
International Scholarly Research Network
ISRN Materials Science
Volume 2012, Article ID 659352, 19 pages
doi:10.5402/2012/659352

Research Article

Antiplane Shear Crack Normal to
and Terminating at the Interface of Two Bonded
Piezo-Electro-Magneto-Elastic Materials

Bogdan Rogowski

Department of Mechanics of Materials, Technical University of Lodz, Al. Politechniki 6, 93-590 Lodz, Poland

Correspondence should be addressed to Bogdan Rogowski, bogdan.rogowski@p.lodz.pl

Received 15 December 2011; Accepted 13 February 2012

Academic Editor: V. Sglavo

Copyright © 2012 Bogdan Rogowski. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The magnetoelectroelastic analysis of two bonded dissimilar piezo-electro-magneto-elastic ceramics with a crack perpendicular to
and terminating at the interface is made. By using the Fourier integral transform (in perpendicular directions in each materials),
the mixed boundary conditions and continuity conditions are transformed to a singular integral equation with generalized Cauchy
kernel, the solution of which has been well studied, and classical methods are directly applicable here to obtain the closed form
solution. The results are presented for a permeable crack under anti-plane shear loading and in-plane electric and magnetic
loadings, as prescribed electric displacement and magnetic inductions or electric and magnetic fields. Obtained results indicate
that the magnetoelectroelastic field near the crack tip in the homogeneous PEMO-elastic ceramic is dominated by a traditional
inverse square-root singularity, while the coupled field near the crack tip at the interface exhibits the singularity of power law r−α,
r being distant from the interface crack tip and α depending on the material constants of a bimaterial. In particular, electric and
magnetic fields have no singularity at the crack tip in a homogeneous solid, whereas they are singular around the interface crack
tip. Numerical results are given graphically to show the effects of the material properties on the singularity order, field intensity
factors and energy release rates. Results presented in this paper should have potential applications to the design of multilayered
magnetoelectroelastic structures.

1. Introduction

The newly emerging materials named magnetoelectroelastic-
ity, which exhibit piezoelectric, piezomagnetic, and electro-
magnetic properties, have found increasing wide engineer-
ing applications, particularly in aerospace and automotive
industries. Magnetoelectroelastic solids have been widely
used as transducer, sensors, and actuators in smart struc-
tures. Because of the brittleness of PEMO-elastic materials,
a high possibility of material debonding and cracking or
sliding of the interface exists. Consequently, this problem has
been the subject of research and discussion in the literature
on elasticity theory of coupled fields. Li and Kardomateas [1]
investigated the mode III interface crack problem for dis-
similar piezo-electromagnetoelastic bimaterial media. The
extended Stroh’s theory and analytic continuation principle
of complex analysis have been used to obtain the solution for

interfacial cracks between two dissimilar Magnetoelectroe-
lastic half-planes by Li and Kardomateas [2]. The problem
for an antiplane interface crack between two dissimilar
PEMO-elastic layers was analyzed by Wang and Mai [3].
Gao et al. [4] derived the exact solution for a permeable
interface crack between two dissimilar Magnetoelectroelastic
solids under general applied loads. Gao et al. [5] derived also
the static solution related to antiplane crack problem. The
antiplane shear cracks are a class of simple problems. But, for
the case of a crack perpendicular to the interface, the problem
becomes more complicated. This problem has been subject
of research in the classical literature of elasticity theory.
Cook and Erdogan [6] and Erdogan and Cook [7] were
apparently the first to publish the solution of this problem for
two bonded dissimilar isotropic half-planes. For piezoelectric
biceramics an arbitrarily oriented plane crack terminating at
the interface was extended by Qin and Yu [8]. The antiplane
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shear crack normal to and terminating at the interface of two
piezoelectric ceramics was extended later by Li and Wang [9].
Although the above studies deal strictly with piezoelectric, it
is reasonable to assume that the extension of the findings to
electromagnetoelastic materials is valid.

