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The paper concentrates on the study of reflection and transmission characteristics of acoustic waves at the interface of a
semiconductor half-space underlying an inviscid liquid. The reflection and transmission coefficients varying with the incident
angles are examined. Calculated results are verified by considering the quasilongitudinal (qP) and quasitransverse (qSV) waves.
The special cases of normal and grazing incidence are also derived and discussed. Finally, the numerical computations of reflection
and transmission coefficients are carried out with the help of Gauss elimination method by using MATLAB programming software
for silicon (Si) and germanium (Ge) semiconductors. The computer simulated-results have been plotted graphically for Si and
presented in tabular form in case of Ge semiconductors. The study may be useful in semiconductors, geology, and seismology in
addition to surface acoustic wave (SAW) devices.

1. Introduction

Jeffrey’s [1] and Gutenberg [2] considered the reflection of
elastic plane waves at the surface of a solid halfspace. Sidhu
and Singh [3] investigated the propagation of plane waves in
a prestressed elastic solid possessing orthotropic symmetry
and showed that the velocities of qL and qSV waves depend
upon the angle of propagation. Rayleigh [4] considered the
reflection and transmission of waves from an undulated
boundary surface of an elastic solid. Knott [5] derived the
equations for reflection and refraction of waves at plane
boundaries. The reflection and refraction phenomenon of
elastic waves in solids under different situations has been
treated in detail as reported in books [6–8]. Deresiewicz
[9] studied the reflection of a plane waves from the stress-
free boundaries of thermoelastic halfspace. Abo-dahab [10]
studied the propagation of P waves from the stress-free
surface of elastic half-space with voids under the influence
of thermal relaxation and magnetic field. It is found that
the angle of incidence (θ) significantly affects the reflection
coefficients and the thermal relaxation time has negligible
small effect on the amplitude of reflection coefficients.
Madeo and Gavrilyuk [11] studied the propagation of

acoustic waves in porous media including their reflection
and transmission at pure fluid/porous medium permeable
interface. A. N. Sinha and S. B. Sinha [12] studied the re-
flection of generalized thermoelastic waves from the free
surface of a solid halfspace. Sharma et al. [13] studied
the reflection of generalized thermoelastic waves from the
boundary of a transversely isotropic halfspace. Abd-alla
[14] considered the effect of relaxation time on reflection
of generalized magnetothermoelastic waves. Lockett [15]
studied the effect of thermal properties of a solid on the
velocity of waves. Chadwick and Snedon [16] studied the
reflection of plane waves in an elastic solid conducting heat.

Maruszewski [17] presented theoretical considerations
of the simultaneous interactions of elastic, thermal, and
diffusion of charge carrier fields in order to study surface
waves in semiconductors. Sharma and Thakur [18] non-
dimensionalized the model [17] and studied the plane
harmonic elastodiffusive surface wave in semiconductor
material. Recently, J. N. Sharma and A. Sharma [19] studied
the reflection of acoustodiffusive waves from the stress-free
boundary of a semiconductor halfspace. As per knowledge
of authors no study of reflection and transmission of
waves based on the models of basic governing equations
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Figure 1: Geometry of the problem.

given in references [17, 18] is available in the literature.
Ultrasonic waves are reflected at boundaries due to the
acoustic impedance mismatch of the materials on each side.
Reflection and transmission coefficients are utilized for the
conversion of longitudinal to shear waves and vice versa. This
feature is extremely useful in the construction of shear wave
transducers. Reflection coefficients also affect the response
of a transducer to a sinusoidal signal and are useful in son-
ography as well as in signal processing.

Keeping in view the above and applications of semi-
conductors in acoustic devices, the present paper is an
attempt to explore the reflection and transmission char-
acteristics of elastic waves at the interface between elastic
semiconductor (n or p-type) halfspace and inviscid liquid
semispace. The mathematical model consisting of governing
partial differential equations of motion and charge carriers’
diffusion of n-type and p-type semiconductors has been
solved both analytically and numerically in the study. The
computer-simulated results so obtained with the help of
MATLAB programming in respect of in case of silicon (Si)
and germanium (Ge) semiconductors in contact with water
have been illustrated graphically.

