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We address the indoor tracking problem by combining an Impulse Radio-Ultra-Wideband handset with an ankle-mounted Inertial
Measurement Unit embedding an accelerometer and a gyroscope. The latter unit makes possible the detection of the stance phases
to overcome velocity drifts. Regarding radiolocation, a time-of-arrival estimator adapted to energy-based receivers is applied to
mitigate the effects of dense multipath profiles. A novel quality factor associated with this estimator is also provided as a function of
the received signal-to-noise ratio, enabling us to identify outliers corresponding to obstructed radio links and to scale the covariance
matrix of radiolocation measurements. Finally, both radio and inertial subsystems are loosely-coupled into one single navigation
solution relying on a specific extended Kalman filter. In the proposed fusion strategy, processed inertial data control the filter
state prediction whereas Combined Time Differences Of Arrival are formed as input observations. These combinations offer low
computational complexity as well as a unique filter structure over time, even after removing outliers. Experimental results obtained
in a representatively harsh indoor environment emphasize the complementarity of the two technologies and the relevance of the
chosen fusion method while operating with low-cost, noncollocated, asynchronous, and heterogeneous sensors.

1. Introduction

For the last past years, new location and tracking (LT) needs
have been gradually introduced into a wide variety of appli-
cations, such as security, health care, rescue, logistics; or
house automation. A growing interest has been more par-
ticularly expressed in location-dependent indoor services,
which require seamless pedestrian navigation capabilities in
harsh environments where satellite-based solutions cannot
operate. In this context, alternative technologies are currently
under investigation, based on for example, location-enabled
wireless networks [1, 2].

On their own, most of modern wireless networks can
indeed retrieve the positions of mobile radio devices relative
to the known position of reference anchors or base stations
(BS). The radiolocation functionality simply relies on the
measurement of radio metrics, which depend on the distance
traveled in the air by transmitted signals. For instance, when
a mobile radio device is synchronized with a BS (e.g., using

n-way ranging protocol transactions [3]), range information
can be derived from the time of arrival (TOA) of the received
signal. Several TOA-based range measurements collected
(with respect to fixed BSs with known locations) can hence
feed positioning or tracking algorithms to solve out a circular
(resp., spherical) location estimation problem in 2D (resp.,
3D).

Alternatively, if the surrounding BSs are strictly synchro-
nized (i.e., independently of the clock of a mobile transmit-
ter), the time difference of arrival (TDOA) can be considered,
leading to a hyperbolic problem formulation.

Benefiting from unprecedented resolution and synchro-
nization capabilities for the acquisition of such temporal
radiolocation measurements, the Impulse Radio-Ultra-Wide
band (IR-UWB) technology is today viewed as a credible
solution to address LT applications through short-range and
low-data-rate (LDR) links [4–9], a fortiori in the context of
ad hoc wireless sensor networks (WSN). However, despite
the claimed fine properties of IR-UWB signals, obstructed
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radio links notoriously introduce additional biases and high
dispersion onto measurements, for example, when direct
paths are blocked, or when transmitted paths are severely
attenuated and shifted in time [3]. Overall, IR-UWB systems
claim to provide very fine location and tracking performan-
ces in line of sight (LOS) (i.e., typically within submetric
precision), but they can hardly guarantee such a precision
level under generalized non-line-of-sight (NLOS) conditions
(e.g., affecting several links with respect to distinct BSs
simultaneously), what is a rather common situation in
indoor environments. Hence, one first challenge is to derive
robust TOA estimators with practical receiver architectures.
One more point would be to evaluate the instantaneous
quality of TOA estimates, or even to efficiently remove
measurement outliers due to NLOS to assist and enhance the
fed LT algorithms.

But it is also well known that radiolocation solutions
operating in harsh radio environments could benefit from
external means, like assisting inertial navigation systems
(INSs) based on inertial measurement units (IMUs). In a nav-
igation scenario, one INS can deliver relevant information
out of raw inertial measurements for example, the pedestrian
displacement amplitude, velocity, or heading [10–12]. Such
information can then be used in addition to radiolocation
measurements, as proposed by recent works in the field of
hybrid data fusion for example, with GNSS pseudoranges in
[13], with IR-UWB TOA in [14, 15], with IR-UWB TDOA
and AOA in [16, 17], or even with WiFi received signal
strength indicators (RSSI) fingerprints in [18].

Besides strict performance considerations, fusion is all
the more relevant, since mobile devices (e.g., personal termi-
nals) are expected in the near future to physically integrate
multiple standards and sensors and/or to cooperate with
other systems or networks, making heterogeneous modalities
naturally available on the user side. Accordingly, several
system architectures and configurations involving either
collocated or noncollocated radio devices and IMUs can be
considered for navigation purposes. As an illustrating exam-
ple, smart clothes comprising distributed IMUs might form
a body area network (BAN) using one first radio access
technology and interacting with a portable handset display-
ing or relaying inertial information to an external access
point, to the infrastructure equipping the building, or
to another wearable network in the vicinity (potentially
through another radio technology). Finally, coupling low-
power and low-cost technologies particularly makes sense
for the perennial and massive deployment of such systems.
This implies the use of adequate radio technologies with
energy-efficient transceiver design, reasonably simple inertial
units (i.e., with a limited number of embedded sensors), and
low-computational complexity for further postprocessing
(including data fusion tasks).

In this context, we address herein the pedestrian navi-
gation problem in indoor environments that present dense
multipath profiles and magnetic perturbations, by loosely
coupling an IR-UWB handset transmitter with a shoe-
mounted IMU endowed with a 3-axis accelerometer and a
3-axis gyroscope. A specific extended Kalman filter (EKF) is
defined to optimally hybridize the radio and inertial data

and to cope with the specific system architecture constrains
(i.e., operating with noncollocated sensors). Adapting and
extending previous results from [19], this formulation also
combines UWB measurements (obtained through the
method proposed in [20]) into new observations defined as
combined TDOA (CTDOA). While reducing filter complexity
(as a function of the number of available measurements), the
proposed solution allows us to remove outlier measure-
ments, without reconfiguring the whole filter structure and
without omitting relevant measurement information. The
selection of nonoutlier measurements is performed by mon-
itoring the instantaneous quality of TOA estimates, based
on a new practical SNR-dependent indicator. As for inertial
data, we take benefit from the IMU place to detect stance
phases and to reset the foot velocity, hence mitigating in
turn the drift that usually affects the estimated INS velocity.
The obtained pedestrian heading and average body velocity
subsequently feed the fusion filter to control the state
prediction phase. Indoor experiments were carried out to
validate the proposed fusion approach, as well as to draw
intermediary statistical UWB channel parameters useful to
TOA estimation.

The paper is structured as follows. In Section 2, we
present a selection of techniques and concerns from the
recent state of the art in the fields of IR-UWB TOA-based
ranging, inertial navigation systems, and the fusion of both
modalities. We also try to position the main contributions
of this paper in comparison with existing solutions. Then in
Section 3, we briefly discuss the specificities of the statistical
UWB channel models, and we estimate channel parameters
from real indoor measurements. Then a robust TOA estima-
tor adapted to energy detection receivers is recalled. We also
show how to practically evaluate the quality of this estimator
and to remove outlier measurements, from a filter-oriented
perspective. In Section 4, we present our INS, which basically
consists of an ankle/foot-mounted magnetometer-free IMU.
In particular, we show how to use detected stance phases to
remove the drift on INS velocity and infer the average body
velocity. In Section 5 we detail and justify further our loosely-
coupled fusion strategy, along with the corresponding filter
structure. Then we account in Section 6 for experimental
results, which were obtained in a typical indoor environment
offering mixed operating conditions in terms of signal-to-
noise ratio (SNR), radio links obstructions, geometric dilution
of precision (GDOP), and magnetic disturbances. Finally,
Section 7 concludes the paper.

