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New subclasses of analytic functions in the open unit disc are introduced which are defined using
generalised multiplier transformations. Inclusion theorems are investigated for functions to be in
the classes. Furthermore, generalised Bernardi-Libera-Livington integral operator is shown to be
preserved for these classes.

1. Introduction

Let A denote the class of functions f normalised by f(z) = z +
∑∞

n=2 anz
n in the open unit

disk D := {z ∈ C : |z| < 1}. Also let S�, C, and K denote, respectively, the subclasses of
A consisting of functions which are starlike, convex, and close to convex in D. An analytic
function f is subordinate to an analytic function g, written f(z) ≺ g(z) (z ∈ D) if there exists
an analytic function w in D such that w(0) = 0 and |w(z)| < 1 for |z| < 1 and f(z) = g(w(z)).
In particular, if g is univalent in D, then f(z) ≺ g(z) is equivalent to f(0) = g(0) and f(D) ⊂
g(D). The convolution of two analytic functions ϕ(z) =

∑∞
n=2 anz

n and ψ(z) =
∑∞

n=0 bnz
n is

defined by ϕ(z) ∗ ψ(z) = ∑∞
n=0 anbnz

n = ψ(z) ∗ ϕ(z).
For any real numbers k and λwhere k ≥ 0, λ ≥ 0, c ≥ 0, Cǎtaş [1] defined the multiplier

transformations I(k, λ, c)f(z) by the following series:

I(k, λ, c)f(z) = z +
∞∑

n=2

[
1 + λ(n − 1) + c

1 + c

]k
anz

n. (1.1)
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Recently, some properties of functions using the multiplier transformations have been
studied in [2–6]. Using the convolution, we extend the multiplier transformation in (1.1)
to be a unified operator. The approach used is similar to Noor’s [7], only we generalise and
extend to include powers and uses the multiplier Cǎtaş as basis instead of the Ruscheweyh
operator.

Set the function

fk,c(z) = z +
∞∑

n=2

[
1 + c

1 + λ(n − 1) + c

]k
zn (k, λ ∈ R, k ≥ 0, λ ≥ 0, c ≥ 0), (1.2)

and note that, for λ = 1, fk,c(z) is the generalised polylogarithm functions discussed in [8]. A
new function fμ

k,c
(z) is defined in terms of the Hadamard product (or convolution) as follows:

fk,c(z) ∗ fμk,c(z) =
z

(1 − z)μ
(
μ > 0

)
. (1.3)

Motivated by [9–11] and analogous to (1.1), the following operator is introduced:

Ikc
(
λ, μ

)
f(z) = fμk,c ∗ f(z)

= z +
∞∑

n=2

(
μ
)
n−1

(n − 1)!

[
1 + λ(n − 1) + c

1 + c

]k
anz

n.
(1.4)

The operator Ikc (λ, μ)f unifies other previously defined operators. For examples,

(i) Ikc (λ, 1)f is the I1(δ, λ, l)f given in [1],

(ii) Ikc (1, 1)f is the Ikc f given in [12],

also, for any integer k,

(iii) Ik0 (λ, 1)f(z) ≡ Dk
λ
f(z) given in [13],

(iv) Ik0 (1, 1)f(z) ≡ Dkf(z) given in [14],

(v) Ik1 (1, 1)f(z) ≡ Ikf(z) given in [15].

The following relations are easily derived using the following definition:

(1 + c)Ik+1c

(
λ, μ

)
f(z) = (1 − λ + c)Ikc

(
λ, μ

)
f(z) + λz

[
Ikc
(
λ, μ

)
f(z)

]′
, (1.5)

μIkc
(
λ, μ + 1

)
f(z) = z

[
Ikc
(
λ, μ

)
f(z)

]′
+
(
μ − 1

)
Ikc
(
λ, μ

)
f(z). (1.6)

LetN be the class of all analytic and univalent functions φ inD and for which φ(D) is convex
with φ(0) = 1 and Re{φ(z)} > 0 for z ∈ D. For φ, ψ ∈ N, Ma and Minda [16] studied
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the subclasses S�(φ), C(φ), and K(φ, ψ) of the class A. These classes are defined using the
principle of subordination as follows:

S�
(
φ
)
:=

{

f : f ∈ A, zf
′(z)

f(z)
≺ φ(z) in D

}

,

C
(
φ
)
:=

{

f : f ∈ A, 1 + zf ′′(z)
f ′(z)

≺ φ(z) in D
}

,

K
(
φ, ψ

)
:=

{

f : f ∈ A, ∃g ∈ S�(φ) such that
zf ′(z)
g(z)

≺ ψ(z) in D
}

.