To the best of author knowledge, the behaviour of interfa-
cial cracks normal to and terminating at the interface of two
bonded piezo-electromagnetoelastic materials has not been
addressed yet. Motivated by these considerations, the author
investigates the antiplane deformations and in-plane electric
and magnetic fields of a PEMO-elastic bi-material with
Mode-III interface crack normal to and terminating at the
interface.

The crack is assumed to be electrically and magnetically
permeable. Under applied electric, magnetic, and mechanical
loading, electric, magnetic, and elastic behaviours near both
crack tips are obtained. Two kinds of loading conditions are
adopted. By using Fourier integral transform, in perpendic-
ular directions in each materials, the associated boundary
value problem is transformed to a singular integral equation
with generalized Cauchy kernel. Similar types of equations
have been studied, and classical methods of their solutions
are directly applicable here to obtain the solution in closed
form. The results indicate that magnetoelectroelastic field
near the crack tip in a homogeneous PEMO-elastic ceramic
exhibits an inverse square-root singularity, while singular
field near the interface crack tip is dominant by a singularity
of power law. The singularity order is dependent on relevant
2 × 6 material constants of two ceramics. The effects of
magneto-electro-mechanical parameters on the field inten-
sity factors are evaluated by numerical analysis, which could
be of particular interest to the analysis and design of smart
sensors/actuators constructed from Magnetoelectroelastic
composite laminates.

2. Formulation of the Problem

2.1. Basic Equations. For a linearly Magnetoelectroelastic
medium under antiplane shear coupled with in-plane elec-
tric and magnetic fields, there are only the nontrivial anti-
plane displacement w:

ux = 0, uy = 0, uz = w
(
x, y

)
, (1)

strain components γxz and γyz:

γxz = ∂w

∂x
, γyz = ∂w

∂y
(2)

stress components τxz and τyz, in-plane electrical and
magnetic potentials φ and ψ, which define electric and
magnetic field components Ex, Ey , Hx, and Hy :

Ex = −∂φ
∂x

, Ey = −∂φ
∂y

, Hx = −∂ψ
∂x

, Hy = −∂ψ
∂y
(3)

and electrical displacement components Dx, Dy , and mag-
netic induction components Bx, and By with all field
quantities being the functions of coordinates x and y.

The relations (2) and (3) have the following form:

γαz = w,α, Eα = −φ,α, Hα = −ψ,α, (4)

where α = x, y and w,α = ∂w/∂α.
For linearly Magnetoelectroelastic medium, the coupled

constitutive relations can be written in the matrix form as
follows:

[ταz,Dα,Bα]T = C
[
γαz,−Eα,−Hα

]T , (5)

where the superscript T denotes the transpose of a matrix
and

C =

⎡

⎢
⎢
⎢
⎣

c44 e15 q15

e15 −ε11 −d11

q15 −d11 −μ11

⎤

⎥
⎥
⎥
⎦

, (6)

where c44 is the shear modulus along the z-direction, which
is direction of poling and is perpendicular to the isotropic
plane (x, y), ε11 and μ11 are dielectric permittivity, and
magnetic permeability coefficients, respectively, e15, q15, and
d11 are piezoelectric, piezomagnetic and magneto-electric
coefficients, respectively.

The mechanical equilibrium equation (called as Euler
equation) and the charge and current conservation equations
(called as Maxwell equations), in the absence of the body
force electric and magnetic charge densities, can be written
as

τzα,α = 0, Dα,α = 0, Bα,α = 0, α = x, y.
(7)

Subsequently, the Euler and Maxwell equations take the
following form:

C
[∇2w,∇2φ,∇2ψ

]T = [0, 0, 0]T , (8)

where ∇2 = ∂2/∂x2 + ∂2/∂y2 is the two-dimensional Laplace
operator.