2. Related State-of-the-Art and
Paper Contributions

2.1. Impulse Radio-Ultra-Wideband Time-of-Arrival Estima-
tion. Many solutions have been described in the literature
to cope with IR-UWB TOA estimation, including sophisti-
cated algorithms inspired by former high-resolution channel
estimation solutions [6] requiring high sampling rates.
More recently, various other techniques adapted to the low-
complexity LDR context have been proposed and compared
(e.g., [7]). A specific focus is usually made on noncoherent
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receivers like energy detectors (ED), for which one simple
approach consists in comparing the energy collected in con-
secutive time bins with an appropriate detection threshold.
The index of the first bin exceeding this threshold is then
associated with the TOA estimate [7, 21]. Unfortunately,
within realistic indoor channels, threshold-based ED suffers
from overlapping multipath components (MPC) and poor
signal-to-noise ratio (SNR) conditions, introducing signifi-
cant estimation errors and biases. One weakness of these
methods is that they do not take benefit from the whole
MPC profile (though conveying constructive information),
but they only depend on marginal and independent energy
terms. Therefore, new TOA estimators have been proposed
very recently in [20], assuming realistic path amplitude
statistics in compliance with IEEE 802.15.4a recommenda-
tions [22], and considering the whole observed energy profile
before making a decision on the estimated TOA. These
estimators were shown to exhibit low-estimation dispersion
around the actual channel leading edge, over a wide range of
practical SNRs and channels.

But one more challenge is to allow the real-time pre-
diction of TOA estimation uncertainty or dispersion. As
regards to this measurement quality assessment, for most of
the TOA estimators proposed in the literature, one could
estimate offline the uncertainty based on the received signal
power and conditioned on the environment category (e.g.,
indoor industrial, indoor residential, outdoor, etc.), on
the channel configuration (e.g., LOS, NLOS, severe NLOS,
etc.), and/or on the actual distance. A relationship could
then be established a priori between the error affecting
the measured TOA and the SNR through simulations,
experimental campaigns, or even theoretical analysis (e.g.,
[23]). However, this kind of method can hardly benefit from
the specificities of the received signal at each instant (e.g.,
of the current multipath energy profile) under mobility. As
an example, under given SNR conditions, the received signal
could have either sparse or dense multipath profile, which
directly impacts the reliability of the estimated TOA. More-
over, offline characterization is usually mostly intended for
ranging performance assessment, but still remains unex-
ploited for online tracking purposes.

Hence a new practical method is still required to associate
the instantaneous TOA estimation quality with practical
estimators (e.g., [20]).

2.2. Inertial Navigation Systems. INSs based on integrated
IMUs are more and more used for navigation purposes due
to their low cost, low weight, and low consumption. More-
over, as stand-alone autonomous solutions, they can be used
indifferently in indoor or outdoor situations, in the lack
of surrounding means or infrastructure. They can also be
considered for dead reckoning navigation (DRN) (i.e., esti-
mation of the current position from a known starting point)
when any absolute positioning system or GNSS is not avail-
able, ensuring the navigation service continuity.

A typical IMU consists of a combination of low-cost
microelectromechanical sensors (MEMS) for example, acceler-
ometers, magnetometers, or gyroscopes. Such units, available
as commercial devices now [24], are intended for numerous

applications such as motion capture, unmanned vehicular
control, antenna stabilization, video gaming, and pedestrian
navigation. Those IMUs provide metrics related to accel-
eration, orientation, magnetic field, and angular rate. The
raw measurements must be processed and analyzed further
in order to get relevant navigation information, such as the
direction, displacement, speed, and so forth.

In the specific pedestrian navigation context, DRN sys-
tems rely on step detection and, for each detected step, on
length and heading estimation [25]. Examples of step detec-
tion methods are given in [26] or [27]. For step length
estimation, two kinds of approaches can be considered. One
approach is based on an empirical model linking the step
length with some parameters extracted from the sensors
measurement during the step [28, 29]. The advantage of this
approach is that the models can be adapted to any place-
ment of the IMU. The disadvantage is that a calibration
is needed for each pedestrian. A second approach uses the
integration of the gyroscope and the accelerometer raw data.
Nevertheless, even small errors on the measurements would
lead, after integration, to a large error cumulated over time.
The drift of the estimated velocity can be reduced with a
foot-mounted IMU using zero velocity update (ZUPT) [10],
which enables to reset the velocity to zero when the foot is
on the floor. Other methods enable to limit the drift of foot-
mounted INSs [30]. As no calibration is needed and drifts
are limited, this kind of method leads to better performances
than empirical methods. However, the IMU has to be placed
on the foot in order to benefit from zero velocity. For heading
estimation, magnetometers can be used. But they can be
subject to local magnetic disturbances induced by pieces
of furniture, buried or on-body metallic materials. Those
perturbation are particularly present near walls and floors,
making hazardous the use of foot-mounted magnetometers
in typical indoor environments.

2.3. Hybrid Data Fusion Strategies. Three different fusion
strategies can be applied to merge heterogeneous data in a
tracking context.

The first one is the so-called decoupled strategy, for exam-
ple [13]: the mobile node position is estimated separately
and independently by each subsystem and then the set of
estimated positions (delivered by independent systems) is
fused into one final solution. This strategy is preferably
applied when both location systems are not subject to drift,
or when raw data are not available.

The second strategy is tightly coupled, for example [15]:
some raw data are available at each subsystem, which are
processed at once to track the location. Hence, it necessitates
a global model that relates the heterogeneous measure-
ments of both systems to a correction model accounting
for defected measurements (i.e., orientation drift, outlier
ranging measurements, magnetic disturbance). The tightly
coupled fusion seems to be the best method at first sight
since it enables to jointly optimize the output estimate
given all the available data. However, these solutions require
that the involved subsystems are physically collocated or
rigidly connected, what is neither necessarily relevant nor
practical for inertial-based pedestrian navigation. Finally, the
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synchronization issue between subsystems, which is inherent
to any fusion strategy, is all the more critical within these
tightly coupled solutions.

The last fusion strategy is loosely coupled, for example
[16, 17]: the inputs to the location estimator can be raw
and/or preprocessed data issued from sub-systems. This
strategy enables to mitigate the previously mentioned draw-
backs of the decoupled and tightly coupled fusion strategies.
It tolerates that the radio part includes a controlling mod-
ule to remove outlier measurements and/or to adjust the
assumed quality of radio measurements. Finally, this loosely-
coupled strategy enables different placements of the involved
subsystems.

Besides the coupling strategy itself, the fusion of hetero-
geneous data also requires the use of specific estimation tools
and advanced filtering techniques, such as a particle filter
in [14], a combination of a particle filter and an extended
Kalman filter (EKF) in [15, 18], or a backward/forward
Kalman filter with a recording/smoothing unit in [31]. But
another feature of navigation fusion filters concerns the way
the IMU data are exploited. In a first approach, the inertial
data are used in the prediction phase of the filter [17]. In
the second one, they are integrated as observations in the
correction phase [16].

