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The magnetoelectroelastic analysis of two bonded dissimilar piezo-electro-magneto-elastic ceramics with a crack perpendicular to
and terminating at the interface is made. By using the Fourier integral transform (in perpendicular directions in each materials),
the mixed boundary conditions and continuity conditions are transformed to a singular integral equation with generalized Cauchy
kernel, the solution of which has been well studied, and classical methods are directly applicable here to obtain the closed form
solution. The results are presented for a permeable crack under anti-plane shear loading and in-plane electric and magnetic
loadings, as prescribed electric displacement and magnetic inductions or electric and magnetic fields. Obtained results indicate
that the magnetoelectroelastic field near the crack tip in the homogeneous PEMO-elastic ceramic is dominated by a traditional
inverse square-root singularity, while the coupled field near the crack tip at the interface exhibits the singularity of power law r~%,
r being distant from the interface crack tip and « depending on the material constants of a bimaterial. In particular, electric and
magnetic fields have no singularity at the crack tip in a homogeneous solid, whereas they are singular around the interface crack
tip. Numerical results are given graphically to show the effects of the material properties on the singularity order, field intensity
factors and energy release rates. Results presented in this paper should have potential applications to the design of multilayered

magnetoelectroelastic structures.

1. Introduction

The newly emerging materials named magnetoelectroelastic-
ity, which exhibit piezoelectric, piezomagnetic, and electro-
magnetic properties, have found increasing wide engineer-
ing applications, particularly in aerospace and automotive
industries. Magnetoelectroelastic solids have been widely
used as transducer, sensors, and actuators in smart struc-
tures. Because of the brittleness of PEMO-elastic materials,
a high possibility of material debonding and cracking or
sliding of the interface exists. Consequently, this problem has
been the subject of research and discussion in the literature
on elasticity theory of coupled fields. Li and Kardomateas [1]
investigated the mode III interface crack problem for dis-
similar piezo-electromagnetoelastic bimaterial media. The
extended Stroh’s theory and analytic continuation principle
of complex analysis have been used to obtain the solution for

interfacial cracks between two dissimilar Magnetoelectroe-
lastic half-planes by Li and Kardomateas [2]. The problem
for an antiplane interface crack between two dissimilar
PEMO-elastic layers was analyzed by Wang and Mai [3].
Gao et al. [4] derived the exact solution for a permeable
interface crack between two dissimilar Magnetoelectroelastic
solids under general applied loads. Gao et al. [5] derived also
the static solution related to antiplane crack problem. The
antiplane shear cracks are a class of simple problems. But, for
the case of a crack perpendicular to the interface, the problem
becomes more complicated. This problem has been subject
of research in the classical literature of elasticity theory.
Cook and Erdogan [6] and Erdogan and Cook [7] were
apparently the first to publish the solution of this problem for
two bonded dissimilar isotropic half-planes. For piezoelectric
biceramics an arbitrarily oriented plane crack terminating at
the interface was extended by Qin and Yu [8]. The antiplane



shear crack normal to and terminating at the interface of two
piezoelectric ceramics was extended later by Li and Wang [9].
Although the above studies deal strictly with piezoelectric, it
is reasonable to assume that the extension of the findings to
electromagnetoelastic materials is valid.

To the best of author knowledge, the behaviour of interfa-
cial cracks normal to and terminating at the interface of two
bonded piezo-electromagnetoelastic materials has not been
addressed yet. Motivated by these considerations, the author
investigates the antiplane deformations and in-plane electric
and magnetic fields of a PEMO-elastic bi-material with
Mode-III interface crack normal to and terminating at the
interface.

The crack is assumed to be electrically and magnetically
permeable. Under applied electric, magnetic, and mechanical
loading, electric, magnetic, and elastic behaviours near both
crack tips are obtained. Two kinds of loading conditions are
adopted. By using Fourier integral transform, in perpendic-
ular directions in each materials, the associated boundary
value problem is transformed to a singular integral equation
with generalized Cauchy kernel. Similar types of equations
have been studied, and classical methods of their solutions
are directly applicable here to obtain the solution in closed
form. The results indicate that magnetoelectroelastic field
near the crack tip in a homogeneous PEMO-elastic ceramic
exhibits an inverse square-root singularity, while singular
field near the interface crack tip is dominant by a singularity
of power law. The singularity order is dependent on relevant
2 X 6 material constants of two ceramics. The effects of
magneto-electro-mechanical parameters on the field inten-
sity factors are evaluated by numerical analysis, which could
be of particular interest to the analysis and design of smart
sensors/actuators constructed from Magnetoelectroelastic
composite laminates.

2. Formulation of the Problem

2.1. Basic Equations. For a linearly Magnetoelectroelastic
medium under antiplane shear coupled with in-plane elec-
tric and magnetic fields, there are only the nontrivial anti-
plane displacement w:

ux=0, uy =0, MZ=W(x,y); (1)
strain components yy; and yy.:
ow ow
Vxz = o’ Yyz = @ (2)

stress components T, and 7,,, in-plane electrical and
magnetic potentials ¢ and y, which define electric and
magnetic field components E,, E,, H,,and H,:

__9% __9% _%
E.= ox’ Ey= dy’ B = ox’ 7 9y
(3)

and electrical displacement components Dy, D,, and mag-

netic induction components By, and B, with all field
quantities being the functions of coordinates x and y.
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The relations (2) and (3) have the following form:

E(x = _(/7,00 Hoc =~V (4)

where « = x, y and w, = ow/oa.

For linearly Magnetoelectroelastic medium, the coupled
constitutive relations can be written in the matrix form as
follows:

Yaz = W

[Toczz Doc) B(x]T = C[)}ocz) _Em _Hzx]T) (5)

where the superscript T denotes the transpose of a matrix
and

C44 €15 qis
C=|es —en —du|, (6)
qis —dn —H11

where c44 is the shear modulus along the z-direction, which
is direction of poling and is perpendicular to the isotropic
plane (x,y), &1 and y; are dielectric permittivity, and
magnetic permeability coefficients, respectively, e;s, g5, and
dy1 are piezoelectric, piezomagnetic and magneto-electric
coefficients, respectively.

The mechanical equilibrium equation (called as Euler
equation) and the charge and current conservation equations
(called as Maxwell equations), in the absence of the body
force electric and magnetic charge densities, can be written
as
Dy =0, By =0,

Tzan = 0, : a=xY.

