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Shape analysis is useful for a wide variety of disciplines and has many applications. There are many approaches to shape analysis,
one of which focuses on the analysis of shapes that are represented by the coordinates of predefined landmarks on the object. This
paper discusses Tridimensional Regression, a technique that can be used for mapping images and shapes that are represented by
sets of three-dimensional landmark coordinates, for comparing and mapping 3D anatomical structures. The degree of similarity
between shapes can be quantified using the tridimensional coefficient of determination (R2). An experiment was conducted to
evaluate the effectiveness of this technique to correctly match the image of a face with another image of the same face. These results
were compared to the R2 values obtained when only two dimensions are used and show that using three dimensions increases the
ability to correctly match and discriminate between faces.

1. Introduction

Tobler [1] proposed bidimensional regression as a tool for
computing the degree of similarity between two planar
configurations of points and to estimate mapping relations
between two objects that are represented by a set of
two-dimensional landmarks. Bidimensional regression is an
extension of linear regression where both dependent and
independent variables are represented by coordinate pairs,
instead of scalar values. Specifically, Tobler [1] suggested that
bidimensional regression may be useful for comparing signa-
tures, geographical maps, or faces. The latter was done in the
context of face recognition by Shi et al. [2] and Kare et al. [3].

Tobler’s [1] method has been extended to Tridimen-
sional Regression for situations when both dependent and
independent variables are represented by three-dimensional
coordinates [4]. The purpose of this paper is to provide a
summary of that extension, to illustrate the use of tridimen-
sional regression for comparing and mapping anatomical
structures, and to compare the effectiveness of the two-
dimensional and three-dimensional methods. Widespread

use of three-dimensional imaging devices in many areas
of research makes this research timely. This technique is
broadly applicable to any situation where spatial configu-
rations of three-dimensional points are compared. Specific
instances where tridimensional regression may be of use are
three-dimensional mapping and comparison of objects or
structures that are represented by their three-dimensional
coordinates. The R2 values derived from regression allow the
degree of similarity between two objects to be quantified.

2. Methods

In this section, a brief summary of bidimensional regression
and its extension to three dimensions is provided. Details of
the tridimensional regression models are provided.

2.1. Bidimensional Regression. Nakaya [5] defines a bidimen-
sional regression model as(

ui
vi

)
=
(
g
(
xi, yi

)
h
(
xi, yi

)
)

+

(
εi
ηi

)
, (1)
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where (ui, vi) is the dependent variable, (xi, yi) represent the
corresponding coordinates of the independent variable, g
and h are transformation functions used to estimate mapping
relations between independent and dependent variables, and
(εi,ηi) is an error vector that is assumed to be normally and
independently distributed. Both Tobler [1] and Nakaya [5]
discuss obtaining estimates for parameters in g and h using
the method of least-squares so that

n∑
i=1

[(
ui − ĝ

(
xi, yi

))2 +
(
vi − ĥ

(
xi, yi

))2
]

, (2)

where ĝ and ĥ are the transformation functions evaluated
at the parameter estimates, is minimized. Here n is the
number of landmark points used in the analysis. The normal
equations are obtained in the usual manner [1], and by

solving β̂ j in

XT
j X j β̂ j = XT

j Y, (3)

where X j is the design matrix of transformation j and

Y =
[

u v
]T

is a (2n × 1) vector for the dependent variable
partitioned by the coordinates, will yield the least-squares
parameter estimates [6]. The design matrix (X j) will depend
on the transformation used and the number of parameters to
estimate; hence, the dimension of β̂ j will also be determined
by the type of transformation.

Tobler [1] proposes four bidimensional regression mod-
els, three of which are intrinsically linear and one is curvi-
linear. Friedman and Kohler [7] argue that the curvilinear
model may be too general for practical use and describe the
linear transformations in more detail. Each of the other three
transformations is linearized by reparameterization prior to
solving the parameter estimates.

The three linear transformations yield the Euclidean, af-
fine, and projective models where in each model the original
coordinates are scaled, rotated, and translated. These trans-
formations form a hierarchy with the Euclidean being the
simplest (fewest parameters) and the projective the most com-
plex (most parameters) of the models.