In the following, we will provide detailed justifications
for retaining a loosely-coupled scheme based on EKF and
using inertial data in the prediction phase of the filter, given
our system architecture constraints.

2.4. Summary of the Main Paper Contributions. Overall, the
main paper contributions are as follows:

(i) application of an energy-based Bayesian TOA estima-
tor under realistic channel parameters;

(ii) proposal of a new quality indicator for TOA esti-
mates, feeding the tracking filter;

(iii) proposal of a specific fusion-oriented filter admitting:

(a) IMU-based pedestrian heading and velocity
measurements as control inputs into the filter
state prediction;

(b) combined temporal radiolocation measure-
ments as filter observations, reducing computa-
tional complexity and mitigating local harmful
effects due to EKF linearization;

(iv) evaluation of the previous items within one single
unified tracking scheme through representative
experiments in a typical indoor environment.

3. TOA Estimation with UWB
Energy Detection Receivers

3.1. Received Signal Statistics. The received IR-UWB mul-
tipath signal r(t) can be modeled as a sum of weighted

BPF

r(t)
kΔ

ξk∫
Δ(·)2

Figure 1: Typical block diagram of an energy detection (ED)
receiver.

replicas of an energy-normalized pulse p(t) of duration Tp,
as follows:

r(t) =
√
Ep

∞∑
j=1

αj p
(
t − τj − τTOA

)
+ n(t), (1)

where Ep is the overall channel energy received per trans-
mitted pulse, τj and αj = βjeıΦ j are, respectively, the arrival
time and the normalized complex gain of the jth path (with∑

j E[β2
j ] = 1 without loss of generality), if βj and Φ j denote

the path amplitude and phase, respectively, and τTOA is the
TOA of the first path. The received signal is filtered with
an ideal Bandpass filter (BPF) of bandwidth W . Accordingly,
a zero-mean additive white Gaussian noise (AWGN) process
with double-sided power spectral density N0/2 is also filtered
in the band of the transmitted signal into n(t), with the
resulting variance σ2 = N0W . Finally, we define SNR �
Ep/N0.

Considering a typical ED receiver [20, 21, 32] (see Fig-
ure 1), the overall observation time T is divided into K time
slots of length Δ ≈ Tp. As we assume nonoverlapping replicas
of the transmitted pulse hereafter, the noise samples taken in
different slots are considered as statistically independent. The
slots are numbered starting from slot 1 (i.e., for t ∈ [0,Δ])
up to slot K (i.e., for t ∈ [T − Δ,T]). The output sample
associated with the kth time slot of the ED can be written as

μk =
∫ kΔ

(k−1)Δ
|r(t)|2 dt. (2)

Let kTOA be the slot index to be estimated, which is associated
with the bin that contains τTOA. Then the slots with indexes
{kTOA, . . . ,K} correspond to the multipath region. According
to [33], under the AWGN assumption the normalized energy
samples ξk = μk/N0 at the integrator output of the ED
follow a Chi-square distribution. For k = {1, . . . ,K}, ξk is
either a central Chi-square distributed (Cχ2) random variable
(r.v.) with V = 2WΔ degrees of freedom or a noncentral
Chi-square distributed r.v. (NCχ2), still with V degrees of
freedom, but with a noncentrality parameter Ek = SNRβ2

k
that accounts for the energy of the useful signal in slot k.
βk is usually assumed as a Nakagami-m distributed r.v. with
parameters mk and E[β2

k] = Λk. Finally, in [34] the average
power delay profile (APDP) is modeled by a single exponential
decay, with a decay constant ε. In [22], the APDP also follows
an exponential decay, but with further multipath clustering
effects.

To verify these model assumptions and characterize
key channel parameters, a channel measurement campaign
was carried out in the indoor environment described in
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Figure 2: Fitted average power decay and probability of path
presence out of measured channel profiles, as two functions of the
excess delay.

Section 6.1 for our tracking experiments. Averaging over all
the measured channel profiles, an exponential model was
fitted to the empirical average power decay, and an empirical
function was drawn for the path presence probability,
depending on the channel excess delay (or time index,
equivalently). To get a better fit of the power decay to our
measurements, we preliminarily conditioned received energy
upon the presence of a path in each slot so that the slots with
no detected path energy were not taken into account in the
average. In order to decide whether ξk contains only noise
energy, we simply set a threshold υn equal to 10 dB above the
noise power. Finally, the probability of path presence Pp was
computed over all the observed channel profiles, as follows:

Pp(k) = Pr(ξk > υn). (3)

According to [22], each received profile realization is affected
by a distinct shadowing effect. Thus, the measured channel
profiles were normalized in power before averaging. Figure 2
represents the exponential power decay model Λk fitted to
the measured channel profiles, along with the empirical
path presence probability Pp(k), both of which decrease as
a function of the excess slot index (i.e., the time index after
channel leading edge). For the exponential power decay, the
best fit was obtained for ε = 40 ns, which is rather close to
the mean value ε = 39.8 ns found in [34].

Since βk is Nakagami-m distributed with a mean value
Λk, then λk = β2

k is Gamma distributed with a shape
parameter equal to mk and a scale parameter equal to
Λk/mk. For the sake of simplicity, we assume that all the
received paths have the same parameter mk = m (for all k
corresponding to the part of the received signal comprising
the useful multipath energy), like in [21]. As shown in
Figure 3, form = 2 the theoretical cumulative density function
(CDF) of the normalized path energy satisfactorily fits to
the empirical one computed out of our experiments. In
the following, the exponential power decay and Nakagami-
m parameters, as well as the probability of path presence
as a function of the excess time index, are used as prior
information to feed our TOA estimator. Similarly, in [21, 33],
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Figure 3: Empirical and fitted CDFs of the normalized path energy,
for different Nakagami-m path parameter assumptions.

such channel characteristics are assumed available a priori to
set optimal detection thresholds.

3.2. TOA Estimation. We consider the minimum mean square
error (MMSE) estimator proposed in [20]. Accordingly, the
sample index associated with the estimated TOA is defined as

k̂TOA �
K∑

kTOA=1

kTOA p

(
kTOA

ξ1, . . . , ξK

)
, (4)

where p(·) is now a conditional probability density function
(pdf). Complete analytical developments with their interme-
diary results can be found in [20]. The TOA estimate is finally

obtained as TOA = Δ k̂TOA, where Δ is the ED sampling
period.

3.3. TOA Covariance Estimation. We now intend to provide
an indicator reflecting the quality of energy-based TOA
estimation. One step beyond, the underlying idea is to feed
a tracking filter with further information to dynamically
adjust the covariance matrices used in the filter correction
step, and/or even to help the detection of outlier TOA-based
observations, for instance based on a filter innovation test
[35].