(7)

Subsequently, the Euler and Maxwell equations take the
following form:

C[v2w, v2¢, V2y]" = [0,0,0]", (8)

where V2 = 0%/0x? + 9*/dy? is the two-dimensional Laplace
operator.
Since |C| # 0, one can decouple the (8) as follows:

Viw =0, V¢ =0, Viy =0. 9)
If we introduce, for convenience of mathematics in some

boundary value problems, two unknown functions

X = erswin - qlsW]T = Colgn vl (10)
where
Co = {_e” _d”}, (11)
_dll —Un
then
(6,917 = Co ™' [ — erswyn - QISW]T, (12)
where

Co-l — 1 —p11 dn B €1 € (13)
0 _sllﬂll_d%l din  —en - € ‘?3.
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The governing field variables are
Tk = CaaW — aDi — BB,

¢ =aw+ey+e,

Y = Bw+ ey +esn, (14)
D = xk»
Be=1ni k=xy,
Viw =0, Viy =0, Vi =0, (15)

where
Cas = Cas + ave1s + Bq1s,

o= Hnes — d11Q15 .

— + ,
enp — di (ere1s + exq15) (16)

= M = —(esqis + e2es).
el — d”
Note that ¢4 is the piezo-electro-magnetically stiffened
elastic constant.
Note also that the inverse of a matrix C is defined by
parameters a, f3, ¢4 and e;, €2, e as follows:

1 o B

1 ~ ~
Cl=—|a a®+Cuer af+cue|. (17)
Caq

ﬁ 06/3 + CN4462 ﬁz + 54463

These material parameters will appear in our solutions.

2.2. Boundary Conditions. Consider a crack terminating
at the interface of two bonded dissimilar PEMO-elastic
ceramics polarized in the z direction. For convenience, we
denote the PEMO-elastic ceramics occupying the right and
left half-planes x > 0 and x < 0 as piezoceramics I and II,
respectively, shown in Figure 1.

Let a crack be perpendicular to the interface and be
situated at [0,a] (a > 0) in the positive x-direction in
ceramic I. For an antiplane shear crack having no thickness
(so-called “mathematical crack”), the crack surfaces contact
each other, in reality; so the crack is electrically and mag-
netically contacted. Consequently, the electric and magnetic
boundary conditions at the crack surfaces can be described
according to so-called double permeable conditions, namely,

D,(x,0%) = Dy(x,07),
¢(X,0+) = ¢(X, 07))

B,(x,0%) = B,(x,07),
(18)
¥(x,0%) = y(x,07).

Note that besides the crack surfaces, the above condi-
tions, in fact, certainly hold at the crack-absent parts of the
crack plane. Using the relations (14), it can be shown that the
condition (18) may be replaced by conditions as follows:

Xy (2,07) = x,,(x,07), N,y(x,07) = 1,(x,07), (19a)

x=-esw, n=qisw forx, y=0=x (19b)

3
y
TE} MHY | TE) T H]
I O R ¥ I S O B
PEMO I PEMO I
Crack X
a
T TH 18 1H)

o Qo wm oy @ g

FiGUure 1: Two bonded dissimilar PEMO-elastic ceramics with a
crack perpendicular to and terminating at the interface.

Let the constant mechanical loads and uniform electric
displacement and magnetic induction or electric field and
magnetic field be applied at infinity (two cases of electric and
magnetic loads), and the following:

1

7,.(x,y) =75, D)(x,y) =Dy By(x,y) = By

or EL(x,y) = E}, H;(x,y) =H), x>0, y— o0

1.(xy) =1, DJ(xy) =Dy, B(x,y) =B

or E;I(x,y) = E}l, H}I,I(x,y) =H', x<0, y— +oo,

(20)

where 73 (1)), D§(DY'), BY(BY) or EL(EL), HY(HY) are pre-
scribed constants, a quantity with superscribes I or II that
specifies the one in the PEMO-ceramic I or II, respectively.
To solve the crack problem in linear elastic solids, the
superposition technique is usually used. Thus, we first solve
the Magnetoelectroelastic field problem without the cracks in
the medium under electric, magnetic, and mechanical loads.
This elementary solution is the following:

T{,Z = T(]),
(D] case [
0>
2
€15 €15
710+ +—=|E
D =D = |:C44T0 (811 C44> 0
]
€154q15
+<d11 + 7c44 )Ho] , casell 1)
(B case |
0>
q15 ( 615%5)
—1+|(dni+——|E
Bg'_B]:‘ [544T0 " Cyy4 0
2 J
+<[,t11 + qlS)Ho} , case II
C44

with] =1, IL



In addition the crack surfaces are traction-free, that is,

7,(%y) =0, y=0%,0<x<a, (22)
and owing to the symmetry one can directly write following
conditions:
wl(x,0)=0, x>a, wl(x,0) =0, x<0. (23)
We further consider the situation when the interface
under consideration is perfectly bonded, across which the
displacement, stress, electric and magnetic potentials, elec-
tric displacement, and magnetic induction are continuous

wH(0,y) = w'(0,y), 7.(0,y) =71L(0,y); —o0 < y< oo,
¢'(0,y) = ¢"(0,y), DL(0,y) = D}(0,y); —oo<y< oo,
v'(0,y) = y"(0,y), Bi(0,y) =B/ (0,y); —oo<y< oo,

(24)

3. Method of Solution

From the symmetry of the problem, it is sufficient to consider
the upper half-plane of the bi-ceramic. Consequently, for
y = 0, it is easily found that an appropriate solution of the
problem, which satisfies the boundary conditions (19a) and
(20), takes of the following form:

wi(x, y) % 1
X(xy) | =|D'|y+|eis LWAl(&)e‘yECOS(Ex)dE
7'(x,y) B! s
N By (&)
+JO Ci(&) e sin(Ey)dE,
Di(§)

(25)

forx > 0 and

WH(.X,)/) VH_ 1
K1) | = | D7 [y [ elk | [ Ax(e cos(Ex)ae
" (x, ) B" | qis
oo_Bz(f)
+ jo Ca(§) | e sin(£y) dE
| D2(§)

(26)

for x < 0, where A;, Bj, Cj,and D; (j = 1,2) are unknowns
to be determined from given boundary conditions and where

J D] + BB
+o/ D+ B
y = LTy P2 v B ; J=LIL (27)
Ciq
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Furthermore with the aid of (14), one can give the com-
ponents of stress, electric displacement, magnetic induction,
and electric and magnetic potentials

1
T)I/z(x’y) T(I) Caa
I (o]
Di(x,y) | = |pt| - |45 j EAL (e cos(Ex)dE
0
B} (x, ) B! s

CiuB1 (&) — ! Ci(&) — B'D1(8)

N Ci(8)
Dy ()
x e~ cos(Ey)dE,
(28)
¢ (x, y) ™ ae el
[ ’y}:C{l D! y+0+[ ' 2}
vl(x, y) In B e e
(29)
. Bi(&)
XL E| CL(E) |e sin(Ey) dE
Dy (§)
for x > 0 and
Alen] [ [h]
D)(x,y) | = | D" | - |els L EAy(E)e " cos(Ex)dE
Bl | o] o
. CIB1(&) — a'Cy (&) — PUD,(E)
+ . & G (9
D, (§)
x et* cos(Ey)dé,
(30)
@) I
o(x,y) ~ _.|pm a e e
[V/H(x:)’)] ~ yrot B e e
BII (31)
N B, (&)
XL E| C2(8) | sin(£y)dé
D, (&)
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forx < 0and

TJICZ (X, }’) 64114
DL(x,y) | = - | els jo EAL(E)eE sin(Ex)dE
Balc (x’ J’) q{s

CiuB1 (&) — ! Ci(&) — B'D1(8)
Ci(&)
Dy (&)

e

x e sin(£y)dE
(32)

for x = 0 and

i (x, y) cly |
D (x,y) | = | el L EAy()e ¥ sin(Ex)dé
B (x, y) q's |
_ [RBA®) ~ a1Co(&) - B (®)
R Ca(8)
Dy (&)
x e sin(£y)dE
(33)
for x < 0.