(1.7)

Obviously, we have the following relationships for special choices φ and ψ:

S�
(
1 + z
1 − z

)

= S�, C

(
1 + z
1 − z

)

= C, K

(
1 + z
1 − z ,

1 + z
1 − z

)

= K. (1.8)

Using the generalisedmultiplier transformations Ikc (λ, μ)f , new classes Skc (λ, μ;φ),C
k
c (λ, μ;φ)

and Kk
c (λ, μ;φ, ψ) are introduced and defined below

Skc
(
λ, μ;φ

)
:=

{
f ∈ A : Ikc

(
λ, μ

)
f(z) ∈ S�(φ)

}
,

Ck
c

(
λ, μ;φ

)
:=

{
f ∈ A : Ikc

(
λ, μ

)
f(z) ∈ C(φ)

}
,

Kk
c

(
λ, μ;φ, ψ

)
:=

{
f ∈ A : Ikc

(
λ, μ

)
f(z) ∈ K(

φ, ψ
)}
.

(1.9)

It can be shown easily that

f(z) ∈ Ck
c

(
λ, μ;φ

) ⇐⇒ zf ′(z) ∈ Skc
(
λ, μ;φ

)
. (1.10)

Janowski [17] introduced class S�[A,B] = S�((1 +Az)/(1 + Bz)) and in particular for φ(z) =
(1 +Az)/(1 + Bz), we set

Skc

(

λ, μ;
1 +Az
1 + Bz

)

= S�k,c
[
μ;A,B

]
(−1 ≤ B < A ≤ 1). (1.11)

In [18], the authors studied the inclusion properties for classes defined using Dziok-
Srivastava operator. This paper investigates the similar properties for analytic functions in
the classes defined by the generalised multiplier transformations Ikc (λ, μ)f . Furthermore,
applications of other families of integral operators are considered involving these classes.

2. Inclusion Properties Involving IKc (λ, μ)f

In proving our results, the following lemmas are needed.
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Lemma 2.1 (see [19]). Let φ be convex univalent inD, with φ(0) = 1 andRe[κφ(z)+η] > 0 (κ, η ∈
C). If p is analytic inD with p(0) = 1, then

p(z) +
zp′(z)

κp(z) + η
≺ φ(z) =⇒ p(z) ≺ φ(z). (2.1)

Lemma 2.2 (see [20]). Let φ be convex univalent in D and ω be analytic in D with Re{ω(z)} ≥ 0.
If p is analytic inD and p(0) = φ(0), then

p(z) +ω(z)zp′(z) ≺ φ(z) =⇒ p(z) ≺ φ(z). (2.2)

Theorem 2.3. For any real numbers k and λ where k ≥ 0, λ ≥ 0 and c ≥ 0.
Let φ ∈N and Re{φ(z) + (1 − λ + c)/λ} > 0, then Sk+1c (λ, μ;φ) ⊂ Skc (λ, μ;φ) (μ > 0).

Proof. Let f ∈ Sk+1c (λ, μ;φ), and set p(z) = (z[Ikc (λ, μ)f(z)]
′)/(Ikc (λ, μ)f(z)) where p is

analytic inD with p(0) = 1. Rearranging (1.5), we have

(1 + c)Ik+1c

(
λ, μ

)
f(z)

Ikc
(
λ, μ

)
f(z)

= (1 − λ + c) +
λz

[
Ikc
(
λ, μ

)
f(z)

]′

Ikc
(
λ, μ

)
f(z)

. (2.3)

Next, differentiating (2.3) and multiplying by z gives

z
[
Ik+1c

(
λ, μ

)
f(z)

