ADSAdvances in Decision Sciences2090-33672090-3359Hindawi Publishing Corporation61040610.1155/2012/610406610406Research ArticleA Subclass of Harmonic Univalent Functions with Varying Arguments Defined by Generalized Derivative OperatorEljamalE. A.DarusM.PeirisSheltonSchool of Mathematical SciencesFaculty of Science and TechnologyUniversiti Kebangsaan Malaysia Selangor43600 BangiMalaysiaukm.my2012192201220122111201101012012160120122012Copyright © 2012 E. A. Eljamal and M. Darus.This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Making use of the generalized derivative operator, we introduce a new class of complex valued harmonic functions which are orientation preserving and univalent in the open unit disc and are related to uniformly convex functions. We investigate the coefficient bounds, neighborhood, and extreme points for this generalized class of functions.

1. Introduction

A continuous complex-valued function f=u+iv defined in a simply connected complex domain D is said to be harmonic in D if both u and v are real harmonic in D. Such functions can be expressed as f=h+g¯, where h and g are analytic in D. We call h the analytic part and g the coanalytic part of f. A necessary and sufficient condition for f to be locally univalent and sense preserving in D is that |h¯(z)|>|g¯(z)| for all z in D (see ). Let H be the class of functions of the form (1.1) that are harmonic univalent and sense preserving in the unit disk U={z:|z|<1} for which f(0)=fz(0)-1=0. Then for f=h+g¯H, we may express the analytic functions h and g ash(z)=z+k=2akzk,g(z)=z+k=1bkzk,zU,  |b1|<1. In 1984, Clunie and Sheil-Small  investigated the class SH as well as its geometric subclasses and obtained some coefficient bounds. Since then, there have been several related papers on SH and its subclasses. Now we will introduce a generalized derivative operator for f=h+g¯ given by (1.2). For fixed positive natural m and λ2λ10,Dλ1,λ2m,kf(z)=Dλ1,λ2m,kh(z)+Dλ1,λ2m,kg(z)¯,zU, whereDλ1,λ2m,kh(z)=z+k=2(1+(λ1+λ2)(k-1)1+λ2(k-1))makzk,Dλ1,λ2m,kg(z)=k=1(1+(λ1+λ2)(k-1)1+λ2(k-1))makzk. We note that by specializing the parameters, especially when λ1=λ2=0, Dλ1,λ2m,k reduces to Dm which is introduced by Salagean in .

Now we will introduce the following definition.

Definition 1.1.

For 0<1, let GH(,m,k,λ1,λ2) denote the subfamily of starlike harmonic functions fH of the form (1.1) such that Re{(1+eiψ)z(Dλ1,λ2m,kf(z))z(Dλ1,λ2m,kf(z))-eiψ}l for a suitable real ψ and zU where (Dλ1,λ2m,kf(z))=(d/dθ)(Dλ1,λ2m,kf(reiθ)),(d/dθ)(z=reiθ).

We also let VH(,m  k,λ1,λ2)=GH(,m  k,λ1,λ2)VH where VH is the class of harmonic functions with varying arguments introduced by Jahangiri and Silverman  consisting of functions f of the form (1.1) in H for which there exists a real number ϕ such that ηk+(k-1)ϕπ(mod2π),δk+(k-1)ϕ0(k2), where ηk=arg(ak) and δk=arg(bk). The same class introduced in  with different differential operator.

In this paper, we obtain a sufficient coefficient condition for functions f given by (1.2) to be in the class GH(,m,k,λ1,λ2). It is shown that this coefficient condition is necessary also for functions belonging to the class VH(,m,k,λ1,λ2). Further, extreme points for functions in VH(,m,k,λ1,λ2) are also obtained.

2. Main Result

We begin deriving a sufficient coefficient condition for the functions belonging to the class GH(,m,k,λ1,λ2). This result is contained in the following.

Theorem 2.1.