Now, application of the continuity conditions (24), at the
interface x = 0 to (25) to (33), yields

Té +(XIDI+ﬁIBI B T(I)I +“IIDH+ﬂIIBII

e CA
) 7!
c!lp| =ct|pn
BI BII (35)
oo L@ o2 +2her af+ile|
P B aBihie Bl

Bi(§) = — 21

~ [E44B1(®) ~ alCi(§) ~ B'D1(®)]
= [EliB2() — alCa(8) - pUD(®)],  (36)
Ci(&) = —Cy(&), Di(&) = =Dy (&)

[aneyeg] BO| g [BO

C2(8) :{ ] a® . 67
11 11 11 1.1 1

Fealipn el Feslp e

The first two equations, that is, (34) and (35), give three
constraints for applied remote electro-magneto-mechanical
loadings, from which we may determine the loadings of
ceramics I, namely, 7§, D', and B" by means of loadings
of ceramics I, namely, 7{, D', and Bl In other words, in
order to guarantee the continuity of all physical quantities
at the perfectly bonded interface, applied electro-magneto-
mechanical loadings must obey the relations (34) and (35).
The five equations (36) and (37) give the constraints with
respect to unknown functions; that is, the disturbed field,
due to the presence of a cracks, requires to satisfy those
equations.

From the condition (23), along with (26), one gets

A (§) =0. (38)

Continuity of w(x, y) at the interface x = 0 requires
| B0 - B sin(en e = [ an@e a9

so that -
BaO) - B = 2 [ Mg 0

since

f: e Wsin(§y)dy = (41)

§
52_'_;12'

The result (40) in connection with (36) and (37) yields

A+ (el + ) (o — ) + (e +ef) (B - B

2

[\

+ 1

(5414 + ZEJA + (egl + eg)(an —al)’ + (elll + e{) (B - p1)?

(e£1+e£)(“lﬁll+ﬁ1all+2“IIﬁII)

~V] ~V] >
7 (& C) A+ (el ed) (ol — at)” + (el + el) (81— B1)°

2t — (b + b ol (o' — o) — (eff + ] )B'(B" — )

2

By(§) = =1
7 (e o)Ak (el o) @ @)+ (el v ) (87— )
. %I <e£1 i eg) (al/_;n +ﬁ1(x“ +2an/3n)

~] ~ >
m (cL} +el)Aa+ (egl + eg)((xn —al)?+ (el + el ) (B - p1)?
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Blel+eb) —al(el +el BUl(el +eb) —all (el + e}
C1(§) = B,(§) ( )A ( ) - By(§) < )A ( ),
Blell +el) —al(el+el Bl(el+el) —all(ell +eb
Di(&) = —B1(§) ( ) ( ) + B, (&) ( ) ( ),
A A
(42)
where Utilizing (25); in (23) leads to
A= (e{l+e{)(e§1+e§) - (e£1+e£)2 (43) ]
wl(x,0) = J Ai1(&)cos(éx)déE =0, x>a (49)
0
© ¢
I= L Ai(n) E2+ 2 dn. (44)  from which together with (47), by using the inverse Fourier
transform, can be deduced
In the special cases, we obtain that 5 (a
for both piezoelectric materials A& = g J g(t)sin(ér)dt. (50)
g Jo
ch(ely +ell) +ell(els + e
Bi(¢) = 44( - “) 15( © 15) 5 Now, we calculate the following:
T (chy+clh) (el +elh) + (el +els)
ro £ EJ ()t J’ sin 17t
> A __z
By(E) 2 64114(5{1 +€¥1) +e{5(e115+e¥5) 0o &+’ n(§2+n?) (51)
2 = 2
(CzI;4 + 511114) (8{1 + 8{11) + (e{S + 9{15)
, Using the result
y els (el + (el5)) + el (chaeh + (els) ) .
G = T I, ) (o, 1o on)? Jm sin (r7¢) dn = ﬂ<1 e ) (52)
<C44+C44) (811 +£11) + (315+615> 0 ,1({2+;72) ’7 ZEZ ’
Dy(§) =0, we find with the use of (48) that
(45)
a e—ft
for both piezomagnetic materials J 2 2A1 (n)dn = 7 ——g(t)dt. (53)

ol (sdy +pll) + g5 (qls + qls)
(cha+ ) (s + i) + (s + %)

31(5) =

>

By(E) = 2. C (.“111 +#1111) +4qis <q115 + qgs)

2 - 5

(e ) () + (gls +q5)
Cl(E) = O)

2 2
2 qis <C44.”11 (q{ls) )‘HJ{IS <C4114‘u111+ (q{s) )

ﬂ (5}14 + C44) (.”111 + l/‘1111> + (q{s + ‘11115>2

(46)

Dy (&) =

The formulae (45) are equivalent to that derived by

Li and Wang [9] who solved the problem of two bonded

dissimilar piezoelectric media with an antiplane shear crack

perpendicular to and terminated at the interface. Next, we

denote that

() = owl(x,0%)

g ox

From the boundary conditions (23), g(x) should satisfy
the single-value displacement constraint condition, that is,

Kgmw=a (48)

(47)

Substitution of (53) into (42) yields the expressions for

Bi(&), By(§), Ci(&), and Dy (&) in terms of g(x).
From fraction-free condition (22) from (28);, one can
derive

[, Elceas® coste)

~(&4B1(8) — &' (&) — BD(8) ) e ¥ | dE = 1.
(54)

Substituting (50) and (42) with the use of (53) into (54),
we have with the help of known integrals

2 (™. 1 1 1
- L sin(ét) cos(éx)dé = ;(m + m), -

t+x>0

J’oo e’f(”")df — L;
0 t+x

the following singular integral equation with generalized
Cauchy kernel for g(t):

