of faults in a component,
which helps to take valuable decisions on testing. A lot of
research work have been done to identify the fault-prone
components in a system [49–52], which are very relevant to
our work. Different authors have focused on different char-
acteristics associated with a component for counting faults.

ISRN Software Engineering 17

Eaddy et al. [49] have experimentally proved that concern-
oriented metrics (a concern is anything a stake holder may
want to consider as a conceptual unit, including features,
nonfunctional requirements, and design idioms.) are more
appropriate predictors of software quality than structural
complexity measures, and there is a strong relationship
between scattering and defects. Ostrand et al. [50] have
proposed a novel approach to identify the faulty files in the
next release. For prioritizing testing efforts, their approach
considers the factors that are obtained from the modification
requests and the version control system. These factors are (i)
the file size, (ii) whether the file was new to the system, (iii)
fault status in previous release (whether the file contained
faults in earlier releases, and if so, how many), (iv) number
of changes made, and (v) programming language used for
implementation. For some initial releases, the models were
customized based on the above observed factors. Based on
the experimental results, the authors conclude that their
methodology can be implemented in the real world without
extensive statistical expertise or modeling effort. Ostrand
et al. [52] proposed a negative binomial regression model.
The binomial model is used to predict the expected number
of faults in each file of the next release of a system. The
predictions are based on the code of the file in the current
release, fault, and modification history of the file from
previous releases. El Emam et al. found that a class having
high-export coupling value is more fault-prone [51]. A
complex program might contain more faults compared to a
simple program [53]. As the factor complexity is the most
important defect generator, the complexity metric is used as a
parameter for testing [54, 55].

Some researchers have proposed prediction of faulty
components from design metric at the architectural level.
Researchers [14, 54] relate the structural complexity metric
(CK metric suite [13]) to fault-proneness. From these papers,
it is observed that the estimated defect density (fault-
proneness) through static analysis and the prerelease defect
density computed by testing is strongly correlated. El Emam
et al. [56] have experimentally proved that inheritance and
external coupling metrics are strongly associated with fault-
proneness. Unlike these papers, our aim is not to investigate
the characteristics of various components to check which
components have high fault densities. Our aim is to make
the testing process more effective by finding more and more
important defects and improving the reliability of a system
without increasing the testing budget.

5.2. Usage-Based Testing. The first step in usage-based testing
is to develop a usage model that describes the anticipated
behavior (usage) of the system under test. Usage Model helps
to improve the user’s perception on the system’s reliability.
It is also designed before the construction of test cases.
It basically represents the events and transition between
events in the system, where events can be user input or
environmental input. Its main purpose is to describe the
possible behaviors of the user and to quantify the actual
usage in terms of probabilities for different user’s behavior.
Though unlike our approach, no prior knowledge of the
program is necessary for usage-based testing. The authors

found that a lot of research work have been done on usage-
based testing at the abstract level based on operational profile
[2], which focus on detecting faults that cause the most
frequent failures. By prioritizing our tests based on usage
probabilities, it ensures that the failures that will occur most
frequently in operational use will be found early in the test
cycle, while keeping testing effort to a minimum. In terms of
mean time between failure (MTBF), Cobb and Mills [3] say
that “It is shown based on a study of a number of projects
that usage testing improves the perceived reliability during
operation 21 times greater than that using coverage testing.”
However, these works have concentrated on selection of test
cases based on black-box approach compared to our white-
box approach. As a result, it ignores the structural (syntactic
and semantic) relationships that exist among the elements
of source code, which is vital for reliability assessment.
Sometimes the infrequently executed code of a complex
module that is a source of failure could not be tested by this
method. Cheung [10] has proposed a user-oriented software
reliability model, which measures the quality of service that
a program provides to a user. His Markov reliability model
uses a program flow graph to represent the structure of the
system. The flow graph structure is obtained by analyzing the
code. It uses the functional modules as the basic components
whose reliabilities can be independently measured. It uses
branching and function-calling characteristics among the
modules as the user profile so that they can be easily meas-
ured in the operational environment. Similar structural
models have been proposed by Littlewood [57] and Booth
[58] to analyze the failure rates of a program. Lo et al.
[59] have proposed a structural model for estimating the
reliability of component-based programs where the software
components are heterogeneous, and the transfer of con-
trol between components follows a discrete-time Markov
process. However, in all the related techniques discussed
above, the data dependency among the components has been
ignored. As a result, the tester finds it very hard to describe
the interdependency of software failures in detail.