]′

Ik+1c

(
λ, μ

)
f(z)

=
z
[
Ikc
(
λ, μ

)
f(z)

]′

Ikc
(
λ, μ

)
f(z)

+
z
((
z
[
Ikc
(
λ, μ

)
f(z)

]′)
/
(
Ikc
(
λ, μ

)
f(z)

))′

(

z
[
Ikc
(
λ, μ

)
f(z)

]′)
/
(
Ikc
(
λ, μ

)
f(z)

)
+ (1 − λ + c)/λ

= p(z) +
zp′(z)

p(z) + (1 − λ + c)/λ
.

(2.4)

Since (z[Ik+1c (λ, μ)f(z)]′)/(Ik+1c (λ, μ)f(z)) ≺ φ(z) and applying Lemma 2.1, it follows that
p ≺ φ. Thus f ∈ Skc (λ, μ;φ).

Theorem 2.4. Let k, λ ∈ R, k ≥ 0, λ ≥ 0, and μ ≥ 1. Then Skc (λ, μ + 1;φ) ⊂ Skc (λ, μ;φ) (c ≥ 0;φ ∈
N).

Proof. Let f ∈ Skc (λ, μ + 1;φ), and from (1.6), we obtain that

μIkc
(
λ, μ + 1

)
f(z)

Ikc
(
λ, μ

) =
z
[
Ikc
(
λ, μ

)
f(z)

]′

Ikc
(
λ, μ

) +
(
μ − 1

)
. (2.5)
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Making use of the differentiation on both sides in (2.5) and setting p(z) =
(z[Ikc (λ, μ)f(z)]

′)/(Ikc (λ, μ)f(z)), we get the following:

z
[
Ikc
(
λ, μ + 1

)
f(z)

]′

Ikc
(
λ, μ + 1

)
f(z)

= p(z) +
zp′(z)

p(z) +
(
μ − 1

) ≺ φ(z). (2.6)

Since μ ≥ 1 and Re{φ(z)+(μ−1)} > 0, using Lemma 2.1, we conclude that f ∈ Skc (λ, μ;φ).

Corollary 2.5. Let λ ≥ 0, μ ≥ 1, and −1 ≤ B < A ≤ 1. Then S�k+1,c[μ;A,B] ⊂ S�k,c[μ;A,B] and
S�
k,c
[μ + 1;A,B] ⊂ S�

k,c
[μ;A,B].

Theorem 2.6. Let λ ≥ 0 and μ ≥ 1. Then Ck+1
c (λ, μ;φ) ⊂ Ck

c (λ, μ;φ) and Ck
c (λ, μ + 1;φ) ⊂

Ck
c (λ, μ;φ).

Proof. Using (1.10) and Theorem 2.3, we observe that

f(z) ∈ Ck+1
c

(
λ, μ;φ

) ⇐⇒ zf ′(z) ∈ Sk+1c

(
λ, μ;φ

)

=⇒ zf ′(z) ∈ Skc
(
λ, μ;φ

)

⇐⇒ Ikc
(
λ, μ

)
zf ′(z) ∈ S�(φ)

⇐⇒ z
[
Ikc
(
λ, μ

)
f(z)

]′ ∈ S�(φ)

⇐⇒ Ikc
(
λ, μ

)
f(z) ∈ C(φ)

⇐⇒ f ∈ Ck
c

(
λ, μ;φ

)
.

(2.7)

To prove the second part of theorem, using the similar manner and applying Theorem 2.4,
the result is obtained.

Theorem 2.7. Let λ ≥ 0, c ≥ 0 and Re{(1 − λ + c)/λ} > 0.
Then Kk+1

c (λ, μ;φ, ψ) ⊂ Kk
c (λ, μ;φ, ψ) and K

k
c (λ, μ + 1;φ, ψ) ⊂ Kk

c (λ, μ;φ, ψ)(φ, ψ ∈N).