2. Formulation of the Problem

We take the origin of rectangular Cartesian coordinate
system oxyz at a fixed point on the boundary of the semi-
conductor halfspace with positive z-axis directed normally
into the solid medium and x-axis along the direction of
propagation of waves; the y-axis is taken in the direction
of the line of intersection of the plane wave front with
the plane surface as shown in Figure 1. If we restrict our
analysis to plain strain in the xz-plane, all the field variables
may be taken as function of x, z, and t only. The basic
governing equations of motion and diffusion of charge
carrier fields for a homogeneous isotropic, elastic (n-type
and p-type) semiconductors, in the absence of body forces
and electromagnetic forces, are given as [17, 18].

n-type semiconductor

μ∇2�u +
(
λ + μ

)∇∇ · �u− λnN = ρ�̈u,

ρDn∇2N + ρ

[
1
t+n
−
(

1− tn

t+n

)
∂

∂t
− tn ∂

2

∂t2

]

N

− an2T0λ
T∇ · �̇u = 0,

(1)

p-type semiconductor

μ∇2�u +
(
λ + μ

)∇∇ · �u− λpP = ρ�̈u,

ρDp∇2P + ρ

[
1
t+p
−
(

1− tp

t+p

)
∂

∂t
− tp ∂

2

∂t2

]

P

− ap2T0λ
T∇ · �̇u = 0,

(2)

where ∇2 = (∂2/∂x2) + (∂2/∂z2) is the Laplacian operator,
N(x, z, t) = n − n0 is the electron concentration change,
P(x, z, t) = p − p0 is the hole concentration change, and
�u(x, z, t) = (u, 0,w) is the displacement vector. Here λ, μ
are Lame parameters; ρ is the density of the semiconductor;
λn = (3λ+2μ)αN and λp = (3λ+2μ)αP are the elastodiffusive
constants of electrons; αN ,αP are the coefficients of linear
electron and holes concentration expansions. Dn and Dp are
the diffusion coefficients of electron and hole carriers; tn, tp
and t+n , t+p are the relaxation and life times of the electron
and hole charge carriers, respectively; n, p and n0, p0 are,
respectively, the nonequilibrium and equilibrium values of
electrons and holes concentrations of the semiconductors;
T0 and λT = (3λ + 2μ)αT are the uniform temperature and
adiabatic thermomechanical coupling constant, respectively;
an2 , a

p
2 are the flux-like parameters. The superposed dot

represents differentiation with respect to time.
Further (1)-(2) are subjected to following assumptions

[17, 18].

(i) All the considerations are made in the frame work of
the phenomenological model.

(ii) The electric neutrality of the semiconductor is satis-
fied.

(iii) The magnetic field effect is ignored.

(iv) The mass of charge carriers is negligible.

(v) The electric field with in the boundary layer is very
weak and can be neglected.

(vi) The recombination functions of electrons and holes
are selected on the basis of facts that take care of
the defects and hence the concentration values of the
charge carrier fields.

The nonvanishing components of stress tensor in the
semiconductor are given by

n-type:

τzz =
(
λ + 2μ

)∂w

∂z
+ λ

∂u

∂x
− λnN , τxz = μ

(
∂u

∂z
+
∂w

∂x

)
,

(3)
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p- type:

τzz =
(
λ + 2μ

)∂w

∂z
+ λ

∂u

∂x
− λpP, τxz = μ

(
∂u

∂z
+
∂w

∂x

)
.

(4)

The basic governing equation for inviscid fluid medium is
given by

λL∇∇ · �uL = ρL�̈u, (5)

where λL is bulk modulus and ρL and �uL are the density of
the fluid and velocity vector, respectively.

We define the quantities

x′ = ω∗x
c1

, z′ = ω∗z
c1

, t′ = ω∗t,

N ′ = N

n0
, w′ = ρω∗c1

λnn0
w, u′ = ρω∗c1

λnn0
u,

τ′i j =
τi j
λnn0

, tn′ = tnω∗, t+n
′ = t+nω

∗,

δ2
L =

c2
L

c2
1

, c2
L =

λL
ρL

, δ2 = c2
2

c2
1

,

ω∗ = c2
1

Dn
, c2

1 =
λ + 2μ
ρ

, c2
2 =

μ

ρ
,

(6)

εn = an2T0λTλn

ρ
(
λ + 2μ

) , u′L =
ρ ω∗c1

λnn0
uL, (7)

where ω∗ is the elastodiffusive characteristic frequency and
c1, c2 are, respectively, the longitudinal and shear wave
velocities. Here εL is the thermomechanical coupling and
cL is the velocity of sound in the fluid. Such quantities in
case of p-type semiconductor can be written from those in
(6) by replacing the subscript/superscripts n with p and the
quantity N with P. Upon using quantities (6) in (1)–(4), and
(5), we obtain (n-type semiconductor)

δ2∇2 �u +
(
1− δ2)∇ ∇ · �u −∇N = �̈u, (8)

∇2N −
[

tn
∂2

∂t2
+

(

1− tn

t+n

)
∂

∂t
− 1
t+n

]

N − εn∇ · �̇u = 0, (9)

τxz = δ2
(
∂u

∂z
+
∂w

∂x

)
, τzz =

(
1− 2δ2)∂u

∂x
+
∂w

∂z
−N ,

(10)

δ2
L ∇ ∇ · �uL = �̈uL. (11)

The equations for p-type semiconductor can be written from
(8) and (9) by replacingN with P and superscripts/subscripts
n with p.

