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By solving Helmholtz equations, relationships to describe propagating modes in an arbitrary graded-index planar waveguide are
derived. We show that in the quadratic- and secant-index waveguides a minimal mode width is 0.41/n, where A is the wavelength
in free space and # is the refractive index on the fiber axis. By modeling in FullWAVE, we show that the high-resolution imaging
can be achieved with half-pitch graded-index Mikaelian microlenses (ML) and Maxwell’s “fisheye” lenses. It is shown that using
a 2D ML, the point source can be imaged near the lens surface as a light spot with the full width at half maximum (FWHM) of
0.12A. This value is close to the diffraction limit for silicon (n = 3.47) in 2D media FWHM = 0.441/n = 0.127A. We also show that

half-pitch ML is able to resolve at half-maximum two close point sources separated by a 0.3) distance.

1. Introduction

Recent advances in microoptics and nanophotonics have
made possible the focusing of coherent laser light into a
subwavelength spot or the superresolution imaging of a
point source of light. The subwavelength focusing beyond the
diffraction limit of 0.54/n, where A is the wavelength in free
space andnis the material refractive index at the focus, can
be performed using a superlens [1]. In 2D case, instead of
conventional diffraction limit 0.50/# one must use 0.44A/n.
This value can be obtained after replacing the Airy disk
21 (x)/x by sinc-function sin(x)/x.

The superlens is a 2D planar plate made up of
the metamaterial that comprises alternating metallic and
dielectric layers. The electric permittivities of the layers
are selected so that an effective refractive index of the
composite material be equal to n = —1. Experiments on
the superresolution through superlenses were reported in
[2, 3]. In the experiments, a superresolution of 0.41 was
achieved [2]. A similar experiment conducted in [4] with a
subwavelength silver layer operating as a superlens has shown
that two lines separated by a 145 nm distance can be resolved

when illuminated by UV light of wavelength 365 nm, thus
producing a superresolution of 0.4A.

A far-field hyperlens reported in [5] was able to resolve
two lines of width 35 nm spaced 150 nm apart for a 365 nm
wavelength, again achieving a superresolution of 0.41. Note,
however, that a hyperlens modelled in the form of a grating
[6] was shown to achieve a superresolution of 0.05\ at the
imaging plane found 1.5 apart from the surface. Apparently,
the absorption and scattering of light by metamaterial that
occurs in real experiments was disregarded in modelling.
This argument was indirectly verified by results reported in
[7], in which the laser light was focused with a zone plate
made up of a gold film of thickness 100 nm. The focal spot
size at half maximum was estimated to be 0.351, whereas
the experimentally measured size of the focal spot at half
maximum was found to equal A.

Multilayer and anisotropic nanostructures allowing one
to achieve a subwavelength resolution were analyzed in [8—
10]. For example, parameters of a 1D eight-layer Ag/SiO,
structure of thickness 400 nm to focus light from a 0.44
source into the same-size focal spot were studied in [8]. An
anisotropic 2D nanostructure characterized by the dielectric



permittivity tensor components & = 0.01 — i0.01 and
&, = —100, and a 400 nm thickness on the z-axis (for A =
700 nm) was proposed in [9]. The modelling has shown that
such a structure is able to resolve two lines of width 3 nm
placed 23 nm apart, providing a superresolution of 0.03A.
A nanostructure composed of two different anisotropic
layers to resolve two narrow slits placed 50 nm apart when
illuminated by a 1550 nm wavelength was studied in [10] by
the same authors.

Candidates for achieving the superresolution can be
found among the photonic crystals. Modelling conducted
in [11] has shown that a 2D photonic-crystal slab with
permittivity e = 12 composed of a triangular array of circular
holes of radius r = 0.4a (a is the hole array period) can be
used as an imaging lens for wavelength A = a/0.3. In this case,
a point source is imaged as a focal spot of size 0.34, whereas
two point sources placed 0.51 apart are resolved by the 20%
criterion.

In recent experiments with a 2D photonic-crystal slab
used as a superlens, a point source of size 0.41 was imaged
[12]. The latest publications propose an improved variant
of superlenses using a nanoshell [13] or a graded-index
boundary of the negative-refraction material [14]. In [15]
an anisotropic layer was experimentally demonstrated to
enhance and transform the evanescent surface waves into
propagating light modes.

From the previous survey it follows that although
theoretically superlenses allow to achieve arbitrary high
resolution, experimentally the values 0.31-0.41 have been
obtained [2, 4, 5,7, 11, 12].