Proof. Let f ∈ Kk+1
c (λ, μ;φ, ψ). In view of the definition of the class Kk+1

c (λ, μ;φ, ψ), there is a
function g ∈ Sk+1c (λ, μ;φ) such that

z
[
Ik+1c

(
λ, μ

)
f(z)

]′

Ik+1c

(
λ, μ

)
g(z)

≺ ψ(z). (2.8)

Applying Theorem 2.3, then g ∈ Skc (λ, μ;φ) and let q(z) = (z[Ikc (λ, μ)g(z)]
′)/(Ikc (λ, μ)g(z)) ≺

φ(z).
Let the analytic function p with p(0) = 1 as

p(z) =
z
[
Ikc
(
λ, μ

)
f(z)

]′

Ikc
(
λ, μ

)
g(z)

. (2.9)
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Thus, rearranging and differentiating (2.9), we have

[
Ikc
(
λ, μ

)
zf ′(z)

]′

Ikc
(
λ, μ

)
g(z)

=
p(z)

[
Ikc
(
λ, μ

)
g(z)

]′

Ikc
(
λ, μ

)
g(z)

+ p′(z). (2.10)

Making use (1.5), (2.9), (2.10), and q(z), we obtain that

z
[
Ik+1c

(
λ, μ

)
f(z)

]′

Ik+1c

(
λ, μ

)
g(z)

=

[
Ik+1c

(
λ, μ

)
zf ′(z)

]

Ik+1c

(
λ, μ

)
g(z)

=
(1 − λ + c)Ikc

(
λ, μ

)
zf ′(z) + λz

[
Ikc
(
λ, μ

)
zf ′(z)

]′

(1 − λ + c)Ikc
(
λ, μ

)
g(z) + λz

[
Ikc
(
λ, μ

)
g(z)

]′

=

(
(1 − λ + c)Ikc

(
λ, μ

)
zf ′(z)

)
/
(
Ikc
(
λ, μ

)
g(z)

)
+
(
λz

[
Ikc
(
λ, μ

)
zf ′(z)

]′)
/
(
Ikc
(
λ, μ

)
g(z)

)

(1 − λ + c) +
(

λz
[
Ikc
(
λ, μ

)
g(z)

]′)
/
(
Ikc
(
λ, μ

)
g(z)

)

=
(1 − λ + c)p(z) + λ

[
p(z)q(z) + p′(z)

]

(1 − λ + c) + λq(z)

= p(z) +
zp′(z)

q(z) + (1 − λ + c)/λ
≺ ψ(z).

(2.11)

Since q(z) ≺ φ(z) and Re{(1−λ+c)/λ} > 0, then Re{q(z)+(1−λ+c)/λ} > 0. Using Lemma 2.2,
we conclude that p(z) ≺ ψ(z) and thus f ∈ Kk

c (λ, μ;φ, ψ). By using similar manner and (1.6),
we obtain the second result.

In summary, using subordination technique inclusion properties has been established
for certain analytic functions defined via the generalised multiplier transformation.

3. Inclusion Properties Involving Fcf

In this section, we determine properties of generalised Bernardi-Libera-Livington integral
operator defined by [21–24]

Fc
[
f(z)

]
=
c + 1
zc

∫z

0
tc−1f(t)dt (c > −1,Re c ≥ 0)

= z +
∞∑

n=2

c + 1
n + c

anz
n

(3.1)
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and satisfies the following:

cIkc
(
λ, μ

)
Fc
[
f(z)

]
+ z

[
Ikc
(
λ, μ

)
Fc
[
f(z)

]]′
= (c + 1)Ikc

(
λ, μ

)
f(z). (3.2)

Theorem 3.1. If f ∈ Skc (λ, μ;φ), then Fcf ∈ Skc (λ, μ;φ).

Proof. Let f ∈ Skc (λ, μ;φ), then (z[Ikc (λ, μ)f(z)]
′)/(Ikc (λ, μ)f(z)) ≺ φ(z). Taking the differenti-

ation on both sides of (3.2) and multiplying by z, we obtain

z
[
Ikc
(
λ, μ

)
f(z)

]′

Ikc
(
λ, μ

)
f(z)

=
z
[
Ikc
(
λ, μ

)
Fc
[
f(z)

]]′

Ikc
(
λ, μ

)
Fc
[
f(z)

] +
z
((
z
[
Ikc
(
λ, μ

)
Fc
[
f(z)

]]′)
/
(
Ikc
(
λ, μ

)
Fc
[
f(z)

]))′

(

z
[
Ikc
(
λ, μ

)
Fc
[
f(z)

]]′)
/
(
Ikc
(
λ, μ

)
Fc
[
f(z)

])
+ c

.