We introduce the elastic potential functions φ and ψ
through the relations

u = ∂φ

∂x
+

∂ψ

∂z
, w = ∂φ

∂z
− ∂ψ

∂x
. (12)

However, in general, such a decomposition of displacement
vector is not possible in case of anisotropic materials [3].

Upon introducing (11) in (8) and (9), we get

∇2φ − φ̈ −N = 0, (13)

∇2N −
[

tn
∂2

∂t2
+

(

1− tn

t+n

)
∂

∂t
− 1
t+n

]

N − εn∇2φ̇ = 0, (14)

∇2ψ = ψ̈

δ2
. (15)

Similarly for p-type semiconductor, we have

∇2φ − φ̈ − P = 0, (16)

∇2P −
[

tp
∂2

∂t2
+

(

1− tp

t+p

)
∂

∂t
− 1
t+p

]

P − εp∇2φ̇ = 0, (17)

∇2ψ = ψ̈

δ2
. (18)

In case the semiconductors are of relaxation type, the life
time and relaxation time become comparable to each other
(tn ∼= t+n ), and consequently, (14) get simplified. The stresses
(10) in terms of potential functions φ and ψ with the help of
(12) to (18) become

τzz = φ̈ − 2δ2(φ,xx + ψ,xz
)
, τxz = ψ̈ + 2δ2(φ,xz − ψ,xx

)

(19)

for both n-type and p-type semiconductors. In the fluid
medium, the nondimensional displacements are related to
scalar and vector velocity potential through the relations
given by

uL = φL,X , wL = φL,Z . (20)

Substituting (20) in (12) we get

δ2∇2φL − φ̈L = 0. (21)

This is the equation for waves in the inviscid fluid.

3. Boundary Conditions

Following sets of boundary conditions are assumed to hold
at solid-fluid interface z = 0 of the semiconductor halfspace
[20].

(1) The magnitude of the normal component of stress
tensor of the elastic half-space should be equal to the
pressure of the liquid. This implies that

φ̈

δ2
− 2

(
φ,xx + ψ,xz

) = ρLφ̈L
ρδ2

. (22)

(2) The tangential components of stress tensor of the
solid should be zero, which implies that

ψ̈

δ2
− 2

(
ψ,xx − φ,xz

) = 0. (23)
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(3) The normal component of displacement of the solid
should be equal to that of fluid, which implies that

φ,z − ψ,x = φL,z . (24)

(4) The electron and hole charge carrier fields satisfy the
following conditions at the interface z = 0

∂N

∂z
+ hn

(
1 + tn

∂

∂t

)
N = 0,

∂P

∂z
+ hp

(
1 + tp

∂

∂t

)
P = 0,

(25)

where hn = sn/c1, hp = sp/c1, sn and sp surface recombination
velocities of electron and holes, respectively.

4. Reflection and Transmission of Plane Waves

We assume plane wave solution of the form

(
φ,ψ,N ,P,φL

) = (A,B,C,D,E)

× exp{ιk(x sin θ − z cos θ − υt)}, (26)

where υ = ω/k, ω is circular frequency, and k is the wave
number. Upon using (26) in (13)–(18) and in (21) we obtain
a system of algebraic equations in unknowns A, B, C, D.
The condition for the existence of nontrivial solution of these
systems of equations provides us

n-type:

k2
1 = a2

1ω
2, k2

2 = a2
2ω

2, k2
3 =

ω2

δ2
, k2

4 = a2
4ω

2, (27)

p-type:

k∗2
1 = a∗2

1ω
2, k∗2

2 = a∗2
2 ω2, k∗2

3 = ω2

δ2
, k∗2

4 =a∗2
4 ω2,

(28)

where

a2
1 + a2

2 = 1 + α∗n + ιω−1εn,

a2
1a

2
2 = α∗n , a2

3 =
1
δ2

, a2
4 =

1
δ2
L

,

a∗2
1 + a∗2

2 = 1 + α∗p + ιω−1εp, a2
1a

2
2 = α∗p .

(29)

5. Reflection and Transmission in Case of
qP Wave Incidence

Let the suffixes i and r represent incident and reflected waves,
respectively. Omitting the term exp(−ιωt), the solution (26)

for the function φ, ψ, N , φL and P in case of incidence and
reflected waves can be written as

φi = Ai exp{ik1(x sin θ1 − z cos θ1)},

φr =
2∑

j=1

Aj exp
{
ik j
(
x sin θj + z cos θj

)}
,

ψr = A3 exp
{
ik 3 (x sin θ3 + z cos θ3)

}
,

Ni = S1Ai exp{ιk1(x sin θ − z cos θ)},

Nr =
2∑

j=1

SjAj exp
{
ιk j
(
x sin θj + z cos θj

)}
,

Pi = S∗1 Ai exp
{
ιk∗1 (x sin θ − z cos θ)

}
,

Pr =
2∑

j=1

S∗j Aj exp
{
ιk∗j
(
x sin θj + z cos θj

)}
,

(30)

where

Sj = ω2 − k2
j = ω2

(
1− a2

j

)
, j = 1, 2,

S∗j = ω2 − k∗2
j = ω2

(
1− a∗2

j

)
, j = 1, 2.