Since |C| /= 0, one can decouple the (8) as follows:

∇2w = 0, ∇2φ = 0, ∇2ψ = 0. (9)

If we introduce, for convenience of mathematics in some
boundary value problems, two unknown functions

[
χ − e15w,η− q15w

]T = C0
[
φ,ψ

]T , (10)

where

C0 =
⎡

⎣
−ε11 −d11

−d11 −μ11

⎤

⎦, (11)

then

[
φ,ψ

]T = C0
−1
[
χ − e15w,η− q15w

]T
, (12)

where

C0
−1 = 1

ε11μ11 − d2
11

⎡

⎣
−μ11 d11

d11 −ε11

⎤

⎦ =
⎡

⎣
e1 e2

e2 e3

⎤

⎦. (13)
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The governing field variables are

τzk = c̃44w,k − αDk − βBk,

φ = αw + e1χ + e2η,

ψ = βw + e2χ + e3η,

Dk = χ,k ,

Bk = η,k, k = x, y,

(14)

∇2w = 0, ∇2χ = 0, ∇2η = 0, (15)

where

c̃44 = c44 + αe15 + βq15,

α = μ11e15 − d11q15

ε11μ11 − d2
11

= −(e1e15 + e2q15
)
,

β = ε11q15 − d11e15

ε11μ11 − d2
11

= −(e3q15 + e2e15
)
.

(16)

Note that c̃44 is the piezo-electro-magnetically stiffened
elastic constant.

Note also that the inverse of a matrix C is defined by
parameters α, β, c̃44 and e1, e2, e3 as follows:

C−1 = 1
c̃44

⎡

⎢
⎢
⎢
⎣

1 α β

α α2 + c̃44e1 αβ + c̃44e2

β αβ + c̃44e2 β2 + c̃44e3

⎤

⎥
⎥
⎥
⎦
. (17)

These material parameters will appear in our solutions.

2.2. Boundary Conditions. Consider a crack terminating
at the interface of two bonded dissimilar PEMO-elastic
ceramics polarized in the z direction. For convenience, we
denote the PEMO-elastic ceramics occupying the right and
left half-planes x ≥ 0 and x ≤ 0 as piezoceramics I and II,
respectively, shown in Figure 1.

Let a crack be perpendicular to the interface and be
situated at [0, a] (a > 0) in the positive x-direction in
ceramic I. For an antiplane shear crack having no thickness
(so-called “mathematical crack”), the crack surfaces contact
each other, in reality; so the crack is electrically and mag-
netically contacted. Consequently, the electric and magnetic
boundary conditions at the crack surfaces can be described
according to so-called double permeable conditions, namely,

Dy(x, 0+) = Dy(x, 0−), By(x, 0+) = By(x, 0−),

φ(x, 0+) = φ(x, 0−), ψ(x, 0+) = ψ(x, 0−).
(18)

Note that besides the crack surfaces, the above condi-
tions, in fact, certainly hold at the crack-absent parts of the
crack plane. Using the relations (14), it can be shown that the
condition (18) may be replaced by conditions as follows:

χ,y(x, 0+) = χ,y(x, 0−), η,y(x, 0+) = η,y(x, 0−), (19a)

χ = e15w, η = q15w for x, y = 0±. (19b)
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Figure 1: Two bonded dissimilar PEMO-elastic ceramics with a
crack perpendicular to and terminating at the interface.

Let the constant mechanical loads and uniform electric
displacement and magnetic induction or electric field and
magnetic field be applied at infinity (two cases of electric and
magnetic loads), and the following:

τI
yz

(
x, y

) = τI
0, DI

y

(
x, y

) = DI
0, BI

y

(
x, y

) = BI
0

or EI
y

(
x, y

) = EI
0, H I

y

(
x, y

) = H I
0, x > 0, y −→ ±∞

τII
yz

(
x, y

) = τII
0 , DII

y

(
x, y

) = DII
0 , BII

y

(
x, y

) = BII
0

or EII
y

(
x, y

) = EII
0 , H II

y

(
x, y

) = H II
0 , x < 0, y −→ ±∞,

(20)

where τI
0(τII

0 ), DI
0(DII

0 ), BI
0(BII

0 ) or EI
0(EII

0 ), H I
0(H II

0 ) are pre-
scribed constants, a quantity with superscribes I or II that
specifies the one in the PEMO-ceramic I or II, respectively.
To solve the crack problem in linear elastic solids, the
superposition technique is usually used. Thus, we first solve
the Magnetoelectroelastic field problem without the cracks in
the medium under electric, magnetic, and mechanical loads.
This elementary solution is the following:

