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We construct a pest control pollutionmodel with stage-structure for pests andwith epidemic in the
predator by spraying pesticides and releasing susceptible predators together. We assume that only
the pests and infective predators are affected by pesticide. We show that there exists a globally
attractive pest-extinction periodic solution and we get the condition of global attractiveness of
the pest-extinction periodic solution by applying comparison theorem of impulsive differential
equation. Further, the condition for the permanence of the system is also given.

1. Introduction

With the rapid development of modern technology, industry, and agriculture, it is of
great interest to consider the effects of toxicant on ecological communities from both an
environmental and conservational point of view. Qualitatively estimating the effect of a
toxicant on a population by mathematical models is a relatively new field that began
only in the early 1980s [1–3]. Population toxicant coupling has been applied in several
contexts including Lotka-Volterra and chemostat-like environments, resulting in ordinary,
integrodifferential, and impulsive differential equation and stochastic models. So in this
paper, we consider the above effects and introduce the pollution model to model the process
of pest control problems and study its dynamics, and this is different from the previous pest
control model which assumed that pests were reduced proportionally by spraying pesticides
[4–6].

In the natural world, many species have a life history that takes their individual
members through two stages: immature and mature; the authors of [7] studied an ecological
model with stage-structure for predator. A general functional response was considered, and
the authors analyzed the stability and the permanence of the system. The authors [8, 9]
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analyzed prey-predator models with age structure and impulsive control. The authors [10]
investigated the dynamics of a pest control model with age structure for pests by introducing
a constant periodic pesticide input and releasing natural enemies at different fixed moments.
they analyzed the conditions for the global attractivity of the pest-extinction periodic solution
and the permanence of the system.

Modeling studies on disease-dominated ecological populations have addressed issues
like disease-related mortality, reduction in reproduction, change in population sizes, and
disease-induced oscillation of population states. Chattopadhyay and Arino [11] formulated
a prey-predator model with prey infection and observed destabilization due to infection.
Venturino analyzed prey-predator models with disease in the prey [12] and the predator
[13].

Motivated by the above, in this paper, we construct a pest control model with epidemic
in the predator by spraying pesticides and releasing susceptible predators at the same time.
The pest is stage-structured, and the effects of spraying pesticides into the environment and
into the organism are considered. So the pollution model provides a natural description of
such a system and should be introduced to our model.

The organization of this paper is as follows: in Section 2, we introduce a pest
control pollution model with stage-structure for pest and with epidemic in the predator by
introducing a constant periodic pesticide input and releasing susceptible predators together.
In Section 3, we will introduce some definitions and lemmas which will be used in the paper.
In Section 4, sufficient conditions are obtained for the global attractiveness of pest-extinction
periodic solution. In Section 5, sufficient conditions are obtained for the permanence of the
system. We give a brief conclusion of our results in the last section.

2. Model Formulation

In this paper, we suppose that pesticides hardly have influence on the susceptible predators,
and the susceptible predators only feed on mature pests. Now we consider the following
impulsive differential equation:

ẋ1(t) = αx2(t) − d1x1(t) − αe−d1τx2(t − τ) − r1co(t)x1(t)
ẋ2(t) = αe−d1τx2(t − τ) − fx2

2(t) − β1x2(t)S(t) − r2co(t)x2(t)

Ṡ(t) =
β1cx2(t)S(t)
1 + hβ1x2(t)

− β2S(t)I(t)
1 + kI(t)

− d2S(t)

İ(t) =
β2S(t)I(t)
1 + kI(t)

− d3I(t) − r4co(t)I(t)

ċo(t) = kce(t) − gco(t) −mco(t)
ċe(t) = −hce(t),

t /=nT, n ∈ N,

x1(t+) = x1(t), x2(t+) = x2(t), S(t+) = S(t) + p
I(t+) = I(t), co(t+) = co(t), ce(t+) = ce(t) + q,

t = nT, n ∈ N.