(3.3)

Setting p(z) = (z[Ikc (λ, μ)Fc[f(z)]]
′)/(Ikc (λ, μ)Fc[f(z)]), we have

z
[
Ikc
(
λ, μ

)
f(z)

]′

Ikc
(
λ, μ

)
f(z)

= p(z) +
zp′(z)
p(z) + c

. (3.4)

Lemma 2.1 implies (z[Ikc (λ, μ)Fc[f(z)]]
′)/(Ikc (λ, μ)Fc[f(z)]) ≺ φ(z). Hence Fcf ∈ Skc (λ, μ;φ).

Theorem 3.2. Let f ∈ Ck
c (λ, μ;φ), then Fcf ∈ Ck

c (λ, μ;φ).

Proof. By using (1.10) and Theorem 3.1, it follows that

f ∈ Ck
c

(
λ, μ;φ

) ⇐⇒ zf ′(z) ∈ Skc
(
λ, μ;φ

)
=⇒ Fc

[
zf ′(z)

] ∈ Skc
(
λ, μ;φ

)

⇐⇒ z
[
Fc
[
f(z)

]]′ ∈ Skc
(
λ, μ;φ

) ⇐⇒ Fc
[
f(z)

] ∈ Ck
c

(
λ, μ;φ

)
.

(3.5)

Theorem 3.3. Let φ, ψ ∈N, and f ∈ Kk
c (λ, μ;φ, ψ), then Fcf ∈ Kk

c (λ, μ;φ, ψ).

Proof. Let f ∈ Kk
c (λ, μ;φ, ψ), then there exists function g ∈ Skc (λ, μ;φ) such that

(z[Ikc (λ, μ)f(z)]
′)/(Ikc (λ, μ)g(z)) ≺ ψ(z). Since g ∈ Skc (λ, μ;φ) therefore from Theorem 3.1,

Fc[f(z)] ∈ Skc (λ, μ;φ). Then let

q(z) =
z
[
Ikc
(
λ, μ

)
Fc
[
g(z)

]]′

Ikc
(
λ, μ

)
Fc
[
g(z)

] ≺ φ(z). (3.6)

Set

p(z) =
z
[
Ikc
(
λ, μ

)
Fc
[
f(z)

]]′

Ikc
(
λ, μ

)
Fc
[
g(z)

] . (3.7)
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By rearranging and differentiating (3.7), we obtain that

[
Ikc
(
λ, μ

)
Fc
[
zf ′(z)

]]′

Ikc
(
λ, μ

)
Fc
[
g(z)

] =
p(z)

[
Ikc
(
λ, μ

)
Fc
[
g(z)

]]′

Ikc
(
λ, μ

)
Fc
[
g(z)

] +

[
Ikc
(
λ, μ

)
Fc
[
g(z)

]]
p′(z)

Ikc
(
λ, μ

)
Fc
[
g(z)

] . (3.8)

Making use (3.2), (3.7), and (3.6), it can be derived that

z
[
Ikc
(
λ, μ

)
f(z)

]′

Ikc
(
λ, μ

)
g(z)

= p(z) +
zp′(z)
c + q(z)

. (3.9)

Hence, applying Lemma 2.2, we conclude that p(z) ≺ ψ(z), and it follows that Fc[f(z)] ∈
Kk
c (λ, μ;φ, ψ).

For analytic functions in the classes defined by generalised multiplier transformations,
the generalised Bernardi-Libera-Livington integral operator has been shown to be preserved
in these classes.

4. Conclusion

Results involving functions defined using the generalised multiplier transformation, namely,
inclusion properties and the Bernardi-Libera-Livington integral operator were obtained using
subordination principles. In [18], similar results were discussed for functions defined using
the Dziok-Srivastava operator.
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