τJyz = τJ0,

DJ
y = DJ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

DJ
0, case I

[
e15

c44
τ0 +

(

ε11 +
e2

15

c44

)

E0

+
(
d11 +

e15q15

c44

)
H0

]J
, case II

BJy = BJ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

BJ0, case I
[
q15

c44
τ0 +

(
d11 +

e15q15

c44

)
E0

+

(

μ11 +
q2

15

c44

)

H0

]J

, case II

(21)

with J = I, II.
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In addition the crack surfaces are traction-free, that is,

τI
yz

(
x, y

) = 0; y = 0±, 0 < x < a, (22)

and owing to the symmetry one can directly write following
conditions:

wI(x, 0) = 0, x > a, wII(x, 0) = 0, x < 0. (23)

We further consider the situation when the interface
under consideration is perfectly bonded, across which the
displacement, stress, electric and magnetic potentials, elec-
tric displacement, and magnetic induction are continuous

wI(0, y
) = wII(0, y

)
, τI

xz

(
0, y

) = τII
xz

(
0, y

)
; −∞ < y <∞,

φI(0, y
) = φII(0, y

)
, DI

x

(
0, y

) = DII
x

(
0, y

)
; −∞ < y <∞,

ψI(0, y
) = ψII(0, y

)
, BI

x

(
0, y

) = BII
x

(
0, y

)
; −∞ < y <∞.

(24)

3. Method of Solution

From the symmetry of the problem, it is sufficient to consider
the upper half-plane of the bi-ceramic. Consequently, for
y ≥ 0, it is easily found that an appropriate solution of the
problem, which satisfies the boundary conditions (19a) and
(20), takes of the following form:

⎡

⎢
⎢
⎢
⎣

wI
(
x, y

)

χI
(
x, y

)

ηI
(
x, y

)

⎤

⎥
⎥
⎥
⎦
=

⎡

⎢
⎢
⎢
⎣

γI

DI

BI

⎤

⎥
⎥
⎥
⎦
y +

⎡

⎢
⎢
⎢
⎣

1

eI
15

qI
15

⎤

⎥
⎥
⎥
⎦

∫∞

0
A1(ξ)e−yξ cos(ξx)dξ

+
∫∞

0

⎡

⎢
⎢
⎢
⎣

B1(ξ)

C1(ξ)

D1(ξ)

⎤

⎥
⎥
⎥
⎦
e−ξx sin

(
ξ y
)
dξ,

(25)

for x ≥ 0 and

⎡

⎢
⎢
⎢
⎣

wII
(
x, y

)

χII
(
x, y

)

ηII
(
x, y

)

⎤

⎥
⎥
⎥
⎦
=

⎡

⎢
⎢
⎢
⎣

γII

DII

BII

⎤

⎥
⎥
⎥
⎦
y +

⎡

⎢
⎢
⎢
⎣

1

eII
15

qII
15

⎤

⎥
⎥
⎥
⎦

∫∞

0
A2(ξ)e−yξ cos(ξx)dξ

+
∫∞

0

⎡

⎢
⎢
⎢
⎣

B2(ξ)

C2(ξ)

D2(ξ)

⎤

⎥
⎥
⎥
⎦
eξx sin

(
ξ y
)
dξ

(26)

for x ≤ 0, where Aj , Bj , Cj , and Dj ( j = 1, 2) are unknowns
to be determined from given boundary conditions and where

γJ = τJ0 + αJDJ + βJBJ

c̃ J44

; J = I, II. (27)