(2.1)

Here x1 = x1(t) and x2 = x2(t) represent the density of the immature and mature pest
(the prey) at time t, respectively; S = S(t) and I = I(t) represent the density of susceptible
predator and infective predator at time t, respectively; ce(t) represents the concentration of
pesticide in the environment at time t; co(t) represents the concentration of pesticide in the
organism at time t; we use a special functional response, that is, when the number of the
prey captured is less, the digestive capacity of the predator will increase with the density
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of the prey. Here α is the birth rate of the immature pest; d1 is the death rate of the mature
pest; d2 and d3 are the death rates of the susceptible predator and the infective predator,
respectively; τ is the mean length of the juvenile period; β1 represents the capturing rate
of the susceptible predator; h represents digestive time of the susceptible predator; c is the
transformation rate of the susceptible predator; f represents the intraspecific competition
coefficient of mature pest; β2S(t)I(t)/(1 + kI(t)) represents saturation incidence rate; T is
the period of the impulsive effect; p is the releasing amount of the susceptible predator at
t = nT ; q is the amount of the pesticides spraying at every impulsive period nT ; r1, r2, and r4
represent the decreasing rate of the intrinsic growth rate associated with the uptake of the
pesticide in the organism for the immature pest, mature pest, susceptible predator, and
infective predator, respectively; kce(t) represents an organism’s net uptake of toxin from the
environment; gco(t) and mco(t) represent the digestion and depuration rates of pesticide in
an organism, respectively; hce(t) represents the loss of pesticide in the environment due to
natural degradation. All the coefficients are positive constants.

The initial conditions of system (2.1) are

(x1(t), x2(t), S(t), I(t), co(t), ce(t)) ∈ C
(
[−τ, 0], R6

+

)
,

x1(0) > 0, x2(0) > 0, S(0) > 0, I(0) > 0, co(0) > 0, ce(0) > 0,
(2.2)

where R6
+ = {(x1, x2, S, I, co, ce) : x1 ≥ 0, x2 ≥ 0, S ≥ 0, I ≥ 0, co ≥ 0, ce ≥ 0}. To assure the

continuity of the initial values, we assume that x1(0) =
∫0
−τ αe

γθx2(θ)dθ. This suggests that if
we know the properties of x2(t), then the properties of x1(t) can be obtained.

Note that the variable x1(t) does not appear in the second, third, forth, fifth, and sixth
equations of system (2.1), hence we only need to consider the subsystem of (2.1) as follows:

ẋ2(t) = αe−d1τx2(t − τ) − fx2
2(t) − β1x2(t)S(t) − r2co(t)x2(t)

Ṡ(t) =
β1cx2(t)S(t)
1 + hβ1x2(t)

− β2S(t)I(t)
1 + kI(t)

− d2S(t)

İ(t) =
β2S(t)I(t)
1 + kI(t)

− d3I(t) − r4co(t)I(t)

ċo(t) = kce(t) − gco(t) −mco(t)
ċe(t) = −hce(t),

t /=nT, n ∈ N,

x2(t+) = x2(t), S(t+) = S(t) + p, I(t+) = I(t)
co(t+) = co(t), ce(t+) = ce(t) + q,

t = nT, n ∈ N.

(2.3)

The initial conditions for system (2.3) are

(x2(t), S(t), I(t), co(t), ce(t)) ∈ C
(
[−τ, 0], R5

+

)
,

x2(0) > 0, S(0) > 0, I(0) > 0, co(0) > 0, ce(0) > 0,
(2.4)

where R5
+ = {(x2, S, I, co, ce) : x2 ≥ 0, S ≥ 0, I ≥ 0, co ≥ 0, ce ≥ 0}.



4 ISRN Applied Mathematics

3. Definitions and Lemmas

Let R+ = [0,∞], R5
+ = {X = (x2(t), S(t), I(t), co(t), ce(t)) : x2 ≥ 0, S ≥ 0, I ≥ 0, co ≥

0, ce ≥ 0}, and N be the set of all nonnegative integers, let f = (f1, f2, f3, f4, f5)
T the

map defined by the right of system (2.3). The solution of system (2.3), denoted by X =
(x2(t), , S(t), I(t), co(t), ce(t)) : R+ → R5

+, is continuously differentiable on (nT, (n + 1)T). Let
V : R+ × R5

+ → R+, then V is said to belong to class V0 if;
(1) V is continuous on (nT, (n + 1)T] × R5

+, and for each X(t) ∈ R5
+, n ∈ N and

lim(t, y)→ (nT+, x) V (t, y) = V (nT+, x) exist;
(2) V is locally Lipschitzian in X.