5.3. Test Case Prioritization. There has been a large number
of work [60–63] reported on prioritizing test cases. A
meaningful prioritization of test cases can enhance the
effectiveness of testing within the same testing effort. The
authors of the papers [60–62] have proposed test case prior-
itization techniques to reduce the cost of regression testing
based on total requirement and additional requirement
coverage. Their basic aim is to improve a test suite’s fault
detection rate. Elbaum et al. [62] have added two major
attributes such as test cost and fault severity to each element
of the test suit. They have experimentally validated that
the test suites executed based on prioritization technique
always outperform unprioritized test suites in terms of fault
detection rate. The authors of the paper [63] have also
proposed a test case prioritization technique for regression
testing using relevant slicing. These discussed prioritization
techniques are used to improve testing by ordering the test
cases in a test suite for testing.

Though an ordering of test cases helps to find more
number of defects at the early phase of testing, it requires to

18 ISRN Software Engineering

run all test cases of a large test suite at the time of regression
testing, which is impossible. To solve this problem, Sapna
and Mohanty [64] have used clustering to select a subset
of scenarios for testing. Unlike these discussed test case
prioritization techniques, our aim is not to increase the
rate of fault detection at the time of regression testing,
which is generally applicable during maintenance phase. Our
approach identifies the critical parts of the source code at the
development phase and detects more faults from the critical
parts to minimize the postfailure rate without increasing the
testing effort.

Bryce et al. [65] have proposed various prioritization
criteria for prioritizing test cases. These are parameter-value
interaction, coverage-based, count-based and frequency-
based. They have applied them to specifically some stand-
alone GUI and Web-based applications and found that the
fault detection rate is increasing over random ordering of test
cases.

6. Conclusion

We have proposed a test effort prioritization approach to
rank components at the code level for testing. The degree
of thoroughness with which an element is tested is made
proportional to its priority value. This helps to detect
more faults from the critical parts of the source code. We
have considered five important factors of a component:
influence value (influence towards system failures), average
execution time, structural complexity, severity, and business
value for computing the criticality of the component and pri-
oritizing the components according to their criticality. Our
test effort prioritization method guides the tester to detect
the important bugs at the early phase of testing that are
responsible for frequent or severe failures. As a result, the
user’s perception on the reliability of the system is improved
within the available test budget. Our approach helps to
increase the test efficiency as it is linked to the measure
for both internal factors (influence value and structural
complexity) and external factors (severity and business
value) of a program element.

We have validated our claim experimentally by com-
paring our proposed approach with a related schema in
which the components are prioritized according to their
complexity. Our experimental results show that the rate
of postrelease failures are minimized, and also the severe
failures are minimized in our approach, when the system is
executed for some duration at the operational environment.
Analysis of the source code of a software in this way
before test case generation helps software management team
to locate the elements, those are critical but getting less
attention in terms of testing.

References

[1] S. Naik and P. Tripathy, Software Testing and Quality Assurance:
Theory and Practice, Willey, 2008.

[2] J. D. Musa, “Operational profiles in software-reliability engi-
neering,” IEEE Software Magazine, vol. 10, no. 2, pp. 14–32,
1993.

[3] R. H. Cobb and H. D. Mills, “Engineering software under
statistical quality control,” IEEE Software, vol. 7, no. 6, pp. 45–
54, 1990.

[4] E. N. Adams, “Optimizing preventive service of software prod-
ucts,” IBM Journal of Research and Development, vol. 28, no. 1,
pp. 2–14, 1984.

[5] B. Boehm and V. R. Basili, “Software defect reduction top 10
list,” Computer, vol. 34, no. 1, pp. 135–137, 2001.

[6] B. Boehm and L. G. Huang, “Value-based software engineer-
ing: a case study,” Computer, vol. 36, no. 3, pp. 33–41, 2003.