Furthermore with the aid of (14), one can give the com-
ponents of stress, electric displacement, magnetic induction,
and electric and magnetic potentials

⎡

⎢
⎢
⎢
⎣

τI
yz

(
x, y

)

DI
y

(
x, y

)

BI
y

(
x, y

)

⎤

⎥
⎥
⎥
⎦
=

⎡

⎢
⎢
⎢
⎣

τI
0

DI

BI

⎤

⎥
⎥
⎥
⎦
−

⎡

⎢
⎢
⎢
⎢
⎢
⎣

cI
44

eI
15

qI
15

⎤

⎥
⎥
⎥
⎥
⎥
⎦

∫∞

0
ξA1(ξ)e−yξ cos(ξx)dξ

+
∫∞

0
ξ

⎡

⎢
⎢
⎢
⎣

c̃ I
44B1(ξ)− αIC1(ξ)− βID1(ξ)

C1(ξ)

D1(ξ)

⎤

⎥
⎥
⎥
⎦

× e−ξx cos
(
ξ y
)
dξ,

(28)

⎡

⎣
φI
(
x, y

)

ψI
(
x, y

)

⎤

⎦ =C−1
I

⎡

⎢
⎢
⎢
⎣

τI
0

DI

BI

⎤

⎥
⎥
⎥
⎦
y + 0 +

⎡

⎣
α e1 e2

β e2 e3

⎤

⎦

I

×
∫∞

0
ξ

⎡

⎢
⎢
⎢
⎣

B1(ξ)

C1(ξ)

D1(ξ)

⎤

⎥
⎥
⎥
⎦
e−ξx sin

(
ξ y
)
dξ

(29)

for x ≥ 0 and

⎡

⎢
⎢
⎢
⎣

τII
yz

(
x, y

)

DII
y

(
x, y

)

BII
y

(
x, y

)

⎤

⎥
⎥
⎥
⎦
=

⎡

⎢
⎢
⎢
⎣

τII
0

DII

BII

⎤

⎥
⎥
⎥
⎦
−

⎡

⎢
⎢
⎢
⎣

cII
44

eII
15

qII
15

⎤

⎥
⎥
⎥
⎦

∫∞

0
ξA2(ξ)e−yξ cos(ξx)dξ

+
∫∞

0
ξ

⎡

⎢
⎢
⎢
⎣

c̃ II
44B1(ξ)− αIIC2(ξ)− βIID2(ξ)

C2(ξ)

D2(ξ)

⎤

⎥
⎥
⎥
⎦

× eξx cos
(
ξ y
)
dξ,

(30)

⎡

⎣
φII
(
x, y

)

ψII
(
x, y

)

⎤

⎦ = C−1
II

⎡

⎢
⎢
⎢
⎢
⎣

τII
0

DII

BII

⎤

⎥
⎥
⎥
⎥
⎦
y + 0 +

⎡

⎣
α e1 e2

β e2 e3

⎤

⎦

II

×
∫∞

0
ξ

⎡

⎢
⎢
⎢
⎣

B2(ξ)

C2(ξ)

D2(ξ)

⎤

⎥
⎥
⎥
⎦
eξx sin

(
ξ y
)
dξ

(31)
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for x ≤ 0 and
⎡

⎢
⎢
⎢
⎣

τI
xz

(
x, y

)

DI
x

(
x, y

)

BI
x

(
x, y

)

⎤

⎥
⎥
⎥
⎦
= −

⎡

⎢
⎢
⎢
⎣

cI
44

eI
15

qI
15

⎤

⎥
⎥
⎥
⎦

∫∞

0
ξA1(ξ)e−yξ sin(ξx)dξ

−
∫∞

0
ξ

⎡

⎢
⎢
⎢
⎣

c̃ I
44B1(ξ)− αIC1(ξ)− βID1(ξ)

C1(ξ)

D1(ξ)