Let f=h+g¯ given by (1.2). Furthermore, let k=2(2k-1-l1-l|ak|+2k+1+l1-l|bk|)(1+(λ1+λ2)(k-1)1+λ2(k-1))m1-3+l3-lb1, where 0<1, then fGH(,m,k,λ1,λ2).

Proof.

We first show that if the inequality (2.1) holds for the coefficients of f=h+g¯, then the required condition (1.5) is satisfied. Using (1.3) and (1.5), we can write Re{(1+eiψ)z(Dλ1,λ2m,kh(z))-z(Dλ1,λ2m,kg(z))¯(Dλ1,λ2m,kh(z))+(Dλ1,λ2m,kg(z)  )¯-eiψ}=ReA(z)B(z), where A(z)=(1+eiψ)[z(Dλ1,λ2m,kh(z))-z(Dλ1,λ2m,kg(z))¯]-eiψ(Dλ1,λ2m,kh(z))+(Dλ1,λ2m,kg(z)),¯B(z)=(Dλ1,λ2m,kh(z))+(Dλ1,λ2m,kg(z)).¯

In view of the simple assertion that Re(w) if and only if |1-+w||1+-w|, it is sufficies to show that |A(z)+(1-l)B(z)|-|A(z)-(1+l)B(z)|0.

Substituting for A(z) and B(z) the appropriate expressions in (2.4), we get |A(z)+(1-l)B(z)|-|A(z)-(1+l)B(z)|(2-l)|z|-k=2(2k-l)(1+(λ1+λ2)(k-1)1+λ2(k-1))m|akz|k-k=2(2k+l)(1+(λ1+λ2)(k-1)1+λ2(k-1))m|bkz|k-l|z|-k=2(2k-2-l)(1+(λ1+λ2)(k-1)1+λ2(k-1))m|akz|k-k=2(2k+2+l)(1+(λ1+λ2)(k-1)1+λ2(k-1))m|bkz|k2(1-l)|z|{1-3+l1-lb1-(k=2[2k-1-l1-l(1+(λ1+λ2)(k-1)1+λ2(k-1))m|ak|+2k+1+l1-l(1+(λ1+λ2)(k-1)1+λ2(k-1))m|bk|2k-1-l1-l(1+(λ1+λ2)(k-1)1+λ2(k-1))m]k=2)1-3+l1-lb1}k=20 by virtue of the inequality (2.1). This implies that fGH(,m,k,λ1,λ2).

Now we obtain the necessary and sufficient condition for function f=h+g¯ be given with condition (1.6).

Theorem 2.2.

Let f=h+g¯ be given by (1.2). Then fVH(,m,k,λ1,λ2) if and only if k=2(2k-1-l1-l|ak|+2k+1+l1-l|bk|)(1+(λ1+λ2)(k-1)1+λ2(k-1))m1-3+l3-lb1, where 0<1.

Proof.

Since VH(,m,k,λ1,λ2)GH(,m,k,λ1,λ2), we only need to prove the necessary part of the theorem. Assume that fVH(,m,k,λ1,λ2), then by virtue of (1.3) to (1.5), we obtain Re{(1+eiψ)[z(Dλ1,λ2m,kh(z))-z(Dλ1,λ2m,kg(z))¯(Dλ1,λ2m,kh(z))+(Dλ1,λ2m,kg(z))¯-(eiψ+l)]}0.

The above inequality is equivalent to Re{(1+(λ1+λ2)(k-1)1+λ2(k-1))m(z+(k=2[k(1+eiψ)-l-eiψ](1+(λ1+λ2)(k-1)1+λ2(k-1))m|ak|zk-k=2[k(1+eiψ)+l+eiψ](1+(λ1+λ2)(k-1)1+λ2(k-1))m|bk|zk¯)),×(z+k=2(1+(λ1+λ2)(k-1)1+λ2(k-1))m|ak|zk+k=2(1+(λ1+λ2)(k-1)1+λ2(k-1))m|bk|zk̅)-1}=Re{((1-l)+k=2[k(1+eiψ)-l-eiψ](1+(λ1+λ2)(k-1)1+λ2(k-1))m|ak|zk-1-z¯zk=2[k(1+eiψ)+l+eiψ](1+(λ1+λ2)(k-1)1+λ2(k-1))m|bk|z¯k-1×(1+k=2(1+(λ1+λ2)(k-1)1+λ2(k-1))m|ak|zk-1+z¯zk=2(1+(λ1+λ2)(k-1)1+λ2(k-1))m|bk|zk-1¯  )-1}0.