N

where

)mm_—fg

44

0<x<a, (56)
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. LA + (eél +eé>all(all —al) + (e{I +e{>ﬁll(ﬁll - p) - (eél i eé)(oclﬁ“ + Bladl + 2a11B1)
=1-2
2 2
(234 + Efla)A + (egI + eg)((xn —al)"+ (lelI + ell) (Bt - Y
y @ ) (egl +e§)(xl((xn —d) + (eIII +ell>ﬁ1(/311 _ﬁl) _ (eg +e£)((x1[3H +ﬁIaH _ zalﬁl) (57)
C£4 C4114A
(egl +e§><x10cu + (e{I +e{)ﬁlﬁn _ (e%l +e£)(o¢1[3H + pladl)
+2 i .
CaaA
For both piezoelectric materials, A is obtained as follows:
2 2
Y (Cz114 - 5}114) (5{1 + 5?1) + (5{5) - (61115> +2¢ls (9{15 ~eis (CAI;IA;/CAIM)) (58)
- S .
(5514 + CAILI4) (551 + 5?1) + (655 + 3{15)
The value of A for both piezomagnetic materials is % [( X >a< a . 1)

obtained from formula (58) if we replace €11 by y1; and e;s by a+a? — x? Va? — x?
¢15. It is noted that, in a usual integral equation with Cauchy X - wa
kernel, other kernels except Cauchy kernel are continuous +< > 2) ( E > — 1)]
over the entire interval involved. In addition to the singu- atvas—x @ x
larity of the Cauchy kernel terms 1/(t — x) as t — x in (61)
(56), the other term A/(t + x) is also unbonded as t, x — for 0 < x < a with
0 simultaneously. Particularly for two elastic dielectric,
meaning e;5 = 0, and diamagnetic, meaning q;5 = 0, elastic cos(ma) = —A, (62)

field and electric field, and elastic field and magnetic field are
not coupled as well as when d;; = 0, the electromagnetic field
does not occur. In this case, A reduces to

1 11

_ Cyq — Cyy (59)
T
Caq T Cyy

Then the integral equation is simplified to

1 I(L N %)g(t)dt -2 (60)

mJo\t—Xx

This equation is equivalent to that derived by Cook and
Erdogan [6] and Erdogan and Cook [7], who were apparently
the first to publish the solution of an antiplane shear crack
terminating at the interface of two joined purely elastic
media.

4. Magnetoelectroelastic Field

4.1. Solution of the Singular Integral Equation. Based on the
result derived by Bueckner [10], the desired solution for g(¢)
of (56) subjected to (48) can be obtained as follows:

7
2¢8, sin(ma/2)

glx) =

where 0 < a < 1.
Once g(t) is determined the crack tearing displacement
can be obtained by the following integrations:

wl(x,0") = ng(x)dx
0

B Tix
2ch, sin(a/2)

8 [<a+\/z2—7xz)a_ (a-f—\/:tz—ixz)_a]'

0<x=<a
(63)

4.2. Crack Tearing Displacement. Expanding the expression
(63) near the crack tips yields the asymptotic crack tearing
displacement as

T, o

1 —_ N — 4 = — ~
w(x,0) = iy sin(ﬂoc/z)ﬂza(a x)+0(r); r=a-x=0

Ta®

— X7+ O(r);
2¢k, sin(ma/2) * (r)

wl(x,0) = r=x~0
(64)

at the right and left crack tip.
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FiGUre 2: The curve A = — cos(ma); A is the bi-material parameter,

and « is singularity order parameter.

Here O(r) denotes the infinitesimal terms compared to 7,
r being the distance from the crack tip. Only for o = 1/2 the
behaviours of the crack tearing displacement for both tips are
the same.

4.3. Asymptotic Crack-Tip Field. Antiplane shear crack and
in-plane electric displacement and magnetic induction may
be deduced by evaluating the following integrals:

1 a 1 A
.60 = 2d, L (tfx N tT>g(t)dt+To,

D(x,0) = lewj( ! +1_2AD)g(t)dt+DI, (65)
0

t—x 1+t

1 a 1 1-2\
1 s | B 1
By(x,O)—ﬂq15J0<t_x+ = )g(t)dt+B,

for x > aand

( ,0) = 44J s dt"'
D!'(x,0) = 2o ”’Jo 8 “dt+ D", (66)

I _ 2 J'a g(®) I
By(x,0) = — 4is . t—xdt+B

ISRN Materials Science

for x < 0, where 1 — A is defined by (57) and
eloho = [ (2lha! + S (el + )
— (B + L") (eF + eb) ] + (el +h)
< (& -+ eb) (o - of) (B + Blal + 2a"8")
+ (e e (el +el) (8" - ) (18" - plat)
H(el +el)” (87— ) (B + Bl + 20") |
x{A] (B +al)a+ (el + o) (o' - o)’
Heeed) (e -p) ]}
alshs = {A[ (2ip+ 2Lp") (e + )
- (@hat + Sat) (el 1) | - (el +el)
(el + eb) (B~ 1) (ol + Bla + 2008
(e +h) (el +ei) (8"~ B) (a'B" ~ Ba")
(e ) (o) (@B 4 plat + 2081) ]

X {A[(c44 + C44)A + (egI + eg) (ocH — ocI)2

e(eeed) (- p) ]}

(67)

For both piezoelectric or piezomagnetic materials, (67)
give

2
[ (. 11 (1 I
€is <C44811 + (ﬁs) ) teis (‘344811 + (‘315) )
2 b
<c£4 + CEA}) (eh + 8{11) + (ei—, + e¥5> (68)

qgslB =0

I
615/11) =

or

I
615/1[) = 0,

2 2
(et (a1)) + g (s + (a55))

q =
(e L) (h + ) + (s + qlh)

(69)

The analytical expressions for physical quantities may
be obtained substituting the solution (61) into (65) and
(66). We omit full solution and pay our attentions to the
asymptotic crack-tip field. This is very interest from the view
point of fracture mechanics. From (61), one can write out
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the singular behaviour of the function g(x) near the point
x = 0 and x = a by the following asymptotic expressions:

I
__H o« 2a o
g(x) B 254114 Sin(ﬂ(X/Z) X a 01
(70)
i o
Tp  &— 1 [2(@ — x)] ‘ N
glx) = 2644 sin(a/2) x +0(1); x=0+0,

(71)

where O(1) stands for nonsingular terms.

Now we define the intensity factor at the right crack tip in
the homogeneous solid and the left crack tip at the interface
of a bimedium as

Kgom = lim+\l27r(x —a)q'(x,0"),

lm = hm( 27x)%q" (x,0%),

(72)

respectively, where g stands for one of 7., y,., D), B), E,,
and H,.