⎤

⎥
⎥
⎥
⎦

× e−ξx sin
(
ξ y
)
dξ

(32)

for x ≥ 0 and
⎡

⎢
⎢
⎢
⎣

τII
xz

(
x, y

)

DII
x

(
x, y

)

BII
x

(
x, y

)

⎤

⎥
⎥
⎥
⎦
= −

⎡

⎢
⎢
⎢
⎣

cII
44

eII
15

qII
15

⎤

⎥
⎥
⎥
⎦

∫∞

0
ξA2(ξ)e−yξ sin(ξx)dξ

+
∫∞

0
ξ

⎡

⎢
⎢
⎢
⎣

c̃ II
44B2(ξ)− αIIC2(ξ)− βIID2(ξ)

C2(ξ)

D2(ξ)

⎤

⎥
⎥
⎥
⎦

× eξx sin
(
ξ y
)
dξ

(33)

for x ≤ 0.
Now, application of the continuity conditions (24), at the

interface x = 0 to (25) to (33), yields

τI
0 + αIDI + βIBI

c̃I
44

= τII
0 + αIIDII + βIIBII

c̃II
44

, (34)

C−1
I

⎡

⎢
⎢
⎢
⎣

τI
0

DI

BI

⎤

⎥
⎥
⎥
⎦
= C−1

II

⎡

⎢
⎢
⎢
⎣

τII
0

DII

BII

⎤

⎥
⎥
⎥
⎦

,

C−1
J = 1

c̃ J44

⎡

⎣
α α2 + c̃ I

44e1 αβ + c̃ I
44e2

β αβ + c̃ I
44e2 β2 + c̃ I

44e3

⎤

⎦

J

(35)

−
[
c̃ I

44B1(ξ)− αIC1(ξ)− βID1(ξ)
]

=
[
c̃ II

44B2(ξ)− αIIC2(ξ)− βIID2(ξ)
]

,

C1(ξ) = −C2(ξ), D1(ξ) = −D2(ξ)

(36)

⎡

⎣
αIIeII

1 e
II
2

βIIeII
2 e

II
3

⎤

⎦

⎡

⎢
⎢
⎢
⎣

B2(ξ)

C2(ξ)

D2(ξ)

⎤

⎥
⎥
⎥
⎦
=
⎡

⎣
αIeI

1e
I
2

βIeI
2e

I
3

⎤

⎦

⎡

⎢
⎢
⎢
⎣

B1(ξ)

C1(ξ)

D1(ξ)

⎤

⎥
⎥
⎥
⎦
. (37)

The first two equations, that is, (34) and (35), give three
constraints for applied remote electro-magneto-mechanical
loadings, from which we may determine the loadings of
ceramics II, namely, τII

0 , DII, and BII by means of loadings
of ceramics I, namely, τI

0, DI, and BI. In other words, in
order to guarantee the continuity of all physical quantities
at the perfectly bonded interface, applied electro-magneto-
mechanical loadings must obey the relations (34) and (35).
The five equations (36) and (37) give the constraints with
respect to unknown functions; that is, the disturbed field,
due to the presence of a cracks, requires to satisfy those
equations.

From the condition (23)2 along with (26), one gets

A2(ξ) = 0. (38)

Continuity of w(x, y) at the interface x = 0 requires
∫∞

0
[B2(ξ)− B1(ξ)] sin

(
ξ y
)
dξ =

∫∞

0
A1(ξ)e−ξ ydξ (39)

so that

B2(ξ)− B1(ξ) = 2
π

∫∞

0
A1
(
η
) ξ

ξ2 + η2
dη, (40)

since ∫∞

0
e−ηy sin

(
ξ y
)
dy = ξ

ξ2 + η2
. (41)

The result (40) in connection with (36) and (37) yields

B1(ξ) = − 2
π

I
c̃ II

44Δ +
(
eII

3 + eI
3

)
αII
(
αII − αI

)
+
(
eII

1 + eI
1

)
βII
(
βII − βI

)