Such values of resolution can be obtained with help
of gradient-index optics as well. Gradient optics works as
near-field optics: gradient lens is placed near the object
and the image emerges in vicinity of the exit surface of
the lens. Therefore, lens material affects the resolution. The
limiting resolution, which can be obtained with gradient
lens, decreases n times in comparison with conventional
refraction lens and is 0.51A/n in 3D and 0.44A/n in 2D cases.
If one will use refraction lens with immersion, then index
of immersion liquids does not exceed 1.5, although gradient
lenses can be made of silicon with index 3.47.

In this work, we numerically demonstrate that widely
known in optics graded-index Mikaelian lenses and Maxwell
“fisheye” lenses may also be considered as candidates for
subwavelength focusing. For a 2D Mikaelian lens, we show
that a point source is imaged near the lens surface as a focal
spot of size FWHM = 0.12A (full width at half maximum).
This value is close to the diffraction limit for silicon (n =
3.47) in 2D media FWHM = 0.44A/n = 0.127A. This value
is smaller than values earlier reported in [7, 8, 11, 12]. We
also show that half-pitch Mikaelian lens can resolve at half-
maximum two point sources placed 0.3A apart, which is
smaller than reported in [2, 4, 5, 11].

Analytical relationships for modes propagating in
graded-index planar waveguides were derived in [16, 17].
A general constraint of the above works has been the
assumption on the existence of one [16] or two [17] turning
points of the refractive index profile of the planar waveguide.
We have derived extended analytical relationships for mode
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FIGURE 1: Schematic representation of the TE-wave propagating in
a 2D graded-index waveguide.

solutions in the graded-index planar waveguide that have no
constraints on the number of turning points of the refractive
index function.

2. Solution of the Helmholtz Equation for a 2D
Graded-Index Waveguide

Figure 1 gives a schematic representation of the problem. We
consider the propagation of the TE-wave in a 2D graded-
index medium with the refractive index n = n(x), with the
electric field vector directed along the y-axis.

The electric field amplitude E, (x, z) satisfies the follow-
ing Helmholtz equation [18]:

aZ aZ 2.2
23 55 R @) |Ey(n2) =0, (1)

where k is the wave number. The expansion of the electro-
magnetic wave amplitude in terms of the transverse modes
of the graded-index medium is

E,(x,2) = > Cy(x) exp(ifnz), (2)
n=0

where f3, = k, is the propagation constant of the nth mode.
From (2), it follows that the light field has an axial period T,
so that 8, = 27n/T. For example, in a graded-index medium
with the quadratic index profile, the modes are described
by the Hermite-Gauss functions that form a countable basis
[19].

Substituting (2) in (1) gives an equation of the amplitude
of propagating modes in the graded-index medium as

d*C,(x)
G § pulx)Cal) = 0, 3)
where
pa(x) = K*n*(x) — fa. (4)

By changing variables we have

Catx) = G exp [ fue1d | (5)
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Equation (3) can be reduced to a nonlinear differential
Whittaker equation [20] for the function f,(x) as follows:

dfn(x) +fn +pn(x) — 0 (6)

Equation (6) can be solved by the expansion into the
Taylor series of the functions f,,(x) and p,(x) as follows:

fulx) = > CWx pal(x) = an?’x’”, (7)
m=0

where CY and pﬁ,’f " are the unknown and known expansion
coefficients of the corresponding functions. Substituting (7)
into (6) yields recurrent relations (m > 0) for the unknown
series terms in (7) as follows:

Cﬁr’f) = —ml(P;(ﬁ 1t ZC m 1 5)’ (8)

where n is integer and C(()") are indefinite constants. Then,
the amplitudes of the propagating modes in a graded-index
waveguide are explicitly given by

«© m+1
Co(x) = Cu(0) exp (,;_oc’(’?);m)’ (9)

where C\" are derived from the recurrent relationships (8).
The coefficients p%’ ) entering in (7) are derived from

2 gm 2
Pﬁ?):kf,ddnngx) » m>0,

m! X o0 (10)
po” = K2n2(0) - B2, m=0.

Finally, the amplitude of the TE-wave propagating in the
2D graded-index waveguide is given by

Ey(x,2) = ZC (O)exp[zp’nz—i- > cw x+ 1] (11)

For each mode of (11), there are two indefinite constants,
C,(0) and C(()"). Since the modes of (9) are neither orthogonal
nor normalized, so in order for the field of (11) to be
expanded in terms of the said modes (with the aim of finding
the coefficients C,(0)), we need to truncate both series in
(11) to finite sums, then solving sets of linear algebraic
equations.