4.3.1. Magnetoelectroelastic Field near the Crack Tip in the
Homogeneous PEMO-Elastic Ceramics. Using the integral

%Jo (t—x)lmdt nF fa x>
(73)
we obtain from (65); that
71,(x,0) = 44J 3 4y o) - J% (74)
where
Kfom = ————1)/7a (75)

hom ™ ¢in(ma/2) To

the stress intensity factor at the right crack tip. Other field
intensity factors are related to K}, as follows:

1
y _ L D _ €151 ‘115
Khom - TKhom> Khom - TKhom’ Khom Khom’
44 Caq 44
¢ _ ¥ _ pE _pH _
Khom - Khom - Khom - Khom =0.
(76)

For the crack tip in homogeneous PEMO-elastic medium
the elastic, electric, and magnetic fields still exhibit an
inverse square-root singularity at the crack tip. Application of
electric and magnetic fields does not alter the stress intensity
factors. The stress intensity factor depends on the material
properties of two PEMO-elastic ceramics involved since it
is governed by (75) and « by (62). The intensity factors
Kl ., KB, and K&  are related to K{,,, and also depend
on the material properties, as shown in (76).

4.3.2. Magnetoelectroelastic Field near the Crack Tip at the
Interface. Using the known result [11],

%Joa (t—lx) (?)adt: sin(lrtoc) [(xx;a)ail]’ x<0

(77)

putting (71) into (66) and using (77), we obtain the asymp-
totic expressions for the antiplane shear stress and in-plane
electric displacement and magnetic induction, as well as
elastic strain, electric and magnetic field, ahead on the left
crack tip at the interface as follows:

[K KPS KB K KEKH

ll'lt’ nt> lﬂt’ lﬂt’ mt’ mt]

\/7(1 T()
= Y4
(1+A)ﬁ (4ma)* (78)
1-2
X [5514 )315/\D:‘115/13,)ty,)LEJH]

where the identity is used as follows:

A)\/ (79)

sin(ma) sm(

and where
b= (el = (e + ) (o ) = (el + €l )8 (87 - )
(el +eb) (odB1 + Bladt + 2011 |

X [((:44 + c44)A + (6131 + 613) (ocH — 0c1>2

(e +e) (6 -p)]
L e G [CIC R
("~ ') (eled —ehel') |
~al (el re) - el + )
+" (elell — ehel!) !
M = (b B+ (8" = ) (& (e +el) -
~ (ot = o) (ehelf — ehe) |
B (b(ef +b) — eh(elf +ef))

+al! (egegl e§e£I> }A !

(el +ef))

4(ta)

(80)
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for PEMO-elastic bimaterial and

[( 0, [0
Caq (511 + 511) T éis (315 + 315)

Y 2>
O | WO N T
(C44 + C44) (511 + 511) + (els + 315)
11 10
Ap = C44€15 — Ca4€15 (81)
YR AT
<C44 + C44) (811 + 511) + (915 + 915)
A =0

for piezoelectric bi-material and

cha(hy +lh) + qls (als + qlt)

Ay = 2
(Czlxzx + CAILI4> (.“111 + ﬂllll) + <Q£5 + 6I1115>
Ag =0, (82)
. s — chl
H=

(cha+ ) (s + i) + (gls +41%)

for piezomagnetic bi-material.
Note that for piezoelectric bi-material, we have

2
[ (0, 11 I 1,1
Ca4 <€11 + 811) + (‘315) + (515) (C44/C44)

2
QN | A WA SN [,
<C44 + C44) (811 + 311) + (315 + 315)
(83)

The material parameters for piezoelectric ceramics coin-
cide, in general, with the ones derived by Li and Wang
[9]. But in A, defined exactly by (58), the fourth term in
numerator of (58) is omitted in (46) of Li and Wang paper.
In consequence, the conclusions in Table 2 of Li and Wang
paper that A vanishes also in the case of ceramics poled in
opposite direction are incorrect. The formula (58) shows
that only for two bonded piezoelectric ceramics with cg4
unchanged poled in the same direction (not opposite) the
field singularity at the interface crack tip maintains the
inverse square root singularity, since in this case is A =
and a = 1/2. The parameter Ap in this paper has opposite
sign to that presented by Li and Wang. This gives that for
pe > 1(cly > cl;) meaning that piezoelectric ceramic II is
more stiffer that piezoelectric ceramic I (el = els), in this

case Ag > 0, so stands also K, > 0, and KZ, increases with

Pe- Also it is seen that KE decreases with the ratio p, of

ell to els. In the paper Li and Wang [9], the conclusions,
associated with K£,, are inverse. The presented conclusions
are consistent with physical consideration. The field intensity
factors must satisfy the constitutive equations

K™ = LK? — elLKE, KP = elLK7 + L KE,  (84)
or material parameters must satisfy the equivalent equations
elsAp = efsh, +ellAp.  (85)

1 i 11
cule = cighy — e1sAE,

It is easily verified that both constitutive relations (85) are
satisfied by the coefficients defined by (68), (81), and (83). In

ISRN Materials Science

general, for Magnetoelectroelastic ceramic, the field intensity
factors must satisfy the constitutive equations

Ky G —a —B][K"
Kl=|a e el||KP], (86)

int

B
kil 18 e e]lx

as shown in (14). Of course, we have Kl-
KH

nt*

—KE and K,

mt =

4.4. The Energy Release Rate. For magnetoelectrically per-
meable crack, the energy release rates are very important to
evaluate the behaviours of crack tips. In accordance with the
definition of the energy release rate proposed by [12] (the
virtual crack closure integral), the energy release rate can
finally be derived as

6= 5o | oo+ (5) |

(87)
1 T
Ghom} [(khom)2 + (kmt)z])
where
2
I
Ghom = @ (88)
2C4y
KT
Kkt — hom , 89
hom ™ 1 /a/ (89)
T _ Kll;lt
kint - To(ﬂa/z)tx (90)

are the energy release rate for homogeneous material (no bi-
material) and normalized stress intensity factors at right and
left crack tip. One interesting observation from equation (87)
is that though the energy release rate, G, is independent on
the applied electric-magnetic load, it is affected by electric-
magnetic properties of two constituents of the bi-material
media.

4.5. Electric Displacement and Magnetic Induction inside the
Crack. Since the medium inside the crack (usually air or
vacuum) allows some penetrations of the some electric and
magnetic fields, these fields may not be zero. Suppose that the
normal components of the electric displacement and mag-
netic induction inside the crack are dy and by, respectively.
Then from permeable crack boundary conditions (18) and
solutions (78), it follows that the quantities dy and b, are as
follows:

I 1
e1s7y 2A
j — 130 =20 case I
gy 1—A ,
11 [
elsT, 21 €15
ms<€°@—D%-$+<f )
Cas 1-1 Cia
e
+<d{1 15q15>H0, case II
L C44
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- I 1
2
Bl) - q]';’TO As > case I
g 1—-A
2
I 1 1
91570 2Mp ) I <q15> I
by = 1 —(1 -— ]+ + H
0 d -1 H1 & 0
+<d{1 915415)E1 case II
L 544
(91)
Then, using (21), we obtain that
—do _ €{5T(l) 2AD
cy 1-X
(92)

Bl — by = Ql?T(I) 2)p
cyy 1—2

in both cases of loading conditions.