For this purpose, we rely here on the instantaneous SNR
of the received signal. First, the noise power spectral density
N0/2 can be rather straightforwardly estimated in the absence
of transmitted signal. Thus we assume that it is available on
the receiver side. One ideal solution would consist in jointly
estimating the SNR and the TOA. However, for the sake
of practicability and simplicity, it is chosen to estimate the
SNR first out of all the collected normalized energy samples
{ξk}k=1,...,K . Unfortunately, there is no close form for the
maximum likehood estimator (MLE) of the corresponding
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(NCχ2) noncentrality parameters {Ek}k=1,...,K . However, it is
at least shown in [36] that the following estimator:

Ẽk = max
{
ξk −V , 0

}
(5)

has a lower mean square error (MSE) than the MLE for a
single observation and for V ≥ 0.5, which is practically
verified in our case. Now, since the TOA is a priori unknown
before applying (4), then the mean energy value Λk = E[λk]
of the multipath components within each time slot k is also
unknown. Hence, we use Er � ∑K

k=1 Ek to determine the
SNR. Here, two possibilities are available, as follows:

Ẽr1 =
K∑
k=1

Ẽk,

Ẽr2 = max

⎧⎨⎩
K∑
k=1

ξk − KV , 0

⎫⎬⎭,

(6)

where
∑K

k=1 ξk is an NCχ2 distributed r.v. with KV degrees
of freedom and a noncentrality parameter equal to Er . Both
estimators in (6) provide the same estimation result if ξk ≥
V , for all k ∈ {1 : K}, which is more probable at high
SNR values. Otherwise, through simulations, we found out
that Ẽr2 gives lower MSE than Ẽr1. Moreover, for ξk ≥
V , for all k ∈ {1 : K}, Ẽr2 is unbiased, and the standard
deviation of the relative error (Ẽr2 − Er)/Er is equal to√

4Er + 2V/Er , which decreases when Er increases (i.e., at
high SNR).

Let Er = SNR λr , where λr is the sum of K Gamma
distributed r.v. {λk}k=1,...,K , each with a probability Pp(k),
then λr is also a r.v. whose characteristic function (CF) φλr (t)
is given by

φλr (t) =
K∏
k=1

(
Pp(k)

(
1− jΛk

m
t
)−m

+ 1− Pp(k)

)
, (7)

where ±j is the square root of −1, and still assuming mk =
m (for all k corresponding to the part of the received signal
comprising the useful multipath energy). Suppose now that
Er is given, then a nonbiased estimator of the SNR can be
built as

�SNR = Er
E[λr]

, (8)

where E[λr] is the expected value of λr , which can be
practically computed as (dφλr

(t)/dt)|
t=0

= ∑K
k=1 ΛkPp(k),

that is to say, as the derivative of (7) with respect to t
evaluated at t = 0.

Using the experimental Λk and Pp(k) found in Sec-
tion 3.1, it turns out that σ�SNR ≈ 0.1 SNR practically, which
is fairly acceptable.

Finally, SNR is estimated at the real receiver using the
approximation Ẽr from (6) instead of Er in (8), as follows:

�SNR = Ẽr
E[λr]

. (9)
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Figure 4: RMSE of the proposed ED-based TOA estimator, as a
function of the SNR value approximated at the receiver side �SNR.

At this point, deriving the analytical expression for the
root mean square error (RMSE) of the estimated TOA as a
function of �SNR still remains challenging. Consequently, we
proceed by simulations to draw the required relationship. In
these simulations, the true TOA is a uniformly distributed
r.v. in the time interval [0,T] (i.e., in the entire observation
window), and the received signal is simulated according to
the statistical parameters given in Section 3.1. Figure 4 shows
the RMSE of the estimated TOA as a function of �SNR, the
latter being computed on the receiver side based on (9). This
monotonic evolution can be tabulated as a function of �SNR.
In an online tracking context, the instantaneous standard
deviation σTOAi of the current TOA estimate with respect
to the ith BS can then be approximated by the previous
tabulated RMSE function, assuming unbiased TOA estimate
(i.e., σ̂TOAi = RMSE ≈ σTOAi). In the following, σ̂2

TOAi
is

used in Sections 5 and 6 to determine the instantaneous
measurement covariance matrix at each update of a tracking
filter (out of the collected energy samples).

3.4. Measurement Outliers Detection and Discarding. In the
previous section, we have proposed a dispersion estimator
σ̂TOA, assuming unbiased estimated TOAs. Unfortunately,
most of NLOS situations result in biased estimates.

From a tracking filter perspective, a first approach to
mitigate harmful NLOS effects consists in increasing the
diagonal elements of the measurement covariance matrix.
Different solutions can also be used to detect NLOS outliers,
for instance based on innovation tests [15, 16]. In this
case, the innovation is related to the difference between
the current observation and the predicted one, computed
under an unbiased hypothesis. However, the complete
measurement set would be discarded, even if only one single
measurement was biased. Moreover, in some scenarios,
severely obstructed NLOS situations might also coincide
with situations where the location information is adversely
conditioned, for instance due to a poor geometrical dilution
of precision (GDOP). In this case, the values in the predicted
state covariance matrix are so large (and so are the values
in the covariance matrix of predicted measurements) that
outliers can hardly be detected through simple innovation
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tests. Another method is to preliminarily identify the channel
state LOS/NLOS based for example, on collected channel
energy [37, 38]. Then, identified NLOS channel conditions
are associated with TOA measurement outliers. Whatever
the detection method, outliers can be discarded before the
location estimation step [15] independently of the latest state
estimate. In our context, as ED receivers naturally provide
access to the channel energy profile, the last approach is
considered.

One indicator of the channel status (and hence indirectly
of potential TOA estimation biases) is conditioned on the
received signal energy as follows:

Iσ = Δ2

12
+ Δ2

K∑
k′TOA=1

(
k′TOA − k̂TOA

)2
p

(
k′TOA

ξ1, . . . , ξK

)
.

(10)

Practically, this indicator reflects the variance of the esti-
mated TOA conditioned on the energy samples {ξk}k=1,...,K of
the received signal, averaging over all the possible true kTOA,
supposed to be uniformly distributed in the observation
window. Since the multipath energy spread of NLOS chan-
nels is notoriously larger [22], the hypothesis k′TOA = kTOA

conditioned on the observed energy samples {ξk}k=1,...,K in
(10) is likely equiprobable for all the slot indexes. Therefore,
the indicator will exhibit larger values for NLOS channels.
Note that computing Iσ is rather convenient, since all the
required quantities are already available for the calculation

of k̂TOA (see Section 3.2).
Practically, to decide if one TOA measurement is biased

(i.e., if it is an outlier) or not,
√
Iσ is compared with a

threshold, which is set at three times above the LOS
σ̂TOA shown in Figure 4. This threshold ensures correctly
identifying 97% of the LOS channels under the default
centered Gaussian assumption.

4. Inertial Navigation System

As already pointed out in Section 2.2, it is better to place
the INS on the foot in order to benefit from ZUPT resetting
methods [10] or other update methods [30]. Moreover, we
do not consider the use of a magnetometer as magnetic
disturbances are too important near the floor. Then we
assume a foot/ankle-mounted IMU with a triaxis gyrometer
and a triaxis accelerometer only.

First, two main frames are defined:

(i) the body frame (BF) is the frame in which raw data
are measured. BF data are referred to their definition
frame with (· · · )b;

(ii) the navigation frame (NF) is the reference frame,
which is linked to the earth frame. The NF data
are referred to this frame with (· · · )n. Since no
magnetometer is used, it is not possible to esti-
mate the orientation of the sensor with respect to
the North. Hence the navigation frame includes a
rotation around the vertical axis with respect to the
North frame defined by the East, North, and Up
orientations. This rotation is fixed at the beginning

of the walk, using the projection of the sensor axis on
the horizontal plane instead of East and North axis.
Vertical axis (orthogonal to the horizontal plane) is
given during the stance phase by the measurement of
the accelerometer.