The constants C((,") need to be selected in a special way for
each mode. By way of illustration, consider one particular
case. Assume the propagating modes in a quadratic-index

Py +pi"
p3x2, where pi" = k2n — B2, p\" = 0, pi = —k?a? and
P = 0atm > 2. Let C" = 0, then, CY" = —(C{"c{™) = 0
and an) _ (n) ﬁz
= 0, at m > 2, it will suffice to put the
/3—(C"™?/3 =0

medium: n?(x) = n3—a?x%.In this case, pp(x) =

k?n}. For the remaining coefficients
to equal zero, Cm
third coefficient to equal zero: Cg”) =-p

Whence, we obtain the following condition on the medium
parameter o: k?a? = (k*nf — ﬁi)z. Assume that 8, = kno/~/2,
then we obtain & = kn2/2. Thus, we can infer that the mode
of the quadratic-index waveguide, n*(x) = n}(1 — k*ngx?/4),
is described by the Gaussian exponential function as follows:

; 2,2,2
zk\;z%z_kzox ) (12)

E,(x,z) = C(0) exp (

3. General Solution for a Secant-Index
Waveguide

If there is a waveguide with the refractive index defined by a
secant function on the transverse coordinate

1 knox>
= 1
) = moch™! (7). (13)
a particular solution of (1) is given by [21] as follows:
B iknoz) 1 (knox)
Eiy(x,2) = exp( NG ch 7 ) (14)

In this case, the Helmholtz equation takes the following
form:

|:az+62+k2 2h- (kT’ZOX>:|Ey(x)z):O. (15)

ox? 0z’ V2

We will seek the general solution of (15) in the following
form:
Eyy(x,2) = A(x) exp(iyz). (16)

Substituting (16) into (15), we obtain

dzdfc(z") T g(x)AK) = 0, (17)
where
g(x) = k2nch ™ (kj%x) —2 (18)

It has been known [20] that (17) has a general solution

X
AW =aw|a+e | ar@a| 9
where A;(x) is a particular solution of (17), and C;, C, are
indefinite constants. In our case, the solution in (14) can be
chosen as the particular solution, that is,

knox) kng (20)

V2 T2

Then, the general solution for the secant-index waveg-
uide is given by

Eiy(x,2) = exp ( ik&gz)d}_l (kj%x>

C B
X {Cl + T /2 zsh(knoxﬁ> +

Alx) = ch"l(

knox
5 H}m



where
dE1,(x = 0,2)
dx '
From (14), the mode width at half maximum in the
secant-index waveguide is
In(3+2v2) 03974
ﬂ”oﬁ b no ’

where A is the wavelength of light in free space and ny is the
refractive index on the waveguide axis.

C = ‘Ely(x =0,2)

) G = (22)

FWHM = (23)

4. Partial Solution for a Quadratic-Index
Waveguide

In Section 2 of this paper, we have shown that the propa-
gating mode of a quadratic-index waveguide with definite
parameters can be described by the Gaussian exponential
function (12). In this section, we shall demonstrate that this
remains true of any quadratic-index medium with arbitrary
parameters as follows:

n?(x) = n3(1 - w?x?), (24)

where w is an arbitrary constant. Then, (1) reads as
o a—zk“(l 2x2) |E,(x,2) = 0 25
8x2+8z2+ ng(l — wx v(x,2) =0, (25)

and the solution of (25) will be sought for in the following
form:

E»y(x,2) = Egexp(ipz — ¢°x?), (26)

,  wkng _ oW
=5 p=kng |1 e (27)

Thus, a particular mode solution of (25) is given by
W wkny ,
ke 2 x ) (28)

Note that at w = kng/2 the solution in (28) coincides
with that in (12). At w = kny/2, it follows from (28) that the
Gaussian mode width (diameter) at half maximum is

where

Esy(x,2) = Ey exp(iknoz 1

FWHM = vin4l ~ M. (29)
TN o

Comparison of (29) and (23) suggests that the both
modes (the secant and the Gaussian mode) have nearly
the same width. The effective width of the quadratic-index
waveguide is derived from the condition n(xg) = 1, being
given by

2
I Ly (30)
N

At ny = 1.5, from (30), we find that 2x, ~ 0.48A.
Thus, the effective width of a glass quadratic-index planar
waveguide that can only propagate the Gaussian mode of
(28) equals nearly half the free-space wavelength. Note that
presently such half-wave waveguides are actively used in

applications [22, 23].
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5. Modeling the Propagation of Light through
Graded-Index Microoptics

First experiments on superresolution imaging with super-
lenses in the optical regime were reported several years ago
[3, 5]. Thus, a superresolution of 0.4A has been achieved in
the experiment reported in [3, 5].