The electric displacement and magnetic induction inten-
sity factors are proportional to D) — dy and B} — by,
respectively [13], and the following relations hold

1
e ZAD
KD = K* 15 ,
int int 44 1-X
(93)
q 2/lB
Kﬁt KlTnt P L 1- 1

which are in agreement with the solutions (78). For piezo-
electric bi-materials or piezomagnetic bi-materials we have,
for instance,

VAL N SN IO | R GO\ g 8 11
Cas€r1€15 T Ca€11€15 + ‘315915(315 + ‘315)

Ko = K,
=K -

(0, 11 1 (1

Ca4Cy4 (511 +s11) +C44(315) +C44(615)

nt nt

(1S 1S SN G S| U S| O O SN |
KB KT C44.“11‘115+C44l/‘11‘l15+‘l15‘115<‘l15+%5)

nt nt

ks (i + ) + () + el (gls)”
(94)

In particular, for a fully permeable crack considered here,
and two identical magneto or electroelastic planes polarized
in opposite directions we have (from (94))

Kljr)n = Kfn =0. (95)

Note that the crack tip electric displacement K2, and
the electric displacement inside the crack dy exist only in
the piezoelectric plane. Alternatively the crack tip magnetic
induction intensity factor K2, and the magnetic induction
inside the crack by exist only in the piezomagnetic plane. All
quantities occur in the PEMO-elastic bimaterial.

5. Results and Discussions

In studying the fracture behaviour of the PEMO-elastic
material, the field intensity factors are of significance. In
this section, examples are given to illustrate the effects of
material properties on the field intensity factor and the order
of singularity.

11

TaBLE 1: Relevant material properties [14, 15] and values of mate-
rial parameters m and 1/m.

[109613/1112] [Cilr;ﬁ] [10‘988/Vm] m. 1/m
BaTiO, 43,0 11,60 1,0 0,279 4,348
PZT-5H 35,3 17,00 1510 0,542 1,844
PZT-4 25,6 13,44 6,00 1,175 0,851
p-7 25,0 13,50 17,10 0,430 2,325
C-205 87,0 13,59 795 0210 4761
PZT-PICI5I 20,0 12,00 982 0733 1,364

5.1. Effect of Material Constants on the Singularity Order. We
now consider the dependence of the singularity order on
2 X 6-constituent independent piezo-electromagnetoelastic
constants. Although analytical evaluation of the relative
sensitivities is possible, on the basis of the results presented
above, it is rather cumbersome. Therefore, the sensitivity is
evaluated here in other way.

Firstly, we assume that both materials are piezoelectric
and cffy, = p.cly, els = peels, and el = peel;, and analyze the
situations

(a) pc changes and p, = p, =
= PS = 1)
pe = 1.

This states that it is analyzed that right half-plane is fixed,
and left one contains a fictitious material with only changing

Pe OF P OT pe.
(a) The changes of the ratio p, of cj} to ci,: we have

3= (11—+pc)(+12+m)’ . ((e15)2>1’
Pc m C44€11 (96)

1, that is, not change,
(b) pe changes and p,
(c) pe changes and p, =

A <1, pc<3+% for p. = pe = 1
or
_L-p
C1+p. ’
_ _1l-m 2 (97)
A=0 forpc—1+m,pc<m L,
0O<m<1 forp,=—-1,p.=1

Figure 3 shows the effects of varying elastic stiffness p,
on A and « with unchanging piezoelectric and piezomagnetic

constants p, = p. = L or p, = —1 and p, = 1. Note that A = 0
and a = 1/2 for p, = —1, pe = 1 and if (ciy — cl)chyely =
(c}l4+c£4)(e{5)2, els = —elsorifp, = 1and p, = p: = 1. Note

also that A(p, = 1,p, = 1) > A(p. = —1,p, = 1) for all of p,.

The singularity order « is larger for two of the same
ceramics poled in opposite directions together since a(p, =
Lpe=1)<alpe=—1,pc =1).

We take six kinds of particular piezoelectric ceramics as
representatives, the relevant material constants and parame-
ters m, and 1/m of which are listed in Table 1 (with materials
poling axes aligned in the positive z-direction).
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FiGure 3: Effect of p. on A and « with p, = p, = 1 (Case I) and p, = —1, p. = 1 (Case II).
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\. 11:7271'75111
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N
-0.5 =
C-205
BaTiO3
PZT-PICI51
PZT-5H
-1
0 2 4 6 8
Pc
(a) Casel
(b) The changes of the ratio p, of el5 to e}5: we have
2 I
1= (1-p.) 1 [ cuen
= Pe>—— =~ 2]
4/m+ (1+pe) m (e15)

Amax =0 for p. =1,

Amin:_l_m forpe:—1_£<_i’
meoem (98)
1
=—-1 forp,=——,
A orpo= -
m
/\__4+m for pe = 0

A=-m forp,= -1

For —1/m < p, < 1, the singularity parameter A increases
from —1 to maximum A = 0 and for p, > 1 declines
to —1. Then the singularity parameter « varies between
(0,0,5), respectively. If both poling directions are opposite;
that is, one is in the z-direction and second is in the (—z)-
direction, then to satisfy the condition A > —1 must hold

(=), 1(+) (=) I(+) I I :
e;5s |/es’ < 1/mor le;s 'leps < cyq€p;. If the selection of
elL violates the condition |A| < 1, then the electroelastic field
near the interface crack tip is dominant by either logarithmic
singularity or is bonded. This situation seems unlikely, take
place for realistic piezoelectric ceramics, and it is not beyond
the scope of abilities of results of this paper.