Let Rbn be the rotation matrix related to the unitary quater-
nion qbn, denoting the orientation of the NF in the BF
using the relation given in the appendix. Initial orientation
with respect to the vertical axis is given, at the beginning of
the walk and during the stance phase, by the accelerometer
measurement. Considering our definition of the NF, with
respect to horizontal axis, initial orientation is set to zero.
Then, as the gyroscope measures the angular rate, qbn and
then Rbn can be estimated by integrating its raw data. This
rotation matrix also transforms the coordinates of a vector
in the NF into its coordinates in the BF. Then the raw data
issued at the accelerometer can be written as

ab(t) = Rbn(t)an(t) = Rbn(t)
(

anp(t)− gn
)

, (11)

where gn and anp denote, respectively, the gravity field and
the proper acceleration in the NF. The proper acceleration
anp corresponds to the derivative of the velocity and to the
second derivative of the position. The velocity can hence be
estimated by integrating this proper acceleration. In order to
limit the drift due to noise or bias integration, it is necessary
to detect correctly the stance phase and suppose the velocity
is null during this phase, as proposed within the ZUPT
method [10].

4.1. Stance Phase Detection. Many step detection methods
are proposed in the literature. For instance, in [39] the
step detection method is based on the Fourier transform
through counting zero-crossing points over a threshold of
the accelerometer output. In [26], the pedestrian step pattern
is first detected. Then, the beginning and the end of the step
can be defined according to this detected pattern. In [27]
several other methods are also compared.

In the scenario considered here, the pedestrian is
assumed to be walking in a building, moving from one room
to another one with some stops and a direction that may
change after a few steps. The pedestrian cannot walk very
quickly, thus the stance phase of his foot is large enough
to be easily detectable. A simple method used to detect the
stance phase consists in comparing the acceleration variance
to a threshold. Note that even if the ankle trajectory looks
reproducible over distinct steps, the pattern of the IMU mea-
surements will depend on the sensor orientation, see (11).
To overcome this problem, as ‖ab(t)‖ = ‖an(t)‖ does not
depend on the instantaneous rotation of the IMU, one can
simply use the amplitude ‖ab(t)‖ of the 3D accelerometer
measurement [26]. During the stance phase, this amplitude
is mostly constant and equal to the amplitude of the gravity
vector. We then compute the variance of ‖ab(t)‖ in a
sliding window of temporal length equal to 0.25 s. When the
variance value falls under a fixed threshold, a stance phase
is detected. During our experiments presented in Section 6,
this very simple method has efficiently detected all the steps.
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4.2. IMU Proper Acceleration. Let [tκ1 , tκ2] be the swing phase
time interval related to the κth detected step, and let l be
the index of inertial data within this time interval (i.e., {l1 :
l2}). Then the acceleration has to be integrated only during
this time interval, whereas during the remaining time, the
velocity is set to zero. Thus, the velocity of the pedestrian
ankle is computed step by step, whereas the orientation of the
NF in the BF at time index l is continuously determined with

the quaternion q(l)
bn · · · q(l)

bn results from the integration of the

3D angular rate measurements ωb(l) = [ωb(l)
x ωb(l)

y ωb(l)
z ]T ,

as follows:

q(l+1)
bn = qb(l)

−ω � q(l)
bn, (12)

where � denotes the quaternion product and

qb(l)
−ω =

[
cos
(∥∥∥ωb(l) Ts

∥∥∥/2)− sin
(∥∥∥ωb(l) Ts

∥∥∥/2)qb(l)
ω

]T
,

(13)

where Ts = 1/ fs is the time sampling interval of the IMU

and qb(l)
ω = ωb(l)/‖ωb(l)‖. Once the body orientation is deter-

mined, the accelerometer measurement terms are simply
rotated into the NF as follows:

an(l) = R(l)
nbab(l), (14)

where R(l)
nb = RT(l)

bn .
Then we have∫ tκ2

tκ1
an(t)dt =

∫ tκ2

tκ1

(
anp(t)− gn

)
dt =

∫ tκ2

tκ1

(
anp(t)− gn

)
dt

= (vn
I

(
tκ2
)− vn

I

(
tκ1
))− (tκ2 − tκ1

)
gn,

(15)

where vI(t) denotes the IMU velocity. Since at t = tκ1 and
t = tκ2 the foot is on the floor, then vn

I (tκ1) = vn
I (tκ2) = 0, and

consequently

gn = −1
(tκ2 − tκ1)

∫ tκ2

tκ1
an(t)dt. (16)

Finally, the proper acceleration is given by

anp(t) = (an(t) + gn
)
, (17)

where gn in (17) compensates at the same time the gravity
and the velocity bias.

4.3. Inertial Support to Pedestrian Navigation. Our aim is to
continuously compute the ankle velocity of the pedestrian
together with his heading. Note that the heading is defined as
the angle given by the direction of the walk in the horizontal
plane of the Navigation Frame. Since during the stance phase
the velocity is set to zero, then the velocity is computed
separately for each step with

vn
I (t) =

∫ t

tκ1
anp(t)dt. (18)

Unlike in [10], the velocity here is continuous between dif-
ferent gait phases after centering the acceleration in (17)
during the swing phase of each step. Thus, the computed
IMU velocity in (18) starts at zero and ends up at zero.

We consider that the pedestrian walks on a flat floor. The
pieces of horizontal information of the ankle velocity and
heading are then given as follows:

v(l)
I =

√(
vn(l)
x,I

)2
+
(
vn(l)
y,I

)2
,

ϕ(l)
b = atan

⎛⎝vn(l)
y,I

vn(l)
x,I

⎞⎠. (19)

During a walk with a constant speed, the ankles alter-
nate between stance and swing phases. Hence, the pedes-
trian waist experiences almost a constant velocity, whereas
the ankles experience high velocity variations alternating
between maximum and null speed values. As the horizontal
waist velocity of the pedestrian does not vary as much as the
ankle velocity, then we compute the waist velocity vW using
a smoothed version of vI . In the following, the horizontal
velocity vW of the pedestrian and the heading ϕb are the two
processed inertial data simultaneously incorporated into
the tracking filter, contrarily to the loosely-coupled fusion
strategies in [16, 17], where the IMU is used only for heading
and step detection. Furthermore, in our proposal, there is no
need to have the same pedestrian heading and displacement
orientation. For instance, pedestrian side walk and back walk
are freely enabled since the real displacement of the foot is
estimated. Moreover, there is no need to estimate the step
length as in [16, 17] or to calibrate the leg length as in [40].

5. Tracking Problem Statement and Fusion
Filter Formulation

In the considered scenario, we remind that inertial sensors
are attached on the ankle, whereas the pedestrian holds in
his hands an IR-UWB transmitter, and NA known reference
receivers are disseminated in the environment. Hence, out of
{ri}i=1,...,NA

, {σ̂i}i=1,...,NA
, vW , and ϕb the problem here is to

track at least the unknown pedestrian position p = [x y]T ,
where x and y refer to the Cartesian coordinates. For this
purpose, we consider using an Extended Kalman Filter (EKF),
which is widely used in mobile tracking applications. After
recalling the general EKF formulation in Section 5.1, , we will
then justify our overall fusion strategy in Section 5.2. Finally,
the state and observation models will be detailed in Sections
5.3 and 5.4.