This condition must hold for all values of z, such that |z|=r<1. Upon choosing ϕ according to (1.6) and noting that Re(-eiψ)-|eiψ|=-1, the above inequality reduces to ((1-l)-(1-b1)-[k=2(2k-1-l)(1+(λ1+λ2)(k-1)1+λ2(k-1))m|ak|rk-1+(2k+1+l)(1+(λ1+λ2)(k-1)1+λ2(k-1))m|bk|rk-1k=2(2k-1-l)(1+(λ1+λ2)(k-1)1+λ2(k-1))m])×(1-k=2(1+(λ1+λ2)(k-1)1+λ2(k-1))m|ak|rk-1+k=1(1+(λ1+λ2)(k-1)1+λ2(k-1))m|bk|rk-1)-10.

If (2.6) does not hold, then the numerator in (2.9) is negative for r sufficiently close to 1. Therefore, there exists a point z0=r0 in (0,1) for which the quotient in (2.9) is negative. This contradicts our assumption that fVH(,m,k,λ1,λ2). We thus conclude that it is both necessary and sufficient that the coefficient bound inequality (2.6) holds true when fVH(,m,k,λ1,λ2). This completes the proof of Theorem 2.2.

Theorem 2.3.

The closed convex hull of fVH(,m,k,λ1,λ2) (denoted by clco VH(,m,k,λ1,λ2)) is {f(z)=z+k=2|ak|zk+k=1|bk|zk¯:k=2k[|ak|+|bk|]<1-b1}. By setting λk=(1-)/((2k-1-)((1+(λ1+λ2  )(k-1))/(1+λ2(k-1)))m) and μk=(1+)/((2k+1+)  ((1+(λ1+λ2)(k-1))/(1+λ2  (k-1)))m), then for b1 fixed, the extreme points for clco VH(,m,k,λ1,λ2) are {z+λkxzk+b1z¯}{z+b1z+μkxzk¯}, where k2 and |x|=1-|b1|.

Proof.

Any function f in clco VH(,m,k,λ1,λ2) may be expressed as f(z)=z+k=2|ak|eiηkzk+b1z¯+k=2|bk|eiδkzk¯, where the coefficients satisfy the inequality (2.1). Set h1(z)=z, g1(z)=b1z, hk(z)=z+λkeiηkzk, gk(z)=b1z+μkeiδkzk for k=2,3,. Writing χk=|ak|/λk, Yk=|bk|/μk  , k=2,3, and χ1=1-k=2χk; Y1=1-k=2Yk, we get f(z)=k=1(χkhk(z)+Ykgk(z)). In particular, setting f1(z)=z+b1z̅,fk(z)=z+λkxzk+b1z̅+μkyzk̅,(k2,|x|+|y|=1-|b1|). We see that extreme points of clco fVH(,m,k  λ1,λ2){fk(z)}.

To see that f1(z) is not in extreme point, note that f1(z) may be written as   f1(z)=12{f1(z)+λ2(1-|b1|)z2}+12{f1(z)-λ2(1-|b1|)z2}, a convex linear combination of functions in clco VH(,m,k,λ1,λ2).