Details of bidimensional regression models can be found
in [1, 5, 7, 8]. Briefly, the Euclidean model is a similarity
transformation in that the overall shape remains unchanged.
The coordinates are translated, rotated, and isotropically
scaled [8], thus preserving the original shape and angles. The
affine model allows for X and Y coordinates to be scaled
independently, and the configuration could exhibit shear (γ)
(e.g., a square may become a parallelogram; Figure 1). The
projective transformation, which is the most complex, allows
the size, shape, and orientation to change as a function of
viewpoint [7]. An example of a projective transformation is
shown in Figure 2.

In the Euclidean and affine transformations, the models
are linearized by reparameterization, and then the normal
equations can be derived in the usual manner. Once the
parameters have been estimated [7], provide equations for
calculating the scale and rotation values for the Euclidean

(a) (b)

Figure 1: Example of a bidimensional affine transformation.

transformation and the scale, shear, and rotation values for
the affine transformation.

The equations for the projective transformation can be
rewritten using homogeneous coordinates and put in matrix
notation as shown in (16). Homogeneous coordinates can be
used with any of the models to provide a uniform framework
for all transformations. For rotation, scaling, and shear, the
transformed coordinates can be expressed as the product of
a transformation matrix and the original coordinates. For
translation, however, the coordinates are derived by addition
of the translation vector to the original coordinates. Use
of homogeneous coordinates makes all the transformations
multiplicative. This is accomplished by adding an additional
coordinate (t), called the homogeneous coordinate.

The homogeneous coordinate is added purely for math-
ematical simplification and has no effect on the transfor-
mation of coordinates. For example, it is convenient to
represent a sequence of transformations as the product of
the corresponding transformation matrices. Thus, in the
Euclidean and affine models, the translation parameters
become multiplicative and one matrix could be used for all
of the transformation parameters [10]. With the projective
model, the conversion is used to linearize the model, and
once the object is mapped using homogeneous coordinates,
the original coordinates are restored by dividing by the
homogeneous coordinate, t. However, when this is done,
the restriction placed on t results in parameter estimates of

β̂31 = 0, β̂32 = 0, and β̂33 = 1. Consequently, the projective
transformation is reduced to the affine transformation and
the results are identical. The conversion to homogeneous
coordinates is adequate for determining the location of
transformed points, but not for obtaining transformation
parameter estimates. If left in terms of the original equations,
the parameters of the projective transformation can be
estimated using nonlinear regression. When extended to
three dimensions, a similar approach is used.

The similarity of the two objects is assessed using the
bidimensional correlation coefficient [1],

R2D =

√√√√√1−
∑

i

{
(ui − ûi)

2 + (vi − v̂i)
2
}

∑
i

{
(ui − u)2 + (vi − v)2

} . (4)

2.2. Tridimensional Regression. The bidimensional regres-
sion models proposed by Tobler [1] can be extended to
instances where three-dimensional data are used for com-
parison. A specific instance may include anatomical struc-
tures that are represented by three-dimensional landmark
coordinates, but tridimensional regression can be useful for
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Figure 2: Example of a bidimensional projective transformation (ABCD→FGHE) [9].

Figure 3: Example of a tridimensional affine transformation [12].
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Figure 4: Landmarks used for evaluating tridimensional regression.

determining the degree of similarity between any two objects
that are represented by three-dimensional coordinates.

In this paper, the linear transformations discussed by
Tobler [1] will be extended to three dimensions. Extensions
to the Euclidean, affine, and projective transformations are
described in detail where the dependent and independent
variables are represented by their three-dimensional coordi-
nates,

⎛
⎜⎜⎝
ui

vi

wi

⎞
⎟⎟⎠,

⎛
⎜⎜⎝
xi

yi

zi

⎞
⎟⎟⎠, respectively. (5)

2.2.1. Euclidean Transformation. The three-dimensional Eu-
clidean transformation is similar to the two-dimensional
case in that coordinates are simply translated, rotated, and
isotropically scaled. The overall shape and the angles of the
original object are preserved, and parallel lines in the original
object are mapped to parallel lines in the transformed space.
There is an additional translation parameter, and the rotation
matrix differs depending on which axis(es) are used for the
rotation. In general, the number of rotation parameters is

k(k − 1)/2, where k is the number of dimensions. There-
fore, there are three rotation parameters for the general
three-dimensional Euclidean transformation. However, for
instances when it is known that all three rotations are not
necessary, the transformation can be reduced to one or two
rotations. These special cases are discussed in detail in [4].