5.1. Generic Extended Kalman Filter Formulation. We start
formulating the tracking problem with the following generic
state equation

s(l) = f
(

s(l−1), u(l−1)
)

+ n(l)
s , (20)

where l is the time index, s(l), u(l) and n(l)
s denote respectively

the state vector that contains all the parameters to be
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Figure 5: Global inputs from building subsystems and fusion filter structure.

estimated, the input control to the dynamic system, and an
i.i.d. process noise sequence. f is the function that relates
two consecutive states. As for the observation function h, it
binds the state vector to an observation vector r composed of
measurements, as follows:

r(l) = h
(

s(l)
)

+ n(l), (21)

where n(l) is an i.i.d. process noise sequence.
The EKF is a popular linearized version of the Kalman

filter that can handle nonlinear functions for both estimated
states and observations [35]. It enables to estimate the state
vector ŝ(l) and the related state covariance matrix P(l) at time
increment l from the previous estimates ŝ(l−1) and P(l−1),
the control input u(l−1) obtained at l − 1, and the current
observations r(l).

The estimation of s(l) with the EKF is typically split in two
steps, namely the state prediction and the state update, which
rely, respectively, on the dynamic state equation in (20) and
the observation equation in (21).

(a) Prediction:

ŝ(l/l−1) = f
(

ŝ(l−1), u(l−1)
)

P(l/l−1) = FP(l−1)FT + Q.
(22)

(b) Update:

K(l) = P(l/l−1)HT
(

HP(l/l−1)HT + R
)−1

ŝ(l) = ŝ(l/l−1) + K(l)
(

r(l) − h
(

ŝ(l/l−1)
))

P(l) =
(

I−K(l)H
)

P(l/l−1),

(23)

where F is the Jacobian of f with respect to s computed
in ŝ(l−1), and H is the Jacobian of h computed in ŝ(l/l−1). Q(l)

and R(l), which are assumed to be known, are the covariance
matrices of n(l)

s and n(l).

5.2. Overall Fusion Strategy and Filter Structure. In Sec-
tion 2.3, we presented “decoupled,” “tightly coupled,” and
“loosely coupled” options as three different fusion strategies
to merge radio and inertial subsystems into a single naviga-
tion solution.

We choose a “loosely coupled” strategy here because
it authorizes different placements of the subsystems. For
instance, the pedestrian can hold the UWB transmitter in
his hand, avoiding many near-floor obstacles, and increasing
visibility with respect to anchor nodes, whereas a foot-
mounted IMU can take advantage of ZUPT to overcome
the INS velocity drift. Moreover, with the “loosely coupled”
strategy, each drift-free observation issued from the UWB
subsystem can be used to limit the INS drifts.

In our application, we choose to integrate the IMU data
in the prediction phase of the filter for the following reasons:

(i) it is hard to quantify the errors affecting the inertial
data model due to for example, step missing and
pedestrian walk behavior (variations of walk speed or
unusual pedestrian movements);

(ii) in an alternative approach, the fusion filter update
would have to run at the rate of the inertial data
instead of the UWB rate (e.g., fs = 200 Hz instead
of 3-4 Hz in our experiments), while the update part
of the filter includes matrix inversions/manipulations
and a few matrix multiplications, which is computa-
tionally demanding for real-time applications;

(iii) the first proposed approach naturally supports dif-
ferent sampling rates for the prediction and the
correction phases. For instance, in our application,
the UWB rate is applied to the correction phase,
whereas the inertial rate is applied to the prediction
phase.

Figure 5 shows the global structure of the proposed
EKF fusion filter. The raw inertial data are preprocessed
as described in Section 4 to get pedestrian velocity and
heading as inputs to the filter prediction phase. In parallel,
IR-UWB TOA measurements are delivered at each receiver
with their estimated variance, as computed in Section 3.3.
In the update part of the filter, specific combinations of
such measurements are performed, as introduced in [19],
enabling us to remove outliers using the indicator presented
in Section 3.4 without changing the filter structure (e.g., the
size of involved matrices).

5.3. IMU-Based State Prediction. Generally speaking, at time
index l, in the absence of state noise, s(l) is expressed as a
function of the previous state s(l−1), the pedestrian velocity
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v(l−1), and the nonbiased or biased compensated heading,
ϕ(l−1) as follows:

s(l) = f
(

s(l−1), v(l−1),ϕ(l−1)
)
. (24)

For instance if s = p, then f is fully accounted by

x(l) = x(l−1) +
v(l−1)cos

(
ϕ(l−1)

)
fs

,

y(l) = y(l−1) +
v(l−1)sin

(
ϕ(l−1)

)
fs

,

(25)

with fs the inertial refreshment rate.
As already pointed out, the INS on its own suffers from

heading drift because of the integration of the biased angular
rate measurement from the gyroscope. Hence, the heading
angle ϕb determined in Section 4.3 is biased by bϕ. Thus,
as one further variable to estimate, we incorporate the latter
bias in the modeled EKF state s = [pT bϕ]T , whereas the
control input is composed of the data issued from the INS,
namely, u = [vW ϕb]T (i.e., assuming vW is sufficiently
representative for v). Therefore, in our filter the state
prediction at time step l is given by

x̂(l/l−1) = x̂(l−1) +
v(l−1)
W cos

(
ϕ(l−1)
b − b̂(l−1)

ϕ

)
fs

,

ŷ(l/l−1) = ŷ(l−1) +
v(l−1)
W sin

(
ϕ(l−1)
b − b̂(l−1)

ϕ

)
fs

,

b̂(l/l−1)
ϕ = b̂(l−1)

ϕ ,

(26)

with fs the inertial refreshment rate and hence the Jacobian
F of f computed at the predicted state ŝ(l/l−1) is as follows:

F =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
v(l−1)
W sin

(
ϕ(l−1)
b − b̂(l/l−1)

ϕ

)
fs

0 1 −
v(l−1)
W cos

(
ϕ(l−1)
b − b̂(l/l−1)

ϕ

)
fs

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (27)

Note that the state covariance prediction also runs at
the inertial rate fs. The state covariance matrix Q = Q(l) is
supposed to be time invariant. The update part of the EKF
is achieved only when new radiolocation measurements are

available. Thus b̂(l)
ϕ changes only at the update step, and holds

the same value during the prediction step.

5.4. Filter Update with Combined T(D)OA Measurements. At
the ith base station (BS) (i = 1, . . . ,NA), TOA-based
measurements ri = c TOAi are performed through ED (see
Section 3.2), along with an approximation σ̂i = cσ̂TOAi

for the corresponding standard deviation σi = c σTOAi (see
Section 3.3). It is also assumed that the NA receivers are

synchronized, but independently of the mobile transmitter,
so that all the pseudo-TOA measurements are biased by a
common unknown delay.

Filter complexity may be critical with respect to both
hardware and software capabilities, especially when many
available measurements must be processed in realtime. It is
hence worth noting that the most significant part of EKF
complexity results from filter gain computations, which
directly depend on the size of the observation vector. Hence
we consider using the combination-based observations pro-
posed in [19] to reduce the number of observation functions
from the number NA of anchors (or measurements) down to
the dimension K of the location problem with no precision
degradation.

