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Unité de Physique des Dispositifs à Semi-Conducteurs, Faculté des Sciences de Tunis, Tunis El Manar University, 2092 Tunis, Tunisia

Correspondence should be addressed to K. Boubaker, mmbb11112000@yahoo.fr

Received 9 August 2012; Accepted 30 August 2012

Academic Editors: Y.-D. Wang and Y. Xu

Copyright © 2012 K. Boubaker. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Shape memory alloys (SMA) are metals which can restore their initial shape after having been subjected to a deformation.
They exhibit in general both nonlinear shape memory and pseudoelastic effects. In this paper, shape memory alloy (SMA)
and its constitutive model with an empirical kinetics equation are investigated. A new formulation to the martensite fraction-
dependent Young modulus has been adopted and the plastic deformation was taken into account. To simulate the variations, a
one-dimensional constitutive model was constructed based on the uniaxial tension features.

1. Introduction

Recently, smart metals and alloys have been extensively
used in several metallurgical applications, due to their great
potential in updated structures and design [1–10]. Among
these materials, shape memory alloys (SMA) have attracted
more attention, due to their ability to develop extremely large
recoverable strains and great forces in the field of biomedical,
metallurgy, aerospace, and civil structures [5–10]. In SMA
matrices, pseudoplastic effect creates different stress strain
behavior resulting in a stress strain curve which lies on the
curve produced by the initial linear elastic response during
loading. Consecutive and continued unloading may produce
linear elastic behavior that eventually returns the structure to
the zero stress strain state.

In the present work, an attempt is made to model typical
martensitic transformations occurring in shape memory
alloys, taking into account pseudoplasticity patterns. In this
martensitic transformation, austenite undergoes transfor-
mation to form different variants of martensite under a
controlled mechanical loading. The formation of martensite
in the material is monitored through the coexistence of
the initial austenite phases and martensite inside periodic
units. Solutions for the implemented governing equations
are obtained numerically via explicit numerical protocols
and compared to some records presented in the recent related
literature [11–18].

2. Model Patterns

2.1. Governing Equations. The studied system is a mono-
dimensional rod subjected to axial solicitation (Figure 1).
The phase transformations in this considered structure occur
by nucleation and growth of platelet inclusions perpendicu-
lar to x-axis (Figure 1). In this configuration, elastic modulus
local expression can be obtained considering the medium as a
succession of austenite-martensite periodic units (Figure 1).

The main assumptions of the present model consists of
setting one scalar internal variable η which represents the
martensite fraction, along with linear kinetic rules in terms
of the uniaxial stress T .

Young modulus E relative to the periodic unit can be
computed via the elongation (x) of the periodic cell and the
local strain ε:

x = εw = xA + xM = εAwA + εMwM ,

ε = εA
wA

w
+ εM

wM

w
,

(1)

where w, wA, and wM represent the total length of the peri-
odic cell, the length of the austenite, and martensite fractions,
respectively, (Figure 1). Subscripts A and M indicate austen-
ite and martensite.
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Figure 1: The studied model.

Since the martensite fraction η is defined as

η = wM

w
, (2)

it gives

ε = εA
(
1− η) + εMη. (3)

The η-dependent boundary condition concerning Young
modulus E(η) are:

E(η)
∣
∣
η=0 = EA,

E(η)
∣
∣
η=1 = EM.

(4)

The expression of E(η) has been discussed by several authors.
Tanaka-Mori [19, 20] scheme proposed the expression:

E
(
η
) = EAEM

2

[ (
1− η) + ηΠMA

EM
(
1− η) + EAηΠMA

+

(
1− η)ΠAM + η

EM
(
1− η)ΠAM + EAη

]

,

ΠMA = 2EM
EA + EM

,

ΠAM = 2EA
EA + EM

,

(5)

whereas Voigt [21–25] proposed a simple linear model:

E
(
η
) = EA

(
1− η) + EM

(
η
)
. (6)

Both expressions verify the imposed condition for Young
modulus, but present the disadvantage of lack of control on
the first derivatives of E(η), which are either sophisticated
(Tanaka-Mori scheme [19, 20]) or constant (Voigt [21–25]).

As per the model of derived by Tanaka and Nagaki [26],
the main equation deduced from the first and second laws of
thermodynamics can be formulated as

T
(
ε,η

) = ρ
∂ϕ
(
ε,η

)

∂ε
, (7)

with

T : Second Piola-Kirchhoff stress,

ρ: Density,

ϕ: Helmholtz free energy,

ε: Green strain,

η: Martensite fraction.

In the case of pure mechanical constraint, and taking
into accounts the presumptions of Chen et al. [27], the main
equation becomes

T
(
ε,η

)− T0 = ρ
∂2ϕ

∂ε2
(ε − εo) + ρ

∂2ϕ

∂ε∂η

(
η − η0

)
,

E
(
η
) = ρ

∂2ϕ

∂ε2
,

(8)

where E(η) is Young modulus and T0εo and η0 refer to ini-
tial condition for stress, strain and martensite fraction, resp-
ectively.