Three-Dimensional Euclidean Transformation with One Angle
of Rotation. The format of the rotation matrix depends
on the axis of rotation. The formats for each of the three
rotations are shown below, where γ is the angle of rotation
about the x-axis, θ is the angle of rotation about the y-axis,
and φ is the angle of rotation about the z-axis:

RX =

⎡
⎢⎢⎢⎣

1 0 0

0 cos γ − sin γ

0 sin γ cos γ

⎤
⎥⎥⎥⎦,

RY =

⎡
⎢⎢⎢⎣

cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

⎤
⎥⎥⎥⎦,

RZ =

⎡
⎢⎢⎢⎣

cosφ − sinφ 0

sinφ cosφ 0

0 0 1

⎤
⎥⎥⎥⎦.

(6)

The general form of the three-dimensional Euclidean
transformation is

⎡
⎢⎢⎢⎣
ui

vi

wi

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
α1

α2

α3

⎤
⎥⎥⎥⎦ + sR

⎡
⎢⎢⎢⎣
xi

yi

zi

⎤
⎥⎥⎥⎦, (7)

where R is one of the rotation matrices.
As in the two-dimensional case, the transformation

can be linearized by reparameterization, where the new
transformation matrix (R′) is a combination of the scale and
rotation parameters. The reparameterized transformations
and their normal equations follow.
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Figure 5: Within and between person R2 for bidimensional (l) and tridimensional (r) Euclidean transformation.

Bidimensional affine transformation

Within
Between

0.8974

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

0

1

2

3

4

5

6

7

R-square

(a)

Tridimensional affine transformation

R-square

0.99250

100

200

300

400

0.97 0.975 0.98 0.985 0.99 0.995 1

Within
Between

(b)

Figure 6: Within and between person R2 for bidimensional (l) and tridimensional (r) affine transformation.

For rotation about the x-axis,

R′X =

⎡
⎢⎢⎢⎣

1 0 0

0 β1 −β2

0 β2 β1

⎤
⎥⎥⎥⎦,

ui = α1 + xi,

vi = α2 + β1yi − β2zi,

wi = α3 + β2yi + β1zi,

(8)

and deriving the normal equations in the usual manner
yields

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N 0 0 0 0

0 N 0
∑

yi −
∑

zi

0 0 N
∑

zi
∑

yi

0
∑

yi
∑

zi
∑(

y2
i + z2

i

)
0

0 −
∑

zi
∑

yi 0
∑(

y2
i + z2

i

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1

α2

α3

β1

β2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑
(ui − xi)∑

vi∑
wi∑(

vi yi + wizi
)

∑(
wiyi − vizi

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(9)
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Figure 7: Within and between person R2 for bidimensional (l) and tridimensional (r) projective transformation.

Similar details for rotation about the y and z axes can be
found in [4].

Three-Dimensional Euclidean Transformation with Multiple
Angles of Rotation. When more than one rotation is used,
the reparameterization to linearize the model is not obvious;
therefore, the rotation matrices remain in terms of the
rotation parameters and nonlinear regression is used. The
advantage of using nonlinear regression is that the rotation
and scale parameters are directly estimated instead of being
solved in terms of βi; the disadvantage in using nonlinear
regression is convergence may not be reached and starting
values must be specified. The similarity of the two objects
is assessed using the Pseudo- R2 as defined by [11]. The
Pseudo-R2 is calculated in the same manner as R2, but, in
general, is not guaranteed to be greater than zero. Again, the
rotation matrix differs depending upon the axes of rotation.
An example of a two-rotation Euclidean transformation is
shown below.

For rotation about x and y axes,

⎡
⎢⎢⎢⎣
ui

vi

wi

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
α1

α2

α3

⎤
⎥⎥⎥⎦ + s

⎡
⎢⎢⎢⎣

cos θ 0 sin θ

sin γ sin θ cos γ − sin γ cos θ

− cos γ sin θ sin γ cos γ cos θ

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
xi

yi

zi

⎤
⎥⎥⎥⎦.