(c) For p, varying and other parameter unchanged, it is
easily found that A = 0 and « = 0,5 for p. = p, = 1 and
varying p,. Butif p, = —1, then

28\ |
Lo 2m _((615) )
=——; m=|-—=—].
1+ pe C44€11
Figure 5 shows the variation of A and a with the ratio p,
n(-), I

for 615( )/el(;) = -1
The parameter A assumes negative values and increases
from —2m to zero with p, > 0. The singularity parameter «

(99)

is positive and increases from (1/7)arc cos(2m) to 1/2 with
pe > 0. Note that 2m must be less unity if p. tends to zero
or m < 1 for p. > 1. Some materials shown in Table 1 limit
the range of p,; for example, PZT-4 has m = 1,175, and p,
must be larger 1,35 to ensure that A < —1. Of course this
situation is addressed to two piezoelectrics poled in opposite
directions.
For piezomagnetic materials, the parameter m is

PR
"= (415) ;
Ca4h11
and for magnetostrictive material CoFe,O, assumes the

value m = 0,0113.
For CoFe, 04 we have

(100)

Cq4 = 45,3GPa, qi5 = 550 N/Am,
(101)

g1 =590 x 107°N/A%

The “relative sensitivity” analysis includes three cases:
(a) The changes of ratio p, of ¢l to cl,: we have

~1,0113(1 - pc)

1,026+ p. pc<20,7 pg=p,=1 (102)
or
A= 1P 00113, p<167 py=-1 -1
= 1+pc > > Pc > Pq - > P‘u - L.
(103)
Approximately,
1—-pc
A= . pe<16. (104)

h 1+pc

For Magnetoelectroelastic composite BaTiO3-CoFe,04
(Vf = 0, 5)((]15)2/644[411 = 0, 005 and (615)2/6’44811 ~ 0, 135.

Figure 6 shows the effect of p. on A and & for CoFe,04
magnetostrictive ceramic.



ISRN Materials Science

Q 0.5
=z Z
L bz //(/
Lo 2
—02 iS5 0.4

O //
I //} q,éi‘/ < // 7,
// (&1 Vi //
// 4 I/ d
—0.4 4 y 2 i 0.3
o
§

/ /
/
-0.6 I 7/ / / B
N/ AV
/ [1s) N
(«5; («
-0.8 5 0.1

N\

.\‘_,
|
—_
o
—
(S}

F1GURE 4: Effects of p, on A and a with p, = p. = 1 (p, >0 or p, < 0
denote piezoelectric ceramics poled parallel to or antiparallel to the

z-axis, respectively, i.e., p, = —1 denotes that el5 = —ell = ¢)5).
pe=+1=pc
O 0.5
_________________________
e L L —
-0.3 /Cﬂ-’\‘i,/B’BEO"y T = /ﬂ_,. 04

td z
1 —06 yanv = 03 a
J/ < s ‘ﬂﬁf; /\/\«,, e
/ -
’ Q’\'}ﬁ// /é\'} g
/ /) s
~0.9 / Z 0.1
/ v
Nyl ,°'—)
N A
! 4v&sz‘o ¥ ’
g
-1.2 0
0 0.5 1 1.5 2
Pe

FiGurek 5: Effect of p, on A and o with p, = 1 when p, = 61115(7)/811(5“ =

—1;forp, = 1, wehave A = 0 and a = 0, 5.

1 1
\
0.5 1 0.75
Ao N 05 «
\\
T
—05 e 025
\
-1 0
0 2 4 6
Pc

F1GURE 6: Effect of p. on A and « for CoFe,O4, p, = 1 and p; = 1 or
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F1GURE 7: Effects of p; on A and « for CoFe;Oy, p. = p, = 1.

For both poling directions, the values of A and « are the
same.
(b) The changes of the ratio p, of qi5 to g}s: we have

Lo (1‘Pq>2

, —8,85,
35,4 + (l+pq>2 Pz 7B

(105)
Amax =0 for pg, =1,

A=-1 forp, = —8,85.
Figure 7 shows the effect of p; on A and « for CoFe,Oy
ceramic.

(c) The changes of the ratio p, of uf5 to u}s: we have

o 0026
1+ py

(106)

A=0 forp, =1, alwaysp, = 1.

Figure 8 shows the effect of p, on A and « for CoFe; 0.

5.2. Effect of Material Constants on the Field Intensity Factors.
The material constants also affect the intensity factors.

Figure 9 presents the variation of normalized SIFs kj and
k. defined by (89) and (90) which depend on « and A

int

2a
VI+A

S LR N )

in 1+1

kll;om =
(107)

For 0 < a < 1 k{,,, increasing monotonously from 2+/2/n
through 1 to /2 as « tends to zero and equals 1/2 and 1,
respectively. From Figures 8 and 2, one can observe that
the effect of p. on k{,, is more evident than that on k.
Moreover, p. increased the singularity parameter « that
decreases (see Figure 3), and ki, rises suddenly, while kf
falls down slightly. For p. < 1 and p. = 1 or p. < (1 —
m)/(1 + m) and p. = —1, we have « > 1/2. This means
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F1GURE 9: Normalized SIFs as a function of a.

that if piezoelectric II is more elastically complaisant than

. . . o . .
piezoelectric ceramic I, in this case ki, > ki, On the

other hand, for p. > 1, which gives « < 1/2, meaning
that piezoelectric II is stiffer than piezoelectric I in this case
K om < kit From the Figures 3, 4, and 5, we see that the range
0 < & < 1/2 corresponds to p. > 1 or p. > (1 —m)/(1 + m)
(in the case p, = —1), p. > —1/m, and p, > 0. Then always
kie > kjom- The range 1/2 < a < lisfor 0 < p. < 1 or

0 < pe < (1 =m)/(1+m) (in the case p, = —1). Then,

ki < Kfom for all of a.

ISRN Materials Science

Note that the case « = 1, A = 1 gives the limiting values
= 0 and k[, = /2 which gives

T — .l
Kiom = T0V/ma.

This is the solution for edge crack of length a.

The normalized intensity factors for strain, electric dis-
placement, magnetic induction, electric field, and magnetic
field at the interface crack tip are defined by (78) and by the
following formula:

kF

nt

T _
int_o’

(108)

I q
q cu Kine

T i 109
int Tg (7‘[61/2)“ ( )
where g stands for one of y, D, B, E, and H.
Then we have
[kiynt; ki ki Kiaes kﬂt]
(110)

_V2(1 - a)8e
S 1+)VI-
respectively.

Of course, the normalized intensity factors satisfy the
constitutive equations (5), that is,

[Ays elshps qlshn; s A |,

[ s i) = € s —s =K1

nt> Mn nt>

(111)

with the matrix (6) or inverse form with the use of matrix
(C")™", defined by (17).

The analysis above implies that, for the magnetically
(or electrically) permeable interfacial cracks, the applied
magnetic (or electric) loadings have no influence on the
fracture behaviours of the crack tips.

Figures 10 and 11 are devoted to the variation of k{;,, and
Ko

We have

. 242 2
khom:T forpC=3+a (Pe:Pszl)
(112)

(pe = —1,pe = 1).

orpe = 1

The figures show that the normalized stress intensity
factor in homogeneous solid is only weakly dependent on the
elastic constants and dielectric permeabilities. In contrast k,
strongly depends on p, and p.. This is consistent with phys-
ical considerations; for large difference of piezocoefficients
pe < 0 or p. > 1 the ki, are larger than kj  (Figure 11).
From the Figure 10 it can be shown that the piezoelectric
ceramic II is more complaisant than piezoelectric ceramic I
(pc < 1), then k., > k. In contrast if p. > 1 meaning that
piezoelectric ceramic 11 is stiffer than piezoelectric ceramic I,
in this case ki, < ki

Other normalized field intensity factors are presented on
Figures 12 and 13.