In the actual model, the transformation tensor ρ(∂2ϕ/
∂ε∂η) is considered as constant, while the Young modulus
E(η) is expressed as

E
(
η
) = EM +

EM − EA
N0

N0∑

k=1

ξk × B4k
(
η × rk

)
, (9)

where B4k are the 4k-order Boubaker polynomials [28–44], rk
are B4k minimal positive roots, N0 is a prefixed integer, and
ξk|k=1,...,N0

are unknown pondering real coefficients.
This expression refers to the Boubaker polynomials

expansion scheme (BPES) [29–31]. This scheme is a resolu-
tion protocol which has been successfully applied to several
applied-physics and mathematics problems. The BPES pro-
tocol ensures the validity of the related boundary conditions
regardless of main equation features. The BPES is mainly
based on Boubaker polynomials first derivatives properties:

N∑

q=1

B4q(x)

∣
∣
∣∣
∣
∣
x=0

= −2N /= 0,

N∑

q=1

B4q(x)

∣
∣∣
∣
∣
∣
x=rq

= 0,
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N∑

q=1

dB4q(x)

dx

∣
∣
∣∣
∣
∣
x=0

= 0,

N∑

q=1

dB4q(x)

dx

∣
∣∣
∣
∣
∣
x=rq

=
N∑

q=1

Hq,

with Hn = B′4n(rn) =
(

4rn
[
2− r2

n

]×∑n
q=1 B

2
4q(rn)

B4(n+1)(rn)
+ 4r3

n

)

.

(10)

Several solutions have been proposed through the BPES in
many fields such as numerical analysis [28–31], theoretical
physics [31–34], mathematical algorithms [35], heat transfer
[36], homodynamic [37, 38], material characterization [39],
fuzzy systems modeling [40–42], and biology [43, 44].

The main advantage of this formulation (9) is the verifi-
cation of boundary conditions, expressed in (4), in advance
to resolution process, along with affording controllable and
easy-to-access first derivatives of E(η). In fact, thanks to the
properties expressed in (10), these conditions are inherently
verified.

E(η)
∣
∣
η=0 = EM +

EM − EA
N0

N0∑

k=1

ξk × (−2) = EA,

E(η)
∣∣
η=1 = EM +

EM − EA
N0

N0∑

k=1

ξk × (0) = EM.

(11)

Plots of the η-dependent Young modulus E(η) are gathered
in Figure 2, for both actual and referred models [19–25].

2.2. Numerical Results and Discussion. Numerical simulation
was achieved for the values of parameters gathered in Table 1.
The system was taken as insulated thermally and pinned-
end mechanically. A variable mechanical load T , expressed
as follows, has been considered [45]

T =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3500t, t ∈
[

0,
θ

6

[
,

3500(4− t), t ∈
[
θ

6
,
θ

3

[
,

0, t ∈
[
θ

3
,
θ

2

[
,

3500(6− t), t ∈
[
θ

2
,

2θ
3

[
,

3500(t − 10), t ∈
[

2θ
3

,
5θ
6

[
,

0, t ∈
[

5θ
6

, θ
[
.

θ = 12.

(12)

Consequently, the dynamics were simulated using (7)-(8)
with the given load (12) and the BPES-related expression
(9). Finite element simulations in simple uniaxial solicitation
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Figure 2: Young modulus E(η) versus martensite fraction for differ-
ent values of EA/EM .

Table 1: Values of dhkl of relevant parameters.

Parameters Value Unit

EA 6.0 105 MPa

EM 7.5 103 MPa

Rod diameter 1.49 mm

mode were carried out with the preset load using load gradi-
ent and the preset η-dependent Young modulus expression
as input. The resulting stress-strain response was plotted in
Figure 3, along with some records from the related literature
[46, 47].

3. Discussion and Perspectives

Numerical stress-strain plots obtained from the actual model
confirm that the patterns of hysteresis loop generated in
the positive quadrant (Figure 3) are in good agreement
with the profiles presented by Auricchio [45], Motahari and
Ghassemieh [46], and Sayyadi et al. [47].

Strain span shows also a good agreement with the model
performed by Motahari and Ghassemieh [46]. The unique
divergence lies in the upper zone (ε > 5%) and may be
attributed to the linear approximation of the η-dependent
Young modulus E(η) (Voigt-type) instead of the polynomial
form of evolution equations assumed in our study. In
this context, it can been stated that Tanaka-Mori [19, 20]
and Voigt [21–25] models, cannot be efficiently used for
predicting the shape memory effect behavior of SMA. This is
due to the fact that in the constitutive equations used in those
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Figure 3: Solution plots represented in the Strain-Stress plane.

models, the transformational component is proportional to
both martensite volume fraction and its derivatives. Indeed,
these models, oppositely to the actual one, introduce a pre-
fixed and uncontrollable derivative-dependence.

4. Conclusion

In summary, we have implemented constitutive model for
shape-memory alloys capable of undergoing austenite to
martensite phase transformation using fundamental ther-
modynamic laws and the principle of martensite fraction-
dependence. The stress-strain plots obtained from uniaxial
monitored load were predicted using the finite-element sim-
ulations. A key parameter of the performed model consists of
avoiding avoids singularity of the main equilibrium equation
during the transition since the derivative of the preset η-
dependent Young modulus expression are controllable. η-
dependent boundary conditions were also inherently taken
into account in the model.

Although applied to a particular geometry, the model
should be suitable to study other configurations since it was
based on a single scalar internal variable: the martensite
fraction. This model may be extended to 2D and 3D, while
other possible future developments are the inclusion of per-
manent inelastic effects, the prediction of coupled thermo-
mechanical behavior, and the nonlinear hardening mecha-
nisms.
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