(31)

In the absence of electron field (N = 0 = εn) and hole carriers
(P = 0 = εp), we have

n-type: a2
1 = 1, a2

2 = α∗n , a2
3 =

1
δ2

, a2
4 =

1
δ2
L

,

p-type: a∗2
1 = 1, a∗2

2 = α∗p ,

S1 = 0, S2 = ω2(1− α∗n
)
,

S∗1 = 0, S∗2 = ω2
(

1− α∗p
)
.

(32)

Case 1 (Quasilongitudinal (qP) wave incidence at an inter-
face from the semiconductor). In this and the following
sections, we shall confine our discussion to n-type semi-
conductor unless stated otherwise, and results in case of
p-type semiconductor can be written from the expressions
of various quantities obtained here by adopting the same
procedure.

Because of coupling between various field functions the
reflected fields in case of qP wave incidence at the interface
are given by

φ = φi + φr , N = Ni +Nr , P = Pi + Pr ,

ψ = ψr , φL = φLr .
(33)

Upon using the above equations, we calculate the stresses
from (19) and then employing the boundary conditions
(22)–(25) to obtain a system of four coupled algebraic
equations given in the appendix. Since all the waves, incident,
reflected, or transmitted, must be in phase at the surface
z = 0 for all values of x and t, therefore from equations (A.1)
we have

k1 sin θ = k1 sin θ1 = k2 sin θ2 = k3 sin θ3 = k4 sin θ4. (34)

Upon using (27) in the above relation, we obtain

θ = θ1, a1 sin θ1 = a2 sin θ2 = 1
δ

sin θ3 = a4 sin θ4.

(35)
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This is modified form of the Snell’s law for the considered
material. In the absence of electron field (N = 0, εn = 0),
(35) becomes

δ sin θ1 = sin θ3 =⇒ sin θ1

c1
= sin θ3

c2
. (36)

This is Snell’s law [6]. Solving the systems of equations (A.2)
with the help of Gauss elimination method, the amplitude

ratios R
qP
k (k = 1, 2, 3) and T

qP
1 are obtained as

R
qP
1 = 1− 2a2S2 cos θ2cos22θ3

aΔL − ΔS
,

R
qP
2 = −2S1a1a4δ cos θ4 cos θ1cos22θ3

ρΔL − a4δ cos θ4ΔS

= −2S1a1 cos θ1cos22θ3

aΔL − ΔS
,

R
qP
3 =

2a1a2δ2(a1S2 sin 2θ1cos θ2−a2S1cos θ1 sin 2θ2) cos 2θ3

aΔL − ΔS
,

(37)

T
qP
1 = 2a1a2 cos θ1 cos θ2cos22θ3(S2 − S1)

a4 cos θ4(aΔL − ΔS)

+
a1a2δ sin 2θ3(a1S2 cos θ2 sin 2θ1−a2S1 cos θ1 sin 2θ2)

a4 cos θ4(aΔL − ΔS)
,

(38)

where

a = ρ

a4δ cos θ4
, (39)

ΔL = cos θ1 cos θ2 cos 2θ3a1a2δ(S2 − S1)

+a1a2δ
2(a1S2 sin 2θ1 cos θ2 − a2S1 sin 2θ2 cos θ1) sin θ3,

(40)

ΔS =
[
a1S1 cos θ1

[
cos22θ3 + a2

2δ
2 sin 2θ2 sin 2θ3

]

−a2S2 cos θ2
[
cos22θ3 + a2

1δ
2 sin 2θ1 sin 2θ3

]]
.

(41)

In the absence of fluid medium (37) becomes

R
qP
1 = a1S1 cos θ1

[
cos22θ3 + a2

2δ
2 sin 2θ2 sin 2θ3

]

ΔS

+
a2S2 cos θ2

[
cos22θ3 − a2

1δ
2 sin 2θ1 sin 2θ3

]

ΔS
,

R
qP
2 = −2a1S1cos22θ3 cos θ1

ΔS
,

R
qP
3 =

2a2
1a2δ2 cos 2θ3[a2S1 sin 2θ2 cos θ1−a1S2 cos θ2 sin 2θ1]

ΔS
.

(42)

In the absence of fluid medium and electron field (N =
0, εn = 0), the expression (37) and (42) for amplitude ratios
with the help of (32) becomes

R
qP
1 = δ2 sin 2θ1 sin 2θ3 − cos22θ3

δ2 sin 2θ1 sin 2θ3 + co s22θ3
,

R
qP
2 = 0,

R
qP
3 = 2 δ2 sin 2θ1 cos 2θ3

δ2 sin 2θ1 sin 2θ3 + cos22θ3
.