Definition 3.1. Let V ∈ V0, then for (t, X) ∈ (nT, (n + 1)T] × R5
+, the upper right derivative of

V (t, X) with respect to impulsive differential system (2.3) is defined as

D+V (t, X) = lim
h→ 0+

sup
1
h

[
V
(
t + h,X + hf(t, X)

) − V (t, X)
]
. (3.1)

Definition 3.2. System (2.3) is said to be permanent if there are constants m, M >
0 (independent of initial value) and a finite time T0 such that for every positive solution
(x2(t), S(t), I(t), co(t), ce(t)) ∈ R5

+ with initial conditions of system (2.3) satisfies m ≤ x2(t) ≤
M, m ≤ S(t) ≤ M, m ≤ I(t) ≤ M, m ≤ co(t) ≤ M, m ≤ ce(t) ≤ M for all t ≥ T0, here T0 may
depend on the initial condition of system (2.3).

Lemma 3.3 (the comparison theorem of impulsive differential equation [14]). Let V ∈ V0.
Assume that

D+V (t, x) ≤ g(t, V (t, x)), t /=nT,

V (t, X(t+)) ≤ ϕn(V (t, x)), t = nT,
(3.2)

where g : R+ × R+ → R is continuous in (nT, (n + 1)T] × R+, and for each u ∈ R+, n ∈
N, lim(t, v)→ (nT+, u) g(t, v) = g(nT+, u) exists and is finite; ϕn : R+ → R+ is nondecreasing.

Let r(t) be the maximal solution of the scalar impulsive differential equation defined on
[0,+∞), then

u̇(t) = g(t, u(t)), t /=nT,

u(t+) = ϕn(u(t)), t = nT,

u(0+) = u0.

(3.3)

So V (0+, X0) ≤ u0 implies that

V (t, X(t)) ≤ r(t), t ≥ 0, (3.4)

where X(t) is any solution of system (2.3).
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Lemma 3.4 (see [15]). Consider the following equation:

dx

dt
= ax(t − τ) − bx(t), (3.5)

where a, b, τ > 0, x(t) > 0 for t ∈ [−τ, 0], one has

(i) if a < b, then limt→∞ x(t) = 0,

(ii) if a > b, then limt→∞ x(t) = +∞.

Remark 3.5 (see [16]). co(t), ce(t) are the concentration of toxicant. To assure 0 ≤ co(t) ≤ 1, 0 ≤
ce(t) ≤ 1, it is necessary that g ≤ k ≤ g +m.

Remark 3.6 (see [16]). From the point of the biological meaning, we assume that k < h.

Lemma 3.7. Consider the following subsystem of system (2.3)

ċo(t) = kce(t) − gco(t) −mco(t)
ċe(t) = −hce(t), t /=nT, n ∈ N,

co(t+) = co(t)
ce(t+) = ce(t) + q,

t = nT, n ∈ N.

(3.6)

Then, system (3.6) has a unique positive T-periodic solution (c∗o(t), c
∗
e(t)) and for each solution

(co(t), ce(t)) of system (3.6), co(t) → c∗o(t) and ce(t) → c∗e(t) as t → +∞. Where

c∗o(t) = c∗o(0)e
−(g+m)(t−nT) +

kq
(
e−(g+m)(t−nT) − e−h(t−nT)

)
(
h − g −m

)(
1 − e−hT

) ,

c∗e(t) =
qe−h(t−nT)

1 − e−hT
,

c∗o(0) =
kq

(
e−(g+m)T − e−hT

)
(
h − g −m

)(
1 − e−hT

)(
1 − e−(g+m)T

) ,

c∗e(0) =
q

1 − e−hT
,

(3.7)

for t ∈ (nT, (n + 1)T] and n ∈ N.