[7] Q. Li, M. Li, Y. Yang et al., “Bridge the gap between software
test process and business value: a case study,” in Proceedings of
the International Conference on Software Process: Trustworthy
Software Development Processes (ICSP ’09), 2009.

[8] I. Sommerville, Software Engineering, Pearson, 5th edition,
1995.

[9] J. D. Musa, Software Reliability Engineering: More Reliable
Software Faster and Cheaper, AuthorHouse, 2004.

[10] R. C. Cheung, “A user-oriented software reliability model,”
IEEE Transactions on Software Engineering, vol. 6, no. 2, pp.
118–125, 1980.

[11] M. Ray and D. P. Mohapatra, “Reliability improvement based
on prioritization of source code,” in 6th International Con-
ference on Distributed Computing and Internet Technology
(ICDCIT ’10), T. Janowski and H. Mohanty, Eds., vol. 5966
of Lecture Notes in Computer Science, pp. 212–223, Springer,
2010.

[12] M. Ray, K. Lal Kumawat, and D. P. Mohapatra, “Source code
prioritization using forward slicing for exposing critical ele-
ments in a program,” Journal of Computer Science and Tech-
nology, vol. 26, no. 2, pp. 314–327, 2011.

[13] S. R. Chidamber and C. F. Kemerer, “Metrics suite for object
oriented design,” IEEE Transactions on Software Engineering,
vol. 20, no. 6, pp. 476–493, 1994.

[14] L. C. Briand, J. Wüst, J. W. Daly, and D. Victor Porter, “Explor-
ing the relationships between design measures and software
quality in object-oriented systems,” Journal of Systems and
Software, vol. 51, no. 3, pp. 245–273, 2000.

[15] A. Hassan, K. Goseva-Popstojanova, and H. Ammar, “UML
based severity analysis methodology,” in Proceedings of the
Annual Reliability and Maintainability Symposium (RAMS
’05), pp. 158–164, Alexandria, Va, USA, January 2005.

[16] R. Ramler, S. Biffl, and P. Grnbacher, Value-Based Management
of Software Testing, Springer, Berlin, Germany, 2005.

[17] B. Boehm, “Value-based software engineering: reinventing,”
ACM SIGSOFT Software Engineering Notes, vol. 28, no. 2, pp.
3–10, 2003.

[18] M. Ray and D. P. Mohapatra, “A scheme to prioritize classes at
the early stage for improving observable reliability,” in the 3rd
India Software Engineering Conference (ISEC ’10), pp. 69–72,
February 2010.

[19] N. Nagappan, T. Ball, and B. Murphy, “Using historical in-
process and product metrics for early estimation of software
failures,” in Proceedings of the 17th International Symposium
on Software Reliability Engineering, pp. 62–74, 2006.

[20] L. Larsen and M. J. Harrold, “Slicing object-oriented soft-
ware,” in Proceedings of the 18th International Conference on
Software Engineering (ICSE ’96:), pp. 495–505, 1996.

[21] M. Weiser, “Program slicing,” IEEE Transactions on Software
Engineering, vol. SE-10, no. 4, pp. 352–357, 1984.

[22] Y. N. Srikant and P. Shankar, Eds., The Compiler Design
Handbook: Optimizations and Machine Code Generation, CRC
Press, 2002.

ISRN Software Engineering 19

[23] Profiler, http://www.sics.se/man2html/gprof.1.html.
[24] M. H. Tang, M. H. Kao, and M. H. Chen, “Empirical study on

object-oriented metrics,” in Proceedings of the 6th International
Software Metrics Symposium, pp. 242–249, November 1999.

[25] S. R. Luke, “Failure mode, effects and criticality analysis
(fmeca) for software,” in 5th Fleet Maintenance Symposium,
pp. 731–735, Virginia Beach, Va, USA, October 1995.

[26] L. H. Rosenberg, R. Stapko, and A. Gallo, “Risk-based object
oriented testing,” in Proceedings of the 24th Annual Software
Engineering Workshop, NASA, Software Engineering Labora-
tory, 1999.

[27] J. A. Whittaker and M. G. Thomason, “Markov chain model
for statistical software testing,” IEEE Transactions on Software
Engineering, vol. 20, no. 10, pp. 812–824, 1994.