Theoretically (disregarding the absorption of the mate-
rial), any degree of superresolution can be achieved with a
superlens. In [9], it was shown by modeling that a hyper-
lens that would form a magnified subwavelength image in
the near field can be implemented as a plane-parallel layer. A
400 nm thick anisotropic slab with dielectric permittivities
& = 0.01 —i0.01 and ¢, = —100 was shown to resolve
two 3nm slits (directed along the y-axis) spaced 23 nm
apart in a metallic screen with dielectric permittivity ¢ =
1 — i10%, illuminated by a 700 nm TM wave. The resulting
superresolution achieved is 0.05\.

In the following subsections, using a well-known FDTD
method, implemented in FullWAVE, we numerically show
that the high resolution is also achievable with the aid of 2D
graded-index microoptics.

5.1. High Resolution Imaging Using a Mikaelian Microlens
(ML). Because of diffraction in uniform space, two nearby
point sources of light cease to be resolved at a distance
much smaller than the wavelength of incident light. By way
of illustration, Figure 2(a) depicts profiles of five original
coherent Gaussian light sources of width 1/200, spaced 1/50
apart in the plane z = 5nm. Shown in Figure 2(b) is the
intensity profile of these sources obtained in the image plane
z = 30 nm for the wavelength A = 1550 nm. Figure 2 suggests
that two nearby light sources cease to be resolved at a distance
z approximately equal to the spacing between them (z =
A/50).

Shown in Figure 3(a) is a numerically simulated image of
two 35 nm sources spaced 150 nm apart obtained with a half-
pitch ML [24-26]. The refractive index of this 2D secant-
graded microlens is

n(x) = noch_l(%>, (31)

where 2L is the lens length. The lens width 2R is found from
the condition n(R) = 1. The lens in Figure 3(a) has the axial
refractive index ny = 2.1, width 2R = 1um, length 2L =
1,144 ym, and operating at wavelength A = 365nm. These
parameters are similar to those described in the experiment
in [5].

The distance between these sources is 0.414, and they
cannot be resolved by refraction lens. But gradient-index
lens (31), which is placed close (20 nm) to sources, works as
immersion and allows to increase resolution g times, that is,
to resolve the two sources separated by distance 0.44A/ny.

Figure 3(a) shows the instantaneous distribution of the
electric field amplitude for the TE wave (propagating from
the bottom upwards). The sources are seen to be imaged
on the opposite side of the lens. Figure 3(b) shows a time-
averaged intensity profile of the electric field, I(x,z = z9) =
|E,(x,2z = z0) 12, directly on the lens “rear” side, that is,
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F1Gure 2: Light intensity profile near five Gaussian light sources of
width A/200, spaced A/50 apart, at different distances: (a) z = 5nm,
(b) z = 30nm for A = 1550 nm (intensity is plotted in relative
units).

at a distance of z = 2L from the lens “front” side. In
the experiment, the sources under imaging were put 20 nm
before the lens “front” side.

From Figure 3(b), it is seen that two sources spaced
150 nm apart (with center-to-center distance of 180 nm) can
be confidently resolved. The high resolution achieved in
Figure 3(b) is 0.41A. From Figure 3(b), it can also be found
that the point source imaged with the half-pitch ML has
a width at half maximum of FWHM = 100nm = 0.27A.
This value is comparable with the diffraction limit FWHM =
0.44\/n = 0.21) in 2D media with index n = 2.1. This value
of high resolution, 0.41A, is very close to that reported in
[2, 3, 5] (0.401). Note that the source image width of 0.271
well agrees with the minimal width of the propagating mode
in a secant-graded waveguide: 0.41/ny = 0.271 at ny = 1.5
(see (23)).

Numerical aperture of the ML is NA = (1] — 1)1/2/ ny =
0.88 for ny = 2.1. Therefore, for such lens the focal
spot width at half-maximum intensity is FWHM =
0.441/(ngNA) = 0.24A. This value is slightly less than
obtained by simulation: FWHM = 0.27A.