Lemma 3.8. There exists a constant M > 0 such that x1(t) ≤ M, x2(t) ≤ M, S(t) ≤ M, I(t) ≤
M, co(t) ≤ M,ce(t) ≤ M for each solution X(t) = (x1(t), x2(t), S(t), I(t), co(t), ce(t)) of system
(2.1) with all t large enough.
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Proof. Define V (t) = c(x1 + x2) +S+ I + co + ce. Choose 0 < l < min{d1, d2, d3, g +m,h− k}, we
have V ∈ V0 and

D+V (t) + lV (t) ≤ −cfx2
2 + c(l + α)x2 + (l − d2)S + (l − d3)I

+
(
l − g −m

)
co + (l + k − h) ce + c(l − d1)x1, t /=nT, n ∈ N,

≤ −cfx2
2 + c(l + α)x2,

V (nT+) = V (nT) + p + q, t = nT, n ∈ N.

(3.8)

Hence there exists a positive constant K such that

D+V (t) ≤ K − lV (t), t /=nT, n ∈ N,

V (nT+) = V (nT) + p + q, t = nT, n ∈ N,
(3.9)

by Lemma 3.3, for t ≥ 0, we have

V (t) ≤
(
V (0+) − K

l

)
e−lt +

(
p + q

)(
1 − e−nlT

)
e−l(t−nT)

1 − e−lT
+
K

l
, t ∈ (nT, (n + 1)T], n ∈ N.

(3.10)

Then limt→∞V (t) ≤ (K/l) + (p + q)elT/(elT − 1).
So V (t) is uniformly ultimately bounded. By the definition of V (t), there exists a

constant M > 0 such that x1(t) ≤ M, x2(t) ≤ M, S(t) ≤ M, I(t) ≤ M, co(t) ≤ M, ce(t) ≤ M
for t large enough. The proof is complete.

4. The Global Attractivity of Periodic Solution

In this section, the sufficient conditions are obtained for the global attractivity of the pest-
extinction periodic solution.

We first demonstrate the expression of the pest-extinction solution of system (2.3),
in which the pest individual and infective predator individual are entirely absent from the
model, that is, x2(t) = 0, I(t) = 0 for all t ≥ 0.

When x2(t) = 0 and I(t) = 0, S(t) satisfies the following system:

Ṡ(t) = −d2S, t /=nT,

S(t+) = S(t) + p, t = nT,
(4.1)

S(0+) = S0. Clearly, we can obtain the unique positive periodic solution with the form

S∗(t) =
pe−d2(t−nT)

1 − e−d2T
, t ∈ (nT, (n + 1)T], n ∈ N. (4.2)

Therefore, S(t) = (S(0+) − p/1 − e−d2T )e−d2t + S∗(t), t ∈ (nT, (n + 1)T], n ∈ N is the
solution of system (4.1) with initial value S0.
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Denote η1 = e−(β2/k+d2)T/(1−e−(β2/k+d2)T ), η2 = k(e−(g+m)T −e−hT )e−(g+m)T/(h−g−m)(1−
e−(g+m)T)(1 − e−hT).

Theorem 4.1. Let X(t) = (x2(t), S(t), I(t)co(t), ce(t)) be any solution of system (2.3) with positive
initial values, if

αe−d1τ

β1η1p + r2qη2
< 1,

β2pe
−d2T

d3
(
1 − e−d2T

) < 1, (4.3)

then (0, S∗(t), 0, c∗o(t), c
∗
e(t)) is globally attractive.

Proof. From system (2.3), we have

Ṡ(t) ≥ −
(
d2 +

β2
k

)
S, t /=nT,

S(t+) = S(t) + p, t = nT.

(4.4)

Consider the following comparison system

u̇(t) = −
(
d2 +

β2
k

)
u, t /=nT,

u(t+) = u(t) + p, t = nT,

u(0+) = S(0+).

(4.5)

Obviously, system (4.5) has a positive periodic solution

u∗(t) =
pe(−d2−β2/k)(t−nT)

1 − e(−d2−β2/k)T , t ∈ (nT, (n + 1)T], (4.6)

which is globally asymptotically stable. By Lemma 3.3, we conclude that for an arbitrary
positive constant ε1 small enough, there exists anN1 ∈ Z such that

S(t) ≥ Z(t) > Z∗(t) − ε1, t ∈ (N1T, (N1 + 1)T]. (4.7)

From which, we get

S(t) >
pe(−d2−β2/k)T

1 − e(−d2−β2/k)T − ε1, t ∈ (N1T, (N1 + 1)T]. (4.8)