(43)

These relations are in complete agreement with the corre-
sponding equations as given by Achenbach [6] in case of
elastokinetics. In case of grazing incidence, (θ = 90◦ = θ1)
the amplitude ratios given by (37)-(39) with the use of Snell’s
law provide us

R
qP
1 = −1, R

qP
2 = 0, R

qP
3 = 0. (44)

This shows that qSV wave and electron waves are not re-
flected and qP wave annihilates itself being 180◦ out of phase
with the incident wave. Similarly for normal incidence (θ =
0◦ = θ1), the corresponding values of reflection coefficients
from (37)–(42) are again obtained as

R
qP
1 = −1, R

qP
2 = 0, R

qP
3 = 0 = T

qP
1 . (45)

Here qP wave gets reflected and transmitted in case of normal
incidence.

Case 2 (Quasitransverse (qSV) wave incidence at an interface
from semiconductor). We now consider the reflection of a
plane qSV wave for similar conditions on the boundary as
in the previous section. For qSV wave, we have

ψ = ψi + ψr

= Ai exp{ιk3(x sin θ − z cos θ)}
+ A3 exp{ιk3(x sin θ3 + z cos θ3)},

φ = φr =
2∑

r=1

Ar exp{ιkr(x sin θr + z cos θr)},

N = Nr =
2∑

r=1

SrAr exp{ιkr(x sin θr + z cos θr)},

φL = A4 exp{ιk4(x sin θ4 − z cos θ4)}.

(46)

Upon using solution (46) in the boundary conditions (22)
and (25) at the surface z = 0 and assuming that all the
incident or reflected waves are in phase at this surface for all
values of x and t, we have the relation

k3 sin θ = k1 sin θ1 = k2 sin θ2 = k3 sin θ3. (47)

This relation implies that

θ = θ3, a1 sin θ1 = a2 sin θ2 = 1
δ

sin θ3. (48)

This is the modified form of Snell’s law for the considered
material, in this case. Upon solving (A.4) and (A.5), we get

R
qSV
1 = −S2 a2 cos θ2 sin 4θ3

aΔL − ΔS
,

R
qSV
2 = a1S1 cos θ1 sin 4θ3

aΔL − ΔS
,

R
qSV
3 = �

(aΔL − ΔS),

T
qSV
1 = 2 sin 2θ3ΔL

ρΔL − a4δ cos θ4ΔS
.

(49)

where � denotes {aΔL − {a1a2δ2(a2S1 cos θ1 sin 2θ2 − a1S2

cos θ2 sin 2θ1)×sin 2θ3−(a1S1 cos θ1−a2S2 cos θ2)cos22θ3}}.
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Here ΔL and ΔS are defined in (40) and (41), respectively. In
the absence of fluid medium (49) becomes

R
qSV
1 = S2a2 cos θ2 sin 4θ3

ΔS
,

R
qSV
2 = −a1S1 cos θ1 sin 4θ3

ΔS
,

R
qSV
3 = R

ΔS
,

(50)

where ΔS is defined by (41). In the absence of fluid medium
and electron field (εn = 0 = N), (49) and (50) reduce to

R
qSV
1 = − sin 4θ3

cos22θ3 + δ2 sin 2θ1 sin 2θ3
,

R
qSV
2 = 0,

R
qSV
3 = δ2 sin 2θ3 sin 2θ1 − cos22θ3

cos22θ3 + δ2 sin 2θ3 sin 2θ1
,

(51)

Equations (51) agree with the corresponding equations in
Achenbach [6] and Kino [7]. For grazing incidence (θ =
90◦ = θ3) and in case of normal incidence (θ = 0◦ = θ3), the
expressions for reflection coefficients in (49)–(51) provide us

R
qSV
1 = 0, R

qSV
2 = 0, T

qSV
1 = 0, R

qSV
3 = −1. (52)

Therefore, only shear wave is reflected as qSV wave in case
of normal incidence, and the reflected qSV wave annihilates
the incident qSV wave in case of grazing incidence case. The
other two waves, namely, qP and N , are not reflected, and
there is no transmitted wave in either case of normal or
grazing incidence.

6. Energy Equations

From the principle of conservation of energy, the energy
carried to the boundary by the incident wave must be equal
to the energy carried away from the boundary by the reflected
and refracted waves. For the incident qSV wave incidence the
particle velocities are

v = ∂2ψi
∂x∂t

= ωk3 sin θAi exp{ιk3(x sin θ − z cos θ − νt)},

� = ∂2ψi
∂z∂t

= −ωk3 cos θ3Ai exp{ik3(x sin θ − z cos θ − vt)}.