To improve the resolution of half-pitch ML, as suggested
by (23) and (29), the axial refractive index was changed to
ng = 3.47 (Si). The other simulation parameters were also
changed (Figure 4(a)) to wavelength A = 1um, lens width
2R = 6um, and lens length 2L = 4.92 ym. The simulation
step along the spatial axes in all examples considered was
A/100. The width of the Gaussian source at the original

5
1.8 Images
*
= ———
£ 091 N
Y — Microlens
N -
B -~ R /
g
-
. ZavaN
q%Light
: : sources
-1 0 1
x (ym)
(a)
0.035

I (a.u.)

0.6

F1GURE 3: (a) The snapshot of the amplitude E,(x,z) in the ML.
(b) Averaged E-vector intensities of the TE wave calculated directly
on the lens “rear” side of the ML (the horizontal line indicates the
half-maximum intensity plotted in relative units).

plane was A/20. Shown in Figure 4(a) is an instantaneous
pattern of the E-vector of the light wave in the half-pitch
ML calculated for the instance when the wave has travelled
a 220 ym distance from the source. Figure 4(b) depicts an
averaged intensity of the TE-wave at the ML output plane
(Figure 4(a)). The computation has shown that the intensity
of Figure 4(b) corresponds to the source image width at
half maximum of FWHM = 0.12A. However, the intensity
(or light power density) provides no information as to the
proportion of source power propagating along the z-axis.
This information can be derived from the projection of
Poynting vector onto the optical axis, calculated at the ML
output (Figure 4(a)), with the point source found at the lens
input, as shown in Figure 5.

The central-maximum width of the flow of energy
propagating along the z-axis in Figure 5 is equal to that in
Figure 4(b), being equal to FWHM = 0.12A. The value of
the diffraction limit (in 2D case) that can be achieved when
focusing light in the homogeneous medium is known to
be equal to 0.44A/n, where n is the refractive index of the
homogeneous medium. In our case, ny = 3.47, therefore
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FIGURE 4: (a) Instantaneous pattern of the E-vector of the TE wave
in the half-pitch ML from a point source found at the front plane
(b). An averaged intensity pattern in the lens rear plane (with
arbitrary units plotted on the y-axis).

the diffraction limit is FWHM = 0.127A. Numerical aperture
for the silicon (119 = 3.47) MLis NA = (n2 — 1)"*/ng = 0.96.
Therefore, the focal spot width at half maximum of intensity
is FWHM = 0.44A/(nyNA) = 0.132A for such lens. This value
is greater than obtained by simulation FWHM = 0.12).

Presumably, this is because when focusing light at the
two-medium interface, there is also a contribution to the
focus from inhomogeneous surface waves that form inter-
ference and diffraction patterns with deep subwavelength
features [9, 10]. Figure 5 displays the fact that the surface
wave play a part when imaging the point source. In a certain
region on the x-axis, the z-projection of Poynting vector is
negative, which means that near the output surface of ML
there are both outgoing and incoming light waves, with a
surface wave propagating along the microlens surface. As
light propagates further in free space from the lens output
surface, the light spot size quickly increases, becoming equal
to the diffraction limit of 0.5 at a wavelength distance from
the surface.
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FIGURE 5: Profile of the z-projection of Poynting vector onto the x-
axis calculated at the ML output (Figure 4(a)) with the point source
at the input (in relative units).

Notice that the change of the sign of the Poynting vector
projection similar to that shown in Figure 5 was earlier
reported in [8], being termed as the optical vortex and
interpreted as resulting from the interference between the
propagating wave and the enhanced surface plasmon. Note,
however, that [8] handled a 1D multilayered structure (a 1D
photonic crystal).

Figure 6(a) shows the instantaneous distribution of the
E-vector of the light wave in the Mikaelian lens (for the
same parameters as in Figure 4(a)) illuminated by two 50 nm
sources with center-to-center distance 300 nm, put 10 nm
away from the lens bottom plane. Shown in Figure 6(b) is
the relative time-averaged distribution of the z-projection
of the Poynting vector calculated at the 10nm distance
from the microlens output surface. It can be seen from
Figure 6(b) that the resulting superresolution value is 0.3,
which is smaller than that reported in [2, 4, 5, 11]. Although
point source image has width FWHM = 0.124 (Figures 5
and 4(b)), only two point sources, separated by 0.3A, are
surely resolved (Figure 6(b)). This is because images of point
sources interfere with each other.