[28] D. Department, “Procedures for performing a failure mode,
effects, and criticality analysis,” US MIL STD 1629A/Notice 2,
November 1984.

[29] N. Ozarin, “Failure modes and effects analysis during design
of computer software,” in Proceedings of the Annual Reliability
and Maintainability Symposium, pp. 201–206, January 2004.

[30] P. Vyas and R. K. Mlittal, “Operation level safety analysis for
object oriented software design using sfmea,” in WEE Inter-
national Advance Computing Conference, Patiala, India, March
2009.

[31] S. M. Yacoub and H. H. Ammar, “A methodology for archi-
tecture-level reliability risk analysis,” IEEE Transactions on
Software Engineering, vol. 28, no. 6, pp. 529–547, 2002.

[32] K. Goseva-Popstojanova, A. Hassan, A. Guedem et al.,
“Architectural-level risk analysis using UML,” IEEE Transac-
tions on Software Engineering, vol. 29, no. 10, pp. 946–959,
2003.

[33] I. Jacobson and M. Christerson, Object-Oriented Software
Engineering: A Use Case Driven Approach, Addison-Wesley,
1992.

[34] L. Huang and B. Boehm, “How much software quality invest-
ment is enough: a value-based approach,” IEEE Software, vol.
23, no. 5, pp. 88–95, 2006.

[35] R. Mall, Fundamentals of Software Engineering, Prentice Hall
of India, 3rd edition, 2009.

[36] S. Horwitz, T. Reps, and D. Binkley, “Interprocedural slic-
ing using dependence graphs,” in Proceedings of the ACM
SIGPLAN Conference on Programming Language design and
Implementation (PLDI ’88), pp. 35–46, 1988.

[37] S. Bhattacharya and A. Kanjilal, “Code based analysis for
object-oriented systems,” Journal of Computer Science and
Technology, vol. 21, no. 6, pp. 965–972, 2006.

[38] S. Yacoub, B. Cukic, and H. H. Ammar, “A scenario-based reli-
ability analysis approach for component-based software,”
IEEE Transactions on Reliability, vol. 53, no. 4, pp. 465–480,
2004.

[39] B. Boehm, B. Clark, E. Horowitz, C. Westland, R. Madachy,
and R. Selby, “Cost models for future software life cycle
processes: Cocomo 2.0,” 1995.

[40] O. Point, 2008, http://sunset.usc.edu/csse/research/COCO-
MOII/cocomo main.html.

[41] J. H. Andrews, L. C. Briand, and Y. Labiche, “Is mutation an
appropriate tool for testing experiments?” in the 27th Interna-
tional Conference on Software Engineering (ICSE ’05), pp. 402–
411, May 2005.

[42] S. K. John, J. A. Clark, and J. A. Mcdermid, “Class mutation:
mutation testing for object-oriented programs,” in Proceedings
of the Net.ObjectDays Conference on Object-Oriented Software
Systems, pp. 9–12, 2000.

[43] M. E. Delamaro, J. C. Maldonado, A. Pasquini, and A. P.
Mathur, “Interface mutation test adequacy criterion: an
empirical evaluation,” Empirical Software Engineering, vol. 6,
no. 2, pp. 111–142, 2001.

[44] R. Binder, Testing Object-Oriented Systems—Models, Patterns
and Tools, Addison-Wesley, 2000.

[45] L. C. Briand, Y. Labiche, and Y. Wang, “A comprehensive and
systematic methodology for client-server class integration
testing,” in Proceedings of the 14th International Symposium on
Software Reliability Engineering (ISSRE ’03), p. 14, Washing-
ton, DC, USA, 2003.

[46] A. M. R. Vincenzi, W. E. Wong, M. E. Delamaro, and J. C.
Maldonado, “Jabuti java bytecode understanding and testing:
users guide,” Carlos,S. and SP, Brazil, March 2003.

[47] J. J. Li, “Prioritize code for testing to improve code coverage
of complex software,” in Proceedings of the 16th IEEE Interna-
tional Symposium on Software Reliability Engineering (ISSRE
’05), pp. 75–84, 2005.