(53)

For reflected qSV waves,

v = ∂2ψr
∂x∂t

= ωk3 sin θ3A3 exp{ik3(x sin θ3 + z cos θ3 − vt)},

� = ∂2ψr
∂z∂t

= ωk3 cos θ3A3 exp{ik3(x sin θ3 + z cos θ3 − vt)}.

(54)

For reflected qP waves,

v = ∂2φr
∂x∂t

= ωk1 sin θ1A1 exp{ik1(x sin θ1 + z cos θ1 − vt)}
+ ωk2 sin θ2A2 exp{ik2(x sin θ2 + z cos θ2 − vt)},

� = ∂2φr
∂z∂t

= ωk1 cos θ1A1 exp{ik1(x sin θ1 + z cos θ1 − vt)}
+ ωk2 cos θ2A2 exp{ik2(x sin θ2 + z cos θ2 − vt)}.

(55)

For transmitted qP waves,

v = ∂2φLr
∂x∂t

= ωk4 sin θ4A4 exp{ik4(x sin θ4 − z cos θ4 − vt)},

� = ∂2φLr
∂z∂t

= −ωk4 cos θ4A4 exp{ik4(x sin θ4 − z cos θ4 − vt)}.

(56)

Taking the kinetic energy per unit volume as (1/2)ρ(v2 +�2),
we may calculate the energy flux for the waves mentioned
above by multiplying the total energy per unit volume by the
velocity of propagation and area of the wave front involved.
Thus we may write the equality between the incident qSV
wave energy and the sum of reflected qP, reflected qSV , and
transmitted qSV-wave energies for the per unit area on the
interface as

c2 cos θ3k
2
3 = c1 cos θ2k

2
1R

2
1 + c1 cos θ2k

2
2R

2
2

+ c2 cos θ2k
2
3R

2
3 +

ρL
ρ
cL cos θ4k

2
4R

2
4.

(57)

Here the cross-sectional areas of the incident, reflected, and
transmitted waves are proportional to the cosines of the
angles made by the ray directions of the waves with the
normal to the interface. Hence the energy equation is given
by

1 ∼= Z, (58)

where

Z = c2

c1

cos θ2

cos θ3
R2

1 + R2
3 −

c2

cL

ρL
ρ

cos θ4

cos θ3
R2

4. (59)

7. (p-Type) Semiconductor

The reflection coefficients and transmission coefficients in
case of p-type semiconductor can be obtained by using
boundary conditions (22)–(25) and solution (26) for the
functions φ, ψ, φL, and P by adopting the procedure of
previous sections. The expressions of the reflection coeffi-

cients R
qP
K and R

qSV
K (k = 1, 2, 3) are again given by (37)–

(42) and (49)–(51) in case of qP-wave, qSV-wave incident
at the surface of p-type semiconductor, respectively, with the
replacement of a2

i (i = 1, 2) as the a∗2
i (i = 1, 2) in all the

relevant relations and equations including Snell’s law.
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Table 1: Physical data of Silicon (Si) and Germanium (Ge) semiconductors.

Coefficient Unit Value (Ge) Value (Si) Reference

λ Nm−2 0.48× 1011 0.64× 1011 [17]

μ Nm−2 0.53× 1011 0.65× 1011

ρ Kgm−3 5.3× 103 2.3× 103

t+n s 1 ps 1 ps

t+p s 1 ps 1 ps

Dn m2 s−1 10−2 0.35× 10−2

Dp m2 s−1 0.5× 10−2 0.125× 10−2

αT K−1 5.8× 10−6 2.6× 10−6 [21]

n0 = p0 m−3 1020 1020 [22]
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Figure 2: qP wave incidence at the interface of semiconductor and
fluid.

8. Numerical Results and Discussion

In this section the reflection and transmission coefficients
given by (37)–(39) and (49)-(50) have been computed
numerically for silicon (Si) and germanium (Ge) materials
under the assumption of relaxation type semiconductor (n-
type or p-type) under the assumption that semiconductor
considered is of relaxation type so that tn, t+n and tp, t+p
become comparable to each other in their values such that
tn = t+n and tp = t+p .

Here the fluid chosen for the purpose of numerical
calculations is water, the velocity of sound in which is given
by cL = 1.5 × 103 m/s and density is ρL = 1000 kg/m3.

The physical data for silicon material is given below in
Table 1.

The values of reflection coefficients R
qP
k (k = 1, 2, 3),

R
qSV
k (k = 1, 2, 3), and transmission coefficients T

qP
1 , T

qSV
1

for incident qP and qSV waves have been computed from
(37)–(39) and (49)-(50) for various values of the angle of
incidence (θ) lying between 0◦ ≤ θ ≤ 90◦ for silicon (Si)
semiconductor.