For instance, let W(p) = [w1 w2] be an NA ×K combi-
nation matrix generating K = 2 observation functions used
in filter update (out of NA = 4 measurements), as follows:

h
(

p
) = [h1

(
p
)

h2
(

p
)]T = W

(
p
)Td
(

p
)
, (28)

where d(p) = [d1(p), . . . ,d4(p)]T is a vector composed of the
pseudodistances between the mobile node and the 4 BSs, and
it is reminded p = [x y]T . Thus, the same position accuracy
as that of the standard TDOA formulation can be preserved
using CTDOA, as follows:

W
(

p
) = R−1/2

d

[
Δ′⊥x
(

p
)

Δ′⊥y
(

p
)]

, (29)

where

Δ
′⊥
x

(
p
) = Δ′x

(
p
)− (1′TNA,1Δ

′
x

(
p
))

1′NA ,1,

Δ
′⊥
y

(
p
) = Δ′y

(
p
)− (1′TNA,1Δ

′
y

(
p
))

1′NA,1,

Δ′x
(

p
) = R−1/2

d
∂d
(

p
)

∂x

∣∣∣∣∣
p

,

Δ′y
(

p
) = R−1/2

d
∂d
(

p
)

∂y

∣∣∣∣∣
p

,

(30)

with 1′NA ,1 = R−1/2
d 1NA,1/

√
tr(R−1

d ), if 1NA ,1 is an NA × 1 vector
of ones and Rd the diagonal covariance matrix of TOA-based
measurements, whose diagonal is practically composed of σ̂2

i

(i = 1, . . . ,NA). Note that similar expressions are available in
[19] for the simpler CTOA formulation.

Using such combinations, it is still possible to remove
outliers with the indicator Iσ ,i, while maintaining a constant
filter architecture as a function of time. Within a more
classical filter formulation, this would lead to change the size
of the filter gain matrix, whereas this size is constant in
our proposal and only dependent on K . Practically, so as
to discard the ith measurement, the only operation consists
in replacing in R−1/2

d the ith diagonal element by 0 when
computing W(p). Finally, the problem of choosing the
best referential BS among the BSs providing nonoutlier
measurements does not exist anymore here, unlike in the
classical TDOA formulation.
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Figure 6: Experimental scenario: pedestrian equipped with an IR-UWB Tx handset and an ankle-mounted 3A3G IMU (a), back-forth real
trajectory and layout of the indoor scene, including 4 isochronous IR-UWB Rx (BSs) in room A, with walls separating the 2 Rooms and the
corridor.

6. Indoor Experiments

6.1. Experimental Setup. Real-life tracking experiments were
carried out in a typical indoor environment at CEA-Leti
Minatec premises, as shown on Figure 6. A pedestrian
followed a 100 m-long round-trip path in two rooms and a
corridor, referring to visual markers on the floor. The pedes-
trian was holding an IR-UWB transmitter in his hand and an
IMU was attached to one of his ankles, in compliance with
the fusion scenario and system architecture considered so far.
We used inertial data from a 3A3G IMU at the sampling rate
fs = 200 Hz to estimate the heading and the waist average
velocity. The latter was obtained by smoothing the online
ankle velocity with a low-pass filter whose impulse response
is 1.5 s-width rectangular. Without loss of generality with
respect to TOA resolution or fusion concepts, the considered
IR-UWB transmitter emitted in the band [0.5, 1.1] GHz for
implementation convenience at the pulse repetition period
(PRP) of 1 μs. UWB antennas were connected to the four
synchronous channels of a 6 GHz-bandwidth digital storage
oscilloscope (DSO) using cables with N/SMA connectors,
serving as four surrounding BSs in Room A. The DSO,
enabling signal acquisition at 10 Gsps, integrated a PC for
postprocessing. Relying on this setup, after averaging the
incoming signal over sequences of 40 successive pulses to
increase SNR before energy integration, the received signal
was stored for consecutive time intervals of T = 250 ns (i.e.,
for the duration of the ED observation window). Then the
ED-based TOA estimation method described in Section 3.2
was applied to the acquired signals. At the emulated receivers,
the observation window was divided into K = 125 resolvable
time bins of length Δ = 2 ns (i.e., approximately the
pulse width). The four DSO Rx channels were triggered
synchronously but affected by the same unknown delay,
which could vary from one acquisition to the next, hence
requiring CTDOA as observations in the tracking filter, as

previously mentioned. Finally, the UWB acquisition rate was
not constant, and reached 3 to 4 acquisitions per second,
which is much lower than the inertial sampling rate.

6.2. Evaluation Procedure and Algorithms Benchmark. Five
different estimator settings, depicted as so-called “scenarios”
in the following, were tested and compared:

(i) scenario 1: EKF tracking with IR-UWB only, using in
the observation vector 2 CTDOA combinations of the
4 available pseudo-TOA measurements, with a time-

invariant covariance matrix R(l′)
d = Rd for all l′ (i.e.,

l′ being the time step whenever an UWB observation
is available, with l a multiple of l′);

(ii) scenario 2: idem as scenario 1, except the covari-

ance matrix R(l′)
d that is adjusted depending on

{�SNR
(l′)
i }i=1,...,4 (using the tabulated function in Fig-

ure 4);

(iii) scenario 3: idem as scenario 2, with additional out-
liers detection with {I(l′)

σ ,i }i=1,...,4;

(iv) scenario 4: tracking with a stand-alone INS only;

(v) scenario 5: EKF tracking fusing IR-UWB and INS
data as in Section 5, that is, idem as scenario 3, with
INS outputs controlling the filter state prediction
(with predictions of the IMU frequency and updates
whenever UWB measurements are available).

For scenarios 1, 2, and 3 (i.e., UWB only) the state vector
of the corresponding EKF just contains the 2D cartesian
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Figure 7: Pedestrian velocity vW obtained by smoothing the
horizontal velocity of the pedestrian ankle vI , along the traveled
trajectory.

coordinates and velocities s = [x y vx vy]T , with a classical
linear transformation matrix

F =

⎡⎢⎢⎢⎣
1 0 dt(l′−1) 0
0 1 0 dt(l′−1)

0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎦, (31)

where dt(l′−1) is the time elapsed between samples l′−1 and l′

at the UWB subsystem. Scenario 4 being without UWB (i.e.,
stand-alone INS), only the state prediction step is applied,
and the heading bias is systematically set to zero.

6.3. Performance Indicators. To assess and benchmark the
performances of the proposed tracking schemes, two kinds of
metrics are used. First, we consider an error distance between
each estimated position p̂(l) issued at the filter output at time
step l and its nearest orthogonal projection p̌(l) onto the
actual trajectory

ε(l)
d =

∥∥∥p̂(l) − p̌(l)
∥∥∥. (32)

This instantaneous distance error is finally averaged into εd,
over specific portions of the trajectory or geographic areas
(i.e., over selected but contiguous sequences of l).

As for the second performance indicator, we consider the
difference between the real and estimated traveled distance
(over the entire back and forth trajectory), normalized by
the real traveled distance. This second relative performance
indicator gives an idea about the uncertainty on the overall
trajectory length, what could be interesting in several
applications besides navigation (e.g., sports analysis, activity
monitoring in physical rehab or as dietetics support, etc.).