[48] J. J. Li, D. Weiss, and H. Yee, “Code-coverage guided prior-
itized test generation,” Information and Software Technology,
vol. 48, no. 12, pp. 1187–1198, 2006.

[49] M. Eaddy, T. Zimmermann, K. D. Sherwood et al., “Do cross-
cutting concerns cause defects?” IEEE Transactions on Software
Engineering, vol. 34, no. 4, pp. 497–515, 2008.

[50] T. J. Ostrand, E. J. Weyuker, and R. M. Bell, “Automating
algorithms for the identification of fault-prone files,” in
Proceedings of the International Symposium on Software Testing
and Analysis (ISSTA ’07), pp. 219–227, July 2007.

[51] K. El Emam, W. Melo, and J. C. Machado, “The prediction of
faulty classes using object-oriented design metrics,” Journal of
Systems and Software, vol. 56, no. 1, pp. 63–75, 2001.

[52] T. J. Ostrand, E. J. Weyuker, and R. M. Bell, “Predicting the
location and number of faults in large software systems,” IEEE
Transactions on Software Engineering, vol. 31, no. 4, pp. 340–
355, 2005.

[53] J. C. Munson and T. M. Khoshgoftaar, “The detection of fault-
prone programs,” IEEE Transactions on Software Engineering,
vol. 18, no. 5, pp. 423–433, 1992.

[54] R. Subramanyam and M. S. Krishnan, “Empirical analysis
of CK metrics for object-oriented design complexity: impli-
cations for software defects,” IEEE Transactions on Software
Engineering, vol. 29, no. 4, pp. 297–310, 2003.

[55] M. R. Lyu, “Software reliability engineering: Aroadmap,” in
Future of Software Engineering (FOSE ’07), pp. 153–170, 2007.

[56] K. El Emam, W. Melo, and J. C. Machado, “The prediction of
faulty classes using object-oriented design metrics,” Journal of
Systems and Software, vol. 56, no. 1, pp. 63–75, 2001.

[57] B. Littlewood, “A reliability model for systems with markov
structure,” Journal of the Royal Statistical Society. Series C, vol.
24, no. 2, pp. 172–177, 1975.

[58] T. L. Booth, “Performance optimization of software systems
processing information sequences modeled by probabilistic
languages,” IEEE Transactions on Software Engineering, vol. SE-
5, no. 1, pp. 31–44, 1979.

[59] J. H. Lo, S. Y. Kuo, M. R. Lyu, and C. Y. Huang, “Optimal
resource allocation and reliability analysis for component-
based software applications,” in the 26th Annual International
Computer Software and Applications Conference (COMPSAC
’02), pp. 7–12, August 2002.

[60] G. Rothermel, R. H. Untcn, C. Chu, and M. J. Harrold, “Pri-
oritizing test cases for regression testing,” IEEE Transactions on
Software Engineering, vol. 27, no. 10, pp. 929–948, 2001.

20 ISRN Software Engineering

[61] S. Elbaum, A. G. Malishevsky, and G. Rothermel, “Test case
prioritization: a family of empirical studies,” IEEE Transactions
on Software Engineering, vol. 28, no. 2, pp. 159–182, 2002.

[62] S. Elbaum, A. Malishevsky, and G. Rothermel, “Incorporating
varying test costs and fault severities into test case prioriti-
zation,” in Proceedings of the 23rd International Conference on
Software Engineering (ICSE ’01), pp. 329–338, 2001.

[63] D. Jeffrey and N. Gupta, “Experiments with test case prioriti-
zation using relevant slices,” Journal of Systems and Software,
vol. 81, no. 2, pp. 196–221, 2008.

[64] P. G. Sapna and H. Mohanty, “Clustering test cases to achieve
effective test selection,” in Proceedings of the 1st Amrita ACM-
W Celebration of Women in Computing in India (A2CWiC ’10),
September 2010.

[65] R. C. Bryce, S. Sampath, and A. M. Memon, “Developing a
single model and test prioritization strategies for event-driven
software,” IEEE Transactions on Software Engineering, vol. 37,
no. 1, pp. 48–64, 2011.

Submit your manuscripts at
http://www.hindawi.com

International Journal of
Computer Games
Technology
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in Software
Engineering

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence &
Neuroscience

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