Let us note that such gradient-index lens can be fabri-
cated as a photonic-crystal lens [27].

5.2. High Resolution through a “Fisheye” Microlens. Along-
side the ML discussed above, the high resolution can be
achieved with other graded-index imaging optical elements
for which the refractive index as a function of coordinates has
been derived in an explicit analytical form. The possibility
of obtaining ideal image of the point source with help of
Maxwell’s “fisheye” lens is justified in [28]. One such optical
element is represented by Maxwell’s “fisheye” 18], whose 2D
refractive index is given in polar coordinates as

n(r) = no[l + (;)2}_1, (32)

where ny is the refractive index at the circle center and R is
the element radius. According to (32), the refractive index
is halved at r = R. A disadvantage of this element is that
the refractive index center-to-edge contrast cannot be larger
than two, whereas in the ML the refractive index contrast
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FiIGURE 6: (a) Instantaneous distribution of the E-vector of the
TE wave in the half-pitch ML of Figure 4(a) illuminated by two
50 nm sources with center-to-center distance 300 nm, put 10 nm
away from the input plane (bottom horizontal line). (b) Relative
time-averaged distribution of the z-projection of Poynting vector
calculated at 10 nm distance from the output plane (top horizontal
line).

is a function of the material, for example, for Si ranging
from 3.47 to 1. However, with the fisheye having a circular
symmetry, any source found on its surface will be perfectly
imaged at the diametrically opposite point of its surface.

Figure 7(a) shows the profile of the E-vector of the TE
wave in the 2D fisheye microlens that has two nearby point
sources on its surface. The simulation was performed for the
refractive index at the lens center ng = 3.47, lens radius
R = 2.5um, wavelength A = 1um, and two 0.051 sources
separated by a 440 nm distance, which is 0.44\. Shown in
Figure 7(b) is a time-averaged intensity pattern in the image
plane (top horizontal line in Figure 7(a)). The two sources
are seen to be resolved (the resolution being 0.44A by the 20%
Rayleigh criterion). Thus, the lens superresolution of 0.441 is
insignificantly beyond the diffraction limit of 0.5\.

When the microlens of Figure 7(a) is illuminated by a
solitary source, the resulting intensity distribution is shown

7
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FIGURE 7: (a) An instantaneous distribution of the E-vector of the
TE wave in the 2D fisheye microlens simulated in FullWAVE, when
illuminated from bottom by two point sources (b). Relative time-
averaged intensity distribution in the image plane.

in Figure 8. The image size at half maximum is FWHM =
0.3A. From the comparison of Figures 8 and 4(b), we can
infer that the fisheye forms a (about two-times) wider
image of the point source when compared with the ML
at similar parameters. Note that the magnitudes of high
resolution obtained, 0.4A (Figure 7(b)) and 0.3A (Figure 8),
are comparable with those reported in [2, 4, 5, 8, 11, 12].

Although point source image has width FWHM = 0.31
(Figure 8), two point sources must be separated by 0.41
(Figure 7(b)) distance in order to resolve them by Rayleigh
criterion. This is because images of point sources interfere
with each other.

6. Conclusion
Thus, in this work we have

(i) derived mode solutions of the Helmholtz equation
for an arbitrary graded-index planar waveguide, with
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FIGURE 8: Relative time-averaged intensity pattern of the electric
field in the image plane of the eyefish microlens of Figure 7(a) when
illuminated by a single point source found on its surface.

the mode amplitude represented as the exponential of
the Taylor series whose coefficients are deduced from
the recurrent relations ((8), (9), and (11));

(ii) shown that the minimal mode width in quadratic-
and secant-index planar waveguides amounts to 0.4
of the wavelength in free space divided by the
refractive index on the waveguide axis ((23) and

(29));

(iii) shown by modeling in FullWAVE that graded-index
half-pitch ML and fisheye lenses are capable of high-
resolution imaging (Figures 6 and 7);

(iv) shown that a point source is imaged through the
2D half-pitch ML as a near-surface light spot of size
FWHM = 0.121 () is wavelength in free space),
which is close to the diffraction limit for silicon (n =
3.47) in 2D media FWHM = 0.44A/n = 0.127A and
smaller than values reported in [8, 11, 12] (Figures 4

and 5);

(v) also shown that the half-pitch ML is able to resolve at
half-maximum two nearby sources placed 0.3) apart,
which is beyond the diffraction limit in free space of
0.44 for 2D case and smaller than values reported in
[2, 4,5, 11] (Figure 6).
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