That is,

S(t) > pη1 − ε1, t ∈ (N1T, (N1 + 1)T]. (4.9)



8 ISRN Applied Mathematics

By Lemma 3.7, we conclude that for a sufficiently small ε2 > 0, there exists an N2 ∈ Z such
that

c0(t) > c∗0(t) − ε2, t ∈ (N2T, (N2 + 1)T]. (4.10)

that is,

c0(t) > qη2 − ε2, t ∈ (N2T, (N2 + 1)T]. (4.11)

Let T = max{N1T,N2T}, from the first equation of systems (2.3), (4.9), and (4.11). We have

ẋ2(t) < αe−d1τx2(t − τ) − fx2
2(t) − β1x2(t)

(
pη1 − ε1

) − r2x2(t)
(
qη2 − ε2

)
, t > T + τ. (4.12)

Now consider the following comparison equation:

Ṗ(t) = αe−d1τP(t − τ) − fP 2(t) − [
β1
(
pη1 − ε1

)
+ r2

(
qη2 − ε2

)]
P(t). (4.13)

Since the first condition of the theorem holds, we can choose the above ε1, ε2 small enough
such that

αe−d1τ < β1
(
pη1 − ε1

)
+ r2

(
qη2 − ε2

)
. (4.14)

By (4.14) and Lemma 3.4, we have limt→∞P(t) = 0.
By Lemma 3.3, we get

lim
t→∞

x2(t) ≤ lim
t→∞

P(t) = 0. (4.15)

Incorporating the positivity of x2(t), we get limt→∞ x2(t) = 0.
Then for a sufficiently small ε3 ∈ (0, d2) and t large enough, we have 0 < x2(t) < ε3/cβ1,

without loss of generality, we may assume 0 < x2(t) < ε3/cβ1 as t ≥ 0.
From the second equation of system (2.3), we have

Ṡ(t) ≤ (ε3 − d2)S, t /=nT,

S(t+) = S(t) + p, t = nT.
(4.16)

Consider the following system:

Ġ(t) = (ε3 − d2)G(t), t /=nT,

G(t+) = G(t) + p, t = nT,

G(0+) = S(0+).

(4.17)
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Obviously, system (4.17) has a positive periodic solution

G∗(t) =
pe(−d2+ε3)(t−nT)

1 − e(−d2+ε3)T
, nT < t ≤ (n + 1)T, (4.18)

which is globally asymptotically stable. Thus, for a sufficiently small ε4 > 0, when t is large
enough, we have

S(t) ≤ G(t) < V ∗(t) + ε4. (4.19)

By the second condition of the theorem, when t is large enough, we have

β2

(
pe−d2T

1 − e−d2T
+ ε4

)
− d3 < 0. (4.20)

By (4.19), when t is large enough,

S(t) <
pe−d2T

1 − e−d2T
+ ε4. (4.21)

Combining the third equation of system (2.3) with (4.21), we obtain

İ(t) ≤
[
β2

(
pe−d2T

1 − e−d2T
+ ε4

)
− d3

]
I(t) . (4.22)

By (4.20) and I ≥ 0, we have I(t) → 0 as t → ∞.
Further, since I(t) → 0, for an arbitrary positive constant ε5 small enough, we have

I ≤ ε5 as t is large enough. Then

Ṡ(t) ≥ −(d2 + β2ε5
)
S, t /=nT,

S(t+) = S(t) + p, t = nT.
(4.23)

Consider the following system:

U̇(t) = −(d2 + β2ε5
)
U, t /=nT,

U(t+) = U(t) + p, t = nT,

U(0+) = S(0+).

(4.24)

So system (4.24) has a positive periodic solution

U∗(t) =
pe−(d2+β2ε5)(t−nT)

1 − e−(d2+β2ε5)T
, nT < t ≤ (n + 1)T, (4.25)
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which is globally asymptotically stable. Therefore, for an arbitrary positive constant ε6 small
enough, when t is large enough, we have

S(t) ≥ U(t) > U∗(t) − ε6. (4.26)

Combining (4.26) with (4.19), we obtain U∗(t) − ε6 < S(t) < G∗(t) + ε4, since ε4, ε5, ε6 are all
sufficient small constants, we know

lim
t→∞

S(t) = S∗(t). (4.27)

By Lemma 3.7, we get

lim
t→∞

c0(t) = c∗0(t), lim
t→∞

ce(t) = c∗e(t). (4.28)

The proof is complete.