6.4. Results and Discussion. Relying uniquely on the heading
angle ϕb and on the pedestrian velocity vW (i.e., after
smoothing the ankle velocity vI) shown on Figure 7 as
a function of time, the tracking performance of a stand-
alone dead-reckoning INS (i.e., scenario 4) is illustrated in
Figure 8(a). The drifts affecting both the estimated heading
and position clearly justify the use of a side IR-UWB
subsystem here.

Figure 8(b) shows the estimated trajectory obtained
within scenario 5, where the location drift is now signifi-
cantly reduced. The dashed part of the trajectory refers to

Table 1: Average estimated traveled distance per actually traveled
meter, for different tracking scenarios.

Scenarios 1 2 3 4 5

D (/1 m) 1.8911 2.1088 1.5712 0.8245 0.9466

the first part of the walk (i.e., the one-way portion of the
trajectory forth). Noting that BS1 and BS4 are in NLOS
configurations in this first portion, thus the mobile could
not properly correct the position drift until it gets sufficiently
good pseudorange estimates. Consequently, the mobile gets
closer to the real trajectory in the middle of the scene, and it
even sticks to the real trajectory for the remaining part of the
walk (see e.g., the trip back in straight lines).

For each scenario, Figure 9 shows the average location
error εd over the entire trajectory and in each room
separately. The error is particularly large in Room B for a
single IR-UWB radiolocation system (i.e., scenarios 1 to 3).
This is due to the combined harmful effects of generalized
NLOS links (with respect to the four BSs simultaneously), to
body shadowing, and to poor GDOP conditions. Comparing
εd for the three first scenarios in Room B specifically, one
can notice that using an adaptive observation covariance
matrix R(l′) (scenario 2) and removing further outlier
measurements (scenario 3) clearly help to reduce the error.
In more favorable areas, for example in Room A (with at
least one LOS links systematically) or in the corridor with
light NLOS conditions (i.e., through plasterboard walls),
even in the first scenario, the IR-UWB system alone would
slightly outperform the INS system alone. As expected, fusing
the two subsystems (scenario 5) reduces systematically the
overall error, even if the enhancement is far more spectacular
in Room B in comparison with both scenarios 3 and 4.
These results open the floor to parsimonious fusion schemes,
where one could switch from a stand-alone subsystem into
the complete fusion-oriented system on demand, depending
on the operating conditions, hence saving energy and
complexity at the price of slight performance degradations.

Finally, Table 1 shows the average estimated distance D
per actually traveled meter. This takes into account the
distance between consecutively estimated locations. Due to
NLOS situations, a tracking system only based on IR-UWB
would tend to overestimate the traveled distance mostly
because of occasional but strongly biased TOA-based mea-
surements, which lead to nonstraight and more erratic esti-
mated paths. Omitting measurement outliers, the estimated
traveled distance is significantly reduced, but still rather
large. The use of INS then enables us to reduce significantly
this error.

The previous results illustrate the complementarity of
the two subsystems and the potential of the proposed fusion
scheme, under the architectural constraints of noncollo-
cated and asynchronous sensors. The IR-UWB part of the
system tends to correct the heading drift and resolves the
growing error of the INS in time, whereas the INS part
helps IR-UWB radiolocation in generalized NLOS situations
and/or in penalizing mobile locations that would experience
bad geometrical configurations with respect to the BSs
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Figure 8: Indoor layout of tracking experiments, with 4 BSs in room A, the 2 rooms and the corridor being separated by walls. Actual (red)
and estimated (blue) trajectories with an ankle-mounted 3A3G IMU only (a), or a 3A3G IMU loosely coupled with IR-UWB (b).
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Figure 9: Average location errors for the whole trajectory and for
each room in different tracking scenarios.

(e.g., in room B). Finally coupling both systems enables reli-
able and robust pedestrian tracking with an almost uniform
quality all over the scene.

7. Conclusion

In this paper, we have addressed the problem of pedestrian
tracking by coupling an IR-UWB transmitter handset with
an ankle-mounted INS device. One motivation to couple
these subsystems was to overcome their respective limitations
in harmful operating indoor environments, while benefiting
from their complementary capabilities.

The raw measurements of each subsystem have been
carefully studied, and new preprocessing techniques have
been proposed before applying hybrid data fusion tech-
niques. Regarding IR-UWB first, TOAs are estimated at low
complexity energy-based receiver following a Bayesian
approach. A new practical criterion predicting the standard
deviation of estimated TOAs and a methodology to identify
outlier measurements have been proposed. Real channel
measurements have been carried out and exploited to
validate a few statistical multipath parameters. As for INS,
in order to limit the drift due to noise integration and

avoid magnetic disturbances, we have considered one ankle-
mounted IMU with a 3-axis gyroscope and a 3-axis
accelerometer, whose measurements are processed to deter-
mine the pedestrian average velocity and biased heading.
This ankle-mounted INS (when considered with a UWB Tx
handset) obviously imposes further challenging constraints
in terms of system architecture, while operating with non-
collocated and asynchronous heterogeneous devices, hence
impacting in turn the fusion strategy.

To merge the heterogeneous data from both subsystems,
we have proposed a specific EKF filter formulation. Com-
bined time difference of arrival [19] of nonoutlier TOA
measurements are used as observation inputs to the filter,
the observation covariance matrix being dynamically scaled
thanks to the new practical TOA estimation quality indicator.
The use of CTDOA enables to remove outliers without
changing the low complexity structure of the tracking filter.
The velocity and heading estimates issued at the IMU are
taken into account into the filter during the prediction phase.
This option enables us to take benefit from zero velocity
information during the stance phase, as well as to operate
under different sampling/refreshment rates for the IMU and
IR-UWB subsystems.

Experimental results illustrate the complementarity of
the two subsystems and the efficiency of the proposed fusion
scheme. In particular, the IR-UWB part corrects the heading
drift and resolves the growing error of the INS as a function
of time, whereas the INS part advantageously assists IR-
UWB radiolocation in generalized NLOS situations and/or
in penalizing mobile locations that would experience bad
geometrical configurations with respect to the BSs. Overall,
coupling both systems enables reliable and robust tracking
with uniform quality of service over the scene.

Finally, the possibility to apply parsimonious fusion
schemes, hence saving energy and complexity at the price
of slight performance degradations, has been pointed out
and briefly discussed. Accordingly, one could switch from
a stand-alone subsystem into the complete fusion-oriented
system on demand, depending on the operating conditions
(i.e., while experiencing generalized NLOS or generalized
LOS, poor or favorable GDOP, etc.).
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Appendix

Let qxy = [qxy,0 qxy,1 qxy,2 qxy,3]T be the quaternion that
denotes the orientation of the “X” frame relative to the “Y”

frame, then the associated rotation matrix Rxy is given in the
following equation:

Rxy =
⎡⎢⎣ 2 q2

xy,0 − 1 + 2 q2
xy,1 2 qxy,1 qxy,2 − 2 qxy,0 qxy,3 2 qxy,1 qxy,3 + 2 qxy,0 qxy,2

2 qxy,1 qxy,2 + 2 qxy,0 qxy,3 2 q2
xy,0 − 1 + 2 q2

xy,2 2 qxy,2 qxy,3 − 2 qxy,0 qxy,1

2 qxy,1 qxy,3 − 2 qxy,0 qxy,2 2 qxy,2 qxy,3 + 2 qxy,0 qxy,1 2 q2
xy,0 − 1 + 2 q2

xy,3

⎤⎥⎦. (A.1)
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