The k£, is equal to zero for p, = 1 (Figure 12) and for
pe = 1 (Figure 13). From (81) one finds that k%, = 0 occurs
only when cl/cl, = elL/els. In Figure 13 we see that p, has a
strong influence on k&, and k£, and k., if p. < 1, and when

int int i
pe=1, k. =1, kE, = 0,and k2, = ¢, as expected.
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FIGURE 11: Normalized SIFs as a function of p, with p. = p, = 1.

Figure 14 presents the variation of normalized ERRs,
G/Ghom obtained from (87) with the use of (107).

There are two states where G = Gpom. The first state, in
which @ = 1/2 and A = 0, that is, ¢}, = cl,, corresponds
to crack in monolithic medium (no bi-material). The second
state, in which a and A tend to unity, corresponds to edge
crack problem (the second material is air). For & > 1/2 ERRs
decrease weakly from 1 to 0,69 for « = 3/4 and later increase
to unity for « — 1. In this case the piezoelectric ceramic
II is more elastically complaisant. The range 0 < o < 1/2

corresponds to the following cases: p. > 1 or p. > (1—m)/(1+
m) (in the case p. = —1); p, > —1/m and p, > 0 (for any ¢).
Then always G > Ghom and piezoelectric II are stiffer than
piezoelectric 1. Similar conclusions may be formulated for
magnetostrictive material, changing material parameters e;s
and &1 by qi5 and py;, respectively.

5.2.1. A Crack between a Piezoelectric Material and a Piezo-
magnetic Material. Magnetoelectroelastic materials usually
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FIGURE 12: Variation of kJ,, kb, (in C/m?) and k£, (in 10° kV/m) against p, with p, = p. = 1.

comprise alternating piezoelectric medium and piezomag-
netic medium. Here, we consider a special case. This is a
right medium I that is a piezoelectric and the left medium
II is a piezomagnetic (Case I) or inversely (Case II). The
material constants of the piezoelectric medium (No. I) and
piezomagnetic medium (No. II) have the following values
[16-18]:
BaTiO;-piezoelectric (barium titanate)

cl, =43 x 10°Nm2, els =11,6Cm™2,

015 = 0,
d{l = 0)

e, =11,2 x 107°CV'm},

ph =50 x 107°NA™2
(113)

CoFe;O4-piezomagnetic (cobalt iron oxide)

ch =453 x 10°Nm?,

gtk =550NA"'m™,
diy

efs = 0,
el =0,08 x 10°°CV !Im},

pll =590 x 107°NA™2
(114)
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The material parameter (57) assumes the values
2
A=1- . : s J=1IL (115)
5{14/(54114 + (‘3{5) /(%1 + 5511)) + C{14/<Czlll4 + (Q%) /(ﬂlu + //‘1111)>
where c£4 is the shear modulus of the cracked material, for —-0,1618, Casel 0,4483, Casel
Case I and Case II, respectively. We have = o=
—0,1028, Case Il 0,4672, Case I

(116)
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The energy release rates are obtained as follows

2
7a(15,0) x 10712 (T(I)) x [m?/N], Case I

2
ma(12,9) x 10712 (T(I)) x [m?/N], Case IL
(117)

For “homogenous” composite BaTiO3/CoFe,O4 with the
ratio roughly 50 : 50, we have with the use of arithmetic mean
cas = 44,15 x 10° Nm~2, and Gpom assumes the value

Ghom = na(11,4 % 10*12(15)2) x [m¥N].  (118)

We see that ERRs for bi-materials cannot be determined
by the mixture rule since it is a significant new feature in
interface crack problem considered in this paper.

Obviously for piezoelectric/piezomagnetic composite
(/1) is yly < pl) and el < €}, and (115) reduces to the
following formula:

(119)
where ¢f, is the harmonic mean of the piezoelectric and

piezomagnetic stiffened elastic constants ¢}, and ¢} defined
as follows:

1 11 1
o =5+ ) (120)
Ciy 2(&; 6‘;&)
where
2 2

I il
€1s 5115)

Cla 6£4+<1>, E£‘4=cff4+( T (121)
& I8!
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Using (119) to (121), we obtain that

—-0,1626, Casel 0,4480, Casel,
A= o=

—-0,1036, Case Il 0,4670, Case II,

2
7a(15,0) x 107'2(})” x [m*/N], Case ,

2
7a(12,9) x 1072(})" x [m¥N], Case IL.
(122)

6. Conclusions

A crack perpendicular to and terminating at the interface
of two bonded dissimilar piezo-electromagnetoelastic media
are studied in this paper. Analytical solutions and numerical
simulations suggest the following conclusions.

(i) Closed form solution has been obtained for a
crack between two dissimilar magneto electro-elastic
ceramics. The crack is localized in one materials, and
its one tip lies on the interface. Expressions for the
crack-tip field intensity factors, the electromagnetic
fields inside the crack, are given for electrically and
magnetically permeable crack assumptions.

(ii) The energy release rate can be explicitly expressed in
terms of the intensity factors. It is affected by electric-
magnetic properties of the constituents of the bi-
material media. The normalized energy release rate
is unity for homogeneous medium (p, = 1) and for
edge crack (p, = 0) and assumes minimum value 0,69
for p. = 3—-2+/2 = 0,18.If p, tends to infinity, also this
quantity tends to infinity (the interface is clamped).

(iii) For two identical Magnetoelectroelastic planes polar-

ized in opposite directions, we have K2, = 0 = K2,.

(iv) At interface we have KE, = 0 when cl/c}, = ell/els,
while K = 0if cll/cly = qi5/q}s.

(v) Application of electric and magnetic fields do not
alter the stress intensity factors; they depend on
the elastic, electric, and magnetic constants of bi-
material ceramic.

(vi) The coupling between electromagnetic fields and
mechanical field leads to existing electric displace-
ment and magnetic induction intensity factors at
the crack tip, which respond to the applied stress
intensity factor.

(vii) If magnetic effects are neglected, the result of the
stress intensity factors is the same as the solution for
the piezoelectric materials given by Li and Wang [9],
but k£, differs in sign.

nt

The results could be of particular interest to the analysis
and design of smart sensors and actuators constructed
from Magnetoelectroelastic composite laminates. Nowadays,
electromagnetoelastic coupled multiphase composite has
wide range applications in science and engineering such as
space planes, supersonic air planes, rockets, missiles nuclear
fusion, reactors, and submarines.
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