Remark 4.2. Obviously, we know that the global attractiveness of pest-eradication periodic
solution (0, 0, S∗(t), 0, c∗o(t), c

∗
e(t)) of system (2.2) is equivalent to the global attractiveness of

mature pest-eradication periodic solution (0, S∗(t), 0, c∗o(t), c
∗
e(t)) of system (2.3).

5. Permanence

Theorem 5.1. System (2.3) is permanent provided that

αe−d1τ − β1pe
−d2T

1 − e−d2T
− r2kq

(
e−(g+m)T − e−hT

)
(
h − g −m

)(
1 − e−hT

)(
1 − e−(g+m)T

) > 0,
β2pe

−d2T

(
1 − e−d2T

)
d3

> 1. (5.1)

Proof. By Lemma 3.8, we know that there exists an M > 0, and M > (αe−d1τ)/f such that
x2(t) ≤ M, S(t) ≤ M, I(t) ≤ M, co(t) ≤ M, ce(t) ≤ M for all t > 0, we will prove the theorem
through the following five steps.

Step 1. From (4.9), we know that there exists an m2 = pη1 − ε1 such that S(t) ≥ m2 for t large
enough.

Step 2. From (4.11), we know that there exists anm3 = qη2 − ε2 such that c0(t) ≥ m3 for t large
enough.

Step 3. From Lemma 3.7, for an arbitrary positive constant ε0 small enough, when t is large
enough, ce(t) ≥ qe

−hT
/(1 − e

−hT
) − ε0 � m4.

Step 4. We will prove that there exists an m1 > 0 such that x2(t) ≥ m1 for t large enough, we
will do it in the following two steps.
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(i) By the condition of the theorem, we can select positive constants ε7 and m5 small
enough such that

m5 <
αe−d1τ

f
, δ = β1cm5 < d2,

αe−d1τ − fm5 −
β1pe

(−d2+δ)T

1 − e(−d2+δ)T
− β1ε7 − r2η − r2ε2 > 0.

(5.2)

Now we will prove that x2(t) < m5 cannot hold for all t ≥ 0, otherwise,

Ṡ(t) ≤ (−d2 + δ)S. (5.3)

Let

Ṙ(t) = (−d2 + δ)R, t /=nT,

R(t+) = R(t) + p, t = nT,

R(0+) = S(0+).

(5.4)

By Lemma 3.3, S(t) ≤ R(t) andR(t) → R∗(t), t → ∞, whereR∗(t) = pe(−d2+δ)(t−nT)/(1−
e(−d2+δ)T ), t ∈ (nT, (n + 1)T]. So there exists a T1 > 0 such that

S(t) ≤ R(t) < R∗(t) + ε7, (5.5)

for t > T1. From Lemma 3.7, we know that when t is large enough,

c0(t) < c∗o(0)e
−(g+m)T +

kq
(
e−(g+m)T − e−hT

)
(
h − g −m

)(
1 − e−hT

) + ε2 � η + ε2, (5.6)

for a sufficiently small ε2 > 0, then

ẋ2(t) ≥ αe−d1τx2(t − τ) −
[
fm5 + β1

(
pe(−d2+δ)T

1 − e(−d2+δ)T
+ ε7

)
+ r2

(
η + ε2

)]
x2(t), (5.7)

by Lemma 3.4, x2(t) → ∞, as t → ∞. This is a contradiction to the boundedness of x2(t). So
there exists a t1 > 0 such that x2(t1) ≥ m5.

(ii) If x2(t) ≥ m5 for all t ≥ t1, our aim is obtained. Otherwise, we consider that x2(t) is
oscillating about m5.