(10)

In the general form of the three-dimensional Euclidean
transformation, the order in which the transformations are
applied will result in different parameter estimates. Permut-
ing this order will result in different estimates of the rotation
parameters, but the measure of similarity will remain the
same regardless of the order of transformations. The fol-
lowing system of equations shows the rotations in the order
of x-axis, y-axis, and then z-axis:

⎡
⎢⎢⎢⎣
ui

vi

wi

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
α1

α2

α3

⎤
⎥⎥⎥⎦ + s

⎡
⎢⎢⎢⎣

cos θ cosφ − cos θ sinφ sin θ

sin γ sin θ cosφ + cos γ sinφ − sin γ sin θ sinφ + cos γ cosφ − sin γ cos θ

− cos γ sin θ cosφ + sin γ sinφ cos γ sin θ sinφ + sin γ cosφ cos γ cos θ

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
xi

yi

zi

⎤
⎥⎥⎥⎦. (11)

2.2.2. Affine Transformation. The extension of the affine
transformation from two dimensions into three dimen-
sions includes additional parameters for translation, scaling,
rotation, and shear. Figure 3 shows an example of a
three-dimensional affine transformation. The transformed
coordinates in affine transformations are given by

ui = α1 + β11xi + β12yi + β13zi,

vi = α2 + β21xi + β22yi + β23zi,

wi = α3 + β31xi + β32yi + β33zi,⎡
⎢⎢⎢⎣
ui

vi

wi

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
α1

α2

α3

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣
β11 β12 β13

β21 β22 β23

β31 β32 β33

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
xi

yi

zi

⎤
⎥⎥⎥⎦.

(12)
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Deriving the normal equations in the usual manner yields

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

I3 ⊗N I3 ⊗
(∑

xi
∑

yi
∑

zi
)

I3 ⊗

⎛
⎜⎜⎜⎝

∑
xi∑
yi∑
zi

⎞
⎟⎟⎟⎠ I3 ⊗

⎛
⎜⎜⎜⎝

∑
x2
i

∑
xi yi

∑
xizi∑

xi yi
∑

y2
i

∑
yizi∑

xizi
∑

yizi
∑

z2
i

⎞
⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1

α2

α3

β11

β12

β13

β21

β22

β23

β31

β32

β33

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑
ui∑
vi∑
wi∑
uixi∑
uiyi∑
uizi∑
vixi∑
vi yi∑
vizi∑
wixi∑
wiyi∑
wizi

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(13)

where I3 is a 3× 3 identity matrix and⊗ is the direct product
of the two matrices.

2.2.3. Projective Transformation. The extension of the projec-
tive transformation from two to three dimensions involves
the conversion to homogeneous coordinates (16). Additional
parameters are added corresponding to the coordinate of
the third dimension. In a projective transformation, the
size, shape, and orientation can all change as a function
of viewpoint. While this is a nonlinear transformation, by
using homogeneous coordinates, the model can be linearized
in order to obtain the normal equations and estimate
the parameters. The equations to obtain the transformed
coordinates are

ui = β11xi + β12yi + β13zi + β14

β41xi + β42yi + β43zi + β44
,

vi = β21xi + β22yi + β23zi + β24

β41xi + β42yi + β43zi + β44
,

wi = β31xi + β32yi + β33zi + β34

β41xi + β42yi + β43zi + β44
,

⎡
⎢⎢⎢⎢⎢⎢⎣

uit

vit

wit

t

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

β11 β12 β13 β14

β21 β22 β23 β24

β31 β32 β33 β34

β41 β42 β43 β44

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

xi

yi

zi

1

⎤
⎥⎥⎥⎥⎥⎥⎦
.

(14)

Let

u′i = uit,

v′i = vit,

w′i = wit,

(15)

then

⎡
⎢⎢⎢⎢⎢⎢⎣

u′i
v′i
w′i
t

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

β11 β12 β13 β14

β21 β22 β23 β24

β31 β32 β33 β34

β41 β42 β43 β44

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

xi

yi

zi

1

⎤
⎥⎥⎥⎥⎥⎥⎦

, (16)

and deriving the normal equations in the usual manner
yields

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

I4 ⊗

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∑
x2

∑
xy

∑
xz

∑
x∑

xy
∑

y2
∑

yz
∑

y∑
xz

∑
yz

∑
z2

∑
z∑

x
∑

y
∑

z N

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

β11

β12

β13

β14

β21

β22

β23

β24

β31

β32

β33

β34

β41

β42

β43

β44

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑
ux∑
uy∑
uz∑
u∑
vx∑
vy∑
vz∑
v∑
wx∑
wy∑
wz∑
w∑
tx∑
ty∑
tz∑
t

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(17)
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where I4 is a 4× 4 identity matrix and⊗ is the direct product
of the two matrices.