From Figure 2, it is noticed that the magnitude of

reflection coefficient (R
qP
1 ) marginally increases in the range

0◦ ≤ θ ≤ 10◦ with increase in angle of incidence and
decreases in the range 10◦ ≤ θ ≤ 70◦; that is, there is a
sharp loss of energy which is noticed in the range 10◦ ≤ θ ≤
70◦ before it sharply increases upto θ = 90◦ in case of qP
wave incidence at the interface of semiconductor and fluid.
The magnitude of reflection coefficient (R

qP
3 ) increases for

0◦ ≤ θ ≤ 60◦ and attains a maximum value at θ = 75◦;
that is, loss of energy by reflected wave (R

qP
1 ) is covered by

reflected wave (R
qP
3 ). However, a meager amount of energy

is associated with an electron wave (R
qP
2 ). It is also noticed

that transmission coefficient T
qP
1 attains a maximum value

at θ = 0◦ and then varies linearly up to 0◦ ≤ θ ≤
15◦; after that it starts decreasing up to θ = 90◦. This
implies that in case of qP wave incidence at the interface of
semiconductor and fluid, transmitted wave also travels with
sufficient amount of energy. It is revealed that at grazing

incidence θ = 90◦, the reflection coefficients R
qP
k (k =

1, 2, 3) and transmission coefficient T
qP
1 of incident qP wave

vanish, thereby meaning that reflected qP wave annihilates
the incident qP wave. Whereas in contrast to this qP wave
is reflected and transmitted as qP wave at normal incidence
(θ = 0◦), and other waves are not reflected or transmitted.
Thus maximum energy is carried by longitudinal (qP) waves,
reflected or transmitted, at normal and grazing incidence,
though it is transported in a distributed manner among
all coupled waves at other angles of incidence. The trend
and nature of reflection/transmission coefficients in case of
qP wave incidence in Figure 2 almost completely agree with
those presented in Kino [7].

In Figure 3, it is noticed that reflection coefficient R
qSV
1

increases with increase in angle of incidence in the range
0◦ ≤ θ ≤ 30◦ and attains a maximum value at (θ = 30◦)
due to stresses generated in the semiconductor material; after
that it starts decreasing up to 30◦ ≤ θ ≤ 45◦. Thus shear
wave incidence has a critical angle at θ = 45◦. Beyond this
cutoff point, the amplitude of longitudinal wave component
at the surface is finite, but no real power is associated
with them; only decaying fields are associated with them.

However, the reflection coefficient R
qSV
2 increases sharply and

attains a maximum energy at θ = 30◦, then decreases for
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Figure 3: qSV wave incidence at the interface of semiconductor and
fluid.

Table 2: Reflection/transmission coefficients in Germanium (Ge)
semiconductor.

Angle of incidence (θ)
Reflection/transmission coefficients

R
qSV
1 R

qSV
2 R

qSV
3 T

qSV
1

0◦ 0 0 1 0

15◦ 0.4966 0.0538 0.0281 0.1848

30◦ 0.2522 0.9208 0.1210 0.4863

45◦ 0.2023 0.01313 0.8723 0.5759

60◦ 0.0653 0.0006 0.9326 0.6391

75◦ 0.2939 0.2980 0.5814 0.7313

90◦ 0 0.0759 1 0.1094

30◦ ≤ θ ≤ 60◦; this means that electron wave gets sufficient
amount of energy before it dies out at θ = 90◦ which
is observed to be a new phenomenon here. The reflection

coefficient R
qSV
3 for qSV wave decreases in the range 0◦ ≤

θ ≤ 30◦, increases up to θ = 45◦ and remains steady for
45◦ ≤ θ ≤ 60◦ and again decreases to attain its minimum
value at θ = 72◦, and then sharply increases up to θ =
90◦; that is, it recovers from the initial loss of energy. T

qSV
1

increases in the range 0◦ ≤ θ ≤ 30◦ to attain its maximum
value at θ = 45◦ and decreases up to θ = 90◦. It is also
noticed that about 40% of incident energy can be converted
to a longitudinal wave in water at incident angles for which
the reflected longitudinal wave is cutoff. Thus solid-liquid
interface is a perfect reflector.

Figure 4, the variation of reflection coefficients R
qSV
k (k =

1, 3), and transmission coefficients T
qSV
1 versus angle of

incidence have been plotted. It is noticed that the reflection

coefficient R
qSV
1 increases sharply with increase in the angle

of incidence and attains a significantly large value at θ = 30◦

and after that it starts decreasing up to a critical angle θ =
45◦, which is θ = 36◦ in case of stress-free boundary. This
is attributed due to high stress generation in the material at
this angle of incidence. Beyond this cutoff point whole of
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Figure 4: qSV wave incidence at the interface of semiconductor and
fluid under electron field equilibrium.

the incident shear wave power is converted into a reflected

qSV wave so that |RqSV3 | = 1 approximately, although

there is a π-phase shift of R
qSV
3 as θ passes through the

critical angle in case of qSV wave incident at the stress-
free, isoconcentrated, or impermeable surface of silicon (Si)

half-space [20]. Transmission coefficient T
qSV
1 increases with

increase in angle of incidence and attains a maximum value
at θ = 300; after that it starts decreasing and vanishes at
θ = 900. This implies that major portion of energy is carried

by transmitted wave in comparison to R
qSV
3 in qSV wave

incidence at the interface of semiconductor and fluid under
electron field equilibrium.