Let t2 = inft≥t1{x2(t) < m5}, then x2(t) ≥ m5 for t ∈ [t1, t2), since x2(t) is continuous,
x2(t2) = m5; and because x2(t) is oscillating about m5, we know that there exists a t3 =
inft≥t2{x2(t) > m5}, then x2(t) ≤ m5 for t ∈ [t2, t3), from the continuity of x2(t), we get
x2(t3) = m5; and continue we can obtain the time sequence t1 ≤ t2 < t3 < · · · < t2k < t2k+1 < · · · ,
which satisfies
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(a) when i = 2, 3, 4, . . . , x2(ti) = m5,

(b) when t ∈ (t2k, t2k+1), k = 1, 2, . . . , x2(ti) < m5,

(c) when t ∈ (t2k+1, t2k+2), k = 1, 2, . . . , x2(ti) > m5.

We claim that there exists a T0 = sup{t2k+1 − t2k, k ∈ N}, otherwise, there exists a
subsequence {Tj | Tj = t2kj+1 − t2kj , j ∈ N} such that limj→∞ Tj = +∞; obviously, (5.7) holds
when t ∈ (t2kj , t2kj+1).

By Lemma 3.4, we get limj→∞ x2(t2kj+1) = +∞; this is a contradiction to x2(t2kj+1) = m5.
By the boundedness of the system, we have

S(t) < M, c0(t) < M, (5.8)

for t ≥ t1. It is clear that

ẋ2(t) ≥ −(fm5 + β1M + r2M
)
x2(t), x2(t2k) = m5, (5.9)

for t ∈ (t2k, t2k+1), k = 1, 2, . . . Let m1 = m5e
−(fm5+β1M+r2M)T0 , then we have x2(t) ≥ m1 for all

t ≥ t1.

Step 5. We will prove that there exists an m6 > 0 such that I(t) ≥ m6 for t large enough, we
will do it in the following two steps.

(i) From the condition of the theorem, let m7 > 0 and ε8 > 0 be small enough such that

β2
1 + km7

(
pe−(β2m7+d2)T

1 − e−(β2m7+d2)T
− ε8

)
− d3 − r4M > 0. (5.10)

We will prove I(t) < m7 cannot hold for all t ≥ 0. Otherwise, we have

Ṡ(t) ≥ −(β2m7 + d2
)
S(t). (5.11)

Consider the following system:

Q̇(t) = −(d2 + β2m7
)
Q, t /=nT,

Q(t+) = Q(t) + p, t = nT,

Q(0+) = S(0+).

(5.12)

By Lemma 3.3, we have S(t) ≥ Q(t) and Q(t) → Q∗(t), as t → ∞, where Q∗(t) =
pe−(d2+β2m7)(t−nT)/(1 − e−(d2+β2m7)T ), t ∈ (nT, (n + 1)T].

So there exists a T2 > 0, when t > T2S(t) ≥ Q(t) > Q∗(t) − ε8.
Hence,

İ(t) ≥
[

β2
1 + km7

(
pe−(β2m7+d2)T

1 − e−(β2m7+d2)T
− ε8

)
− d3 − r4M

]
I(t), (5.13)
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from (5.10), we get I(t) → ∞, as t → ∞, this is a contradiction to the boundedness of I(t).So
there exists a t0 > 0 such that I(t0) ≥ m7.

(ii) Similar to the method of step (ii) of Step 4, we can find an m6 = m7e
−d3T

′
0 such that

I(t) ≥ m6 for all t ≥ t0.

Therefore, m ≤ x1(t), x2(t), S(t), I(t), co(t), ce(t) ≤ M for t large enough, where m =
min{m1, m2, m3, m4, m6}. The proof is complete.

6. Conclusion

In this paper, we propose and analyze a pest control model with age structure for pest
and pulse spraying pesticides and pulse releasing infective predators. By Lemma 3.8, we
know that any solution of system (2.1) is bounded for t large enough and get the specific
form of the upper boundedness. From Theorem 4.1, we get the sufficient condition of global
attractiveness of the pest-extinction periodic solution:

αe−d1τ

β1η1p + r2qη2
< 1,

β2pe
−d2T

d3
(
1 − e−d2T

) < 1. (6.1)

By Theorem 5.1, we get the sufficient condition for the permanence of the system:

αe−d1τ − β1pe
−d2T

1 − e−d2T
− r2kq

(
e−(g+m)T) − e−hT

)
(
h − g −m

)(
1 − e−hT

)(
1 − e−(g+m)T

) > 0,
β2pe

−d2T

(
1 − e−d2T

)
d3

> 1. (6.2)
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