As described in [4], this linearization results in parameter
estimates that reduce the transformation to affine. The lin-
earization is adequate to determine the transformed points,
but not for the optimization to determine the transformation
parameters or for measuring the degree of similarity between
the two objects. Therefore, the transformation is left in terms
of the original equations and nonlinear regression is used to
obtain parameter estimates.

Nonlinear regression is an extension of linear regression
where the expected responses are nonlinear functions of
the parameters [13]. Finding least-squares estimates for
linear models is straightforward as they have a closed-form
solution. For nonlinear models, the least-squares estimates
must be found using an iterative procedure. In this paper, the
Gauss-Newton algorithm is used. This iterative procedure
utilizes a Taylor series expansion to find the least-squares
estimates [13].

For all transformations, parameter estimates can be
found in the usual manner, β̂ j = (XT

j X j)
−1XT

j Y, and sub-
sequently used to solve for rotation, scale, and sheer param-
eters. The similarity of the two objects can be assessed using
the tridimensional correlation coefficient, R3D, given by

R3D =

√√√√√1−
∑

i

{
(ui − ûi)

2 + (vi − v̂i)
2 + (wi − ŵi)

2
}

∑
i

{
(ui − u)2 + (vi − v)2 + (wi −w)2

} ,

(18)

which is an extension to the bidimensional correlation coef-
ficient [1].

3. Results and Discussion

An experiment was conducted to evaluate the effectiveness
of tridimensional regression and its improvement over
bidimensional regression. Three-dimensional landmark data
obtained from human faces were used for this purpose. The
landmarks were obtained by placing reflective markers on the
faces of subjects and tracking the coordinates as the subjects
moved through a series of poses using automated software.
The landmarks were adapted from [14]. They are shown in
Figure 4 and described in Table 1.

The landmarks were obtained for three subjects at two
different sittings and five poses per sitting. The objective was
to compare R2 values within a subject to the R2 values be-
tween subjects using both tridimensional regression and bid-
imensional regression. One would expect the degree of sim-
ilarity to be higher, thus a higher R2 value, for two samples
from the same person than for samples from two different
people. All pairwise R2 values were calculated for bidimen-
sional and tridimensional regressions. Poses of the same indi-
vidual within a sitting were not compared since the markers
were not removed between poses and using these poses
would result in inflated R2 values.

For each transformation, both in two and three dimen-
sions, the distributions of R2 values for within and between
subjects were obtained by fitting a theoretical distribution

Table 1: Description of landmarks used for evaluation (adapted
from [14]).

tr The point on the hairline in the midline of the forehead.

go
The most lateral point on the mandibular angle close to
the bony gonion.

gn
The lowest median landmark on the lower border of the
mandible.

en The point at the inner commissure of the eye fissure.

ex The point at the outer commissure of the eye fissure.

sci
The highest point on the upper boarder in the midportion
of each eyebrow.

n
The midpoint of both the nasal root and the nasofrontal
structure.

prn The most protrudent point of the apex nasi.

ac The most lateral point in the curved baseline of each ala.

ls The midpoint of the upper vermillion line.

li The midpoint of the lower vermillion line.

ch The point located at each labial commissure.

sa The highest point of the free margin of the auricle.

sba The lowest point of the free margin of the ear lobe.

pa The most posterior point on the free margin of the ear.

jm
The most protrudent point of the muscle when the jaw is
clenched.

over the histograms of observed values. Overlaying these
theoretical distributions allowed for the estimation of a
threshold value (τ) as a cutoff for determining if two images
were from the same subject. R2 values greater than τ lead
to the decision that the two images are of the same subject
(match) while R2 values less than τ indicate that the images
are of two different subjects (nonmatch). The threshold
value was determined to be where the two distributions
cross, as to simultaneously minimize the false-positive and
false-negative error rates. A false positive is when images
of two different subjects are incorrectly determined to be
from the same subject (an R2 value greater than τ for
different subjects); a false-negative occurs when two images
from the same subject are incorrectly determined to be
from different subjects (an R2 value less than τ for the
same subject). In addition to calculating the observed error
rates, the expected error rates were found by evaluating
the cumulative distribution functions of the R2 values at τ.
Table 2 summarizes the observed and expected error rates,
and Figures 5, 6, and 7 show the within-subject (dotted
line) and between subject (solid line) distributions for each
transformation.