From Table 2 it is noticed that the behaviors of reflec-
tion/transmission coefficients of various waves in germa-
nium (Ge) semiconductor halfspace are almost similar to
that in case of silicon (Si) semiconductor except some minor
changes in their magnitudes. From Table 3, we concluded
that the law of conservation of energy is valid.

9. Conclusions

It is noticed that the magnitude of reflection coefficient (R
qP
1 )

of qP wave decreases with increasing angle of incidence of
qP wave in case of silicon (Si) semiconductor material half-
space in the range 0◦ ≤ θ ≤ 70◦, and the numerical results
show that in case of qP wave incidence maximum energy is
carried by transmitted longitudinal wave in the presence of
electron wave which takes meager amount of energy. Thus
energy transfer is by the phonon of the system, and partition
of energy depends upon the angle of incidence. However in
case of qSV wave incidence at the surface, transmitted wave
becomes more prominent in the presence of electron field
and energy is transported in distributed manner among the

other waves. The dependence of R
qP
i (i = 1, 2, 3) on ai(1, 2)
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Table 3: Variation of energy coefficients (Z) in case of (qSV) wave incidence versus angle of incidence (θ) in degree.

Angle of incidence (θ) in degree 0 15 30 45 60 75 90

Energy coefficients (Z) 0.8720 1.3524 2.9889 0.99417 0.0437 1.1923 0.2224

shows that the reflection coefficients do depend upon the
frequency of waves and hence are dispersive in character. The
study may find application in semiconductor, seismology,
and signal processing devices in coated structures.

Appendix

Upon employing the boundary conditions (22) and (25)
following system of equations at the surface (z = 0) for the
n-type semiconductor is obtained

(
2δ2k2

1sin2θ − ω2)Aie
ιk1(x sin θ)

+
2∑

j=1

(
2δ2k2

j sin2θj − ω2
)
Aje

ιkj (x sin θj )

+ δ2k2
3 sin 2θ3A3e

ιk3(x sin θ3) = −ρω2A4e
ιk4x sin θ4 ,

(
δ2k2

1 sin 2θ
)
Aie

ιk(x sin θ)

+
2∑

j=1

(
δ2k2

j sin 2θj
)
A1e

ιkj (x sin θj )

+
(
2δ2k2

3sin2θ3 − ω2) A3e
ιk3(x sin θ3) = 0

− ιk1 cos θAieιk1(x sin θ) +
2∑

j=1

ιk j cos θjAje
ιkj (x sin θj )

− ιk3 sin θ3A3e
ιk3(x sin θ3) + ιk4 cos θ4A4e

ιk4(x sin θ3)

− S1k1 cos θ1Aie
ιk(x sin θ)

+
2∑

j=1

Sjkj cos θjAje
ιkj (x sin θj ) = 0.

(A.1)

The system of (A.1) with the help of (35) becomes

AZP = C1, (A.2)

where the matrices A and C1are given by

A =

⎡

⎢
⎢
⎢
⎣

cos 2θ3 cos 2θ3 − sin 2θ3 −ρ
a2

1δ
2 sin 2θ1 a2

2δ
2 sin 2θ2 cos 2θ3 0

a1δ cos θ1 a2δ cos θ2 − sin θ3 a4δ cos θ4

a1S1 cos θ1 a2S2 cos θ2 0 0

⎤

⎥
⎥
⎥
⎦

,

(A.3)

ZP =
[
R
qP
1 ,R

qP
2 ,R

qP
3 ,T

qP
1

]T
,

C1 =
[− cos 2θ3, a2

1δ
2 sin 2θ1, aδ cos θ1, a1S1 cos θ1

]T
.

(A.4)

Here R
qP
k = Ak/Ai, (k = 1, 2, 3) are amplitude ratios of

the reflected waves to the incident waves, and T
qP
1 = A4/Ai

are the amplitude ratios of transmitted wave to the incident
wave. Upon applying the appropriate boundary conditions

prevailing at the surface of the semiconductor half-space,
the amplitude ratios of qSV-wave reflection are given by the
matrix equations as

AZSV = C2, (A.5)

where the matrices ZSV and C2 are given by

ZSV =
[
R
qSV
1 ,R

qSV
2 ,R

qSV
3 ,T

qSV
1

]T
,

C2 = [− sin 2θ3,− cos 2θ3, sin θ3, 0]T
(A.6)

and the matrices A is defined in (A.3).
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