To see that fm is not an extreme point if both |x|0 and |y|0, we will show that it can then also be expressed as a convex linear combinations of functions in clco VH(,m,k,λ1,λ2). Without loss of generality, assume |x||y|. Choose ϵ>0 small enough so that ϵ>|x|/|y|  . Set A=1+ϵ and B=1-|ϵx/y|. We then see that botht1(z)=z+λkAxzk+b1z+μkyBzk¯,t2(z)=z+λk(2-A)xzk+b1z+μky(2-B)zk¯ are in clco VH(,m,k,λ1,λ2) and that fk(z)=12{t1(z)+t2(z)}. The extremal coefficient bounds show that functions of the form (2.11) are the extreme points for clco VH(,m,k,λ1,λ2), and so the proof is complete.

Following Avici and Zlotkiewicz  and , we refer to the δ-neighborhood of the functions f(z) defined by (1.2) to be the set of functions F for which Nδ(f)={F(z)=z+k=2Akzk+k=1Bkzk¯,k=2k(|ak-Ak|+|bk-Bk|+|b1-B1|)δ}.

In our case, let us define the generalized δ-neighborhood of f to be the set Nδ(f)={F(z):k=2(1+(λ1+λ2)(k-1)1+λ2(k-1))m[(2k-1-l)(|ak-Ak|+(2k+1+l))|bk-Bk|]+(1-l)|b1-B1|(1-l)δk=2}.

Theorem 2.4.

Let f be given by (1.2). If f satisfies the conditions k=2k(2k-1-l)|ak|(1+(λ1+λ2)(k-1)1+λ2(k-1))m+k=1k(2k+1+l)|bk|(1+(λ1+λ2)(k-1)1+λ2(k-1))m(1-l), where 0<1, and δ=1-l3-l(1-3+l1-l|b1|), then N(f)GH(,m,k,λ1,λ2).

Proof.

Let f satisfy (2.20) and F(z) be given by F(z)=z+B1z¯+k=2(Akzm+Bkzk¯) which belong to N(f). We obtain (3+l)|B1|+k=2((2k-1-l)|Ak|+(2k+1+l)|Bk|)(1+(λ1+λ2)(k-1)1+λ2(k-1))m(3+l)|B1-b1|+(3+l)|b1|+k=2(1+(λ1+λ2)(k-1)1+λ2(k-1))m[(2k-1-l)|Ak-ak|+(2k+1+l)|Bk-bk|]+k=2(1+(λ1+λ2)(k-1)1+λ2(k-1))m[(2k-1-l)|ak|+(2k+1+l)|bk|](1-l)δ+(3+l)|b1|+13-lk=2k(1+(λ1+λ2)(k-1)1+λ2(k-1))m((2k-1-l)|ak|+(2k+1+l)|bk|)(1-l)δ+(3+l)|b1|+13-l[(1-l)-(3+l)|b1|]1-l. Hence for δ=(1-)/(3-)(1-((3+)/(1-))|b1|), we infer that F(z)GH(,m,k,λ1,λ2) which concludes the proof of Theorem 2.4.

Acknowledgment

The work here was supported by UKM-ST-06-FRGS0244-2010.

ClunieJ.Sheil-SmallT.Harmonic univalent functionsAnnales Academiae Scientiarum Fennicae A19849325752388ZBL0506.30007SalageanG. S.Subclasses of univalent functionsComplex Analysis19831013Berlin, GermanySpringer362372Lecture Notes in Math10.1007/BFb0066543738107JahangiriJ. M.SilvermanH.Harmonic univalent functions with varying argumentsInternational Journal of Applied Mathematics2002832672751898507ZBL1026.30016MurugusundaramoorthyG.VijayaK.RainaR. K.A subclass of harmonic functions with varying arguments defined by Dziok-Srivastava operatorArchivum Mathematicum200945137462591659ZBL1212.30052AviciY.ZotkiewiczE.On harmonic univalent mappingsAnnales Universitatis Mariae Curie-Skłodowska A199044171157872RuscheweyhS.Neighborhoods of univalent functionsProceedings of the American Mathematical Society198181452152710.2307/2044151601721ZBL0458.30008