Table 2 shows that both the observed and expected
error rates for tridimensional regression are much smaller
than those for bidimensional regression using any of the
three transformations. Bidimensional regression resulted in
both error rates being very high, false-positives often over
fifty percent. Tridimensional regression shows a substantial
decrease in both false-positive and false-negative error rates
which indicates that the three-dimensional method is better
at correctly matching a subject to him or herself.
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Table 2: Error rates for each transformation.

Bidimensional regression Tridimensional regression

False positive False negative False positive False negative

Euclidean
Observed 59.7% 36.0% 19.3% 12.0%

Expected 51.9% 33.6% 16.7% 9.0%

Affine
Observed 57.5% 38.7% 17.0% 3.3%

Expected 49.0% 37.2% 14.9% 7.5%

Projective
Observed 56.8% 35.3% 23.5% 7.3%

Expected 51.2% 34.5% 18.4% 16.2%

In this application, the Euclidean and affine transfor-
mations were comparable to one another with the affine
performing slightly better. The projective transformation
had the largest observed false-positive rate. This result is not
surprising as the flexibility of the projective transformation
allows it to map objects into many other shapes. This flexi-
bility results in the ability to match even two very dissimilar
objects quite well with certain transformation parameters.
Consequently, the R2 values are very high for all matches.
This shifts the between-person distribution closer to the
within person-distribution which results in a larger false-
positive error rate.

Additionally, a sixth pose was taken on each of the
subjects in each setting. This pose was not used to build the
within- and between-subject distributions, or to determine
the threshold. These six sets of points (two for each subject)
were compared to all other poses not taken in the same set-
ting of the same subject (30 comparisons per pose, 6 possible
correct matches). The highest R2 for all six was a correct
match. In addition, a minimum of the top 4 matches were
correct matches, illustrating that tridimensional regression
can be very good at identifying correct matches and discrim-
inating between different objects.

4. Conclusion

Bidimensional regression [1] is a useful tool for comparing
two geometric configurations that are each represented by a
set of coordinate pairs. The scale, rotation, and translation
relating the two configurations can be estimated by first
estimating the parameters of the transformation model. As
an application of the technique, [2, 3] used bidimensional
regression analysis for relating faces in landmark-based face
recognition.

In this paper, the bidimensional technique has been
extended to three dimensions. Such an extension may prove
useful in the analysis of three-dimensional landmark data.
The underlying foundations for tridimensional regression
have been developed with different transformations: Euclid-
ean, affine, and projective. Its use is demonstrated through
an application to compare human faces using three-dimen-
sional landmarks. Results show that tridimensional regres-
sion improves the ability to correctly match objects that
are represented by landmark data. Both the Euclidean and
affine transformations work well to reduce the error rates.
The projective transformation also shows improved error

rates, but its flexibility may make it too general for some
practical applications. Choice of transformation should be
given careful consideration given the goals of the application.
While there is improvement over Bidimensional regression,
the observed and expected error rates are likely higher in this
experiment due to the small number of subjects involved and
comparing several poses of the same subject. A larger-scale
study is needed to better estimate the expected error rates.

This work can be extended in several different directions.
The focus here was in developing the theory of tridimen-
sional regression and conducting an initial investigation for
shape matching with a feasibility experiment. An investiga-
tion with a larger amount of three-dimensional landmark
data is needed to more fully understand its effectiveness. In
addition to a larger-scale study, it is also of interest to develop
weighted tridimensional regression techniques which would
allow some landmarks to be weighted more or less heavily
than others. Weighting landmarks allows for less weight
to be placed on landmarks that are highly variable. Some
landmarks could be more variable because they are less
reliably extracted or simply due to more natural variability.
Weighting has been shown to improve the matching ability in
bidimensional regression [15], specifically in a face matching
application [16], and is expected to improve the matching
ability and precision in mapping for tridimensional regres-
sion as well.
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