(
c̃ I

44 + c̃ II
44

)
Δ +

(
eII

3 + eI
3

)
(αII − αI)2 +

(
eII

1 + eI
1

)(
βII − βI

)2

+
2
π

I

(
eII

2 + eI
2

)(
αIβII + βIαII + 2αIIβII

)

(
c̃ I

44 + c̃ II
44

)
Δ +

(
eII

3 + eI
3

)
(αII − αI)2 +

(
eII

1 + eI
1

)(
βII − βI

)2 ,

B2(ξ) = 2
π

I
c̃ I

44Δ−
(
eII

3 + eI
3

)
αI
(
αII − αI

)−
(
eII

1 + eI
1

)
βI
(
βII − βI

)

(
c̃ I

44 + c̃ II
44

)
Δ +

(
eII

3 + eI
3

)
(αII − αI)2 +

(
eII

1 + eI
1

)(
βII − βI

)2

+
2
π

I

(
eII

2 + eI
2

)(
αIβII + βIαII + 2αIIβII

)

(
c̃ I

44 + c̃ II
44

)
Δ +

(
eII

3 + eI
3

)
(αII − αI)2 +

(
eII

1 + eI
1

)(
βII − βI

)2 ,
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C1(ξ) = B1(ξ)
βI
(
eII

2 + eI
2

)
− αI

(
eII

3 + eI
3

)

Δ
− B2(ξ)

βII
(
eII

2 + eI
2

)
− αII

(
eII

3 + eI
3

)

Δ
,

D1(ξ) = −B1(ξ)
βI
(
eII

1 + eI
1

)
− αI

(
eII

2 + eI
2

)

Δ
+ B2(ξ)

βII
(
eII

1 + eI
1

)
− αII

(
eII

2 + eI
2

)

Δ
,

(42)

where

Δ =
(
eII

1 + eI
1

)(
eII

3 + eI
3

)
−
(
eII

2 + eI
2

)2
, (43)

I =
∫∞

0
A1
(
η
) ξ

ξ2 + η2
dη. (44)

In the special cases, we obtain that
for both piezoelectric materials

B1(ξ) = − 2
π

I
cII

44

(
εI

11 + εII
11

)
+ eII

15

(
eI

15 + eII
15

)

(
cI

44 + cII
44

)(
εI

11 + εII
11

)
+
(
eI

15 + eII
15

)2 ,

B2(ξ) = 2
π

I
cI

44

(
εI

11 + εII
11

)
+ eI

15

(
eI

15 + eII
15

)

(
cI

44 + cII
44

)(
εI

11 + εII
11

)
+
(
eI

15 + eII
15

)2 ,

C1(ξ) = − 2
π

I
eI

15

(
cII

44ε
II
11 +

(
eII

15

)2
)

+ eII
15

(
cI

44ε
I
11 +

(
eI

15

)2
)

(
cI

44 + cII
44

)(
εI

11 + εII
11

)
+
(
eI

15 + eII
15

)2 ,

D1(ξ) = 0,
(45)

for both piezomagnetic materials

B1(ξ) = − 2
π

I
cII

44

(
μI

11 + μII
11

)
+ qII

15

(
qI

15 + qII
15

)

(
cI

44 + cII
44

)(
μI

11 + μII
11

)
+
(
qI

15 + qII
15

)2 ,

B2(ξ) = 2
π

I
cI

44

(
μI

11 + μII
11

)
+ qI

15

(
qI

15 + qII
15

)

(
cI

44 + cII
44

)(
μI

11 + μII
11

)
+
(
qI

15 + qII
15

)2 ,

C1(ξ) = 0,

D1(ξ) = − 2
π

I
qI

15

(
cII

44μ
II
11 +

(
qII

15

)2
)

+ qII
15

(
cI

44μ
I
11 +

(
qI

15

)2
)

(
cI

44 + cII
44

)(
μI

11 + μII
11

)
+
(
qI

15 + qII
15

)2 .

(46)

The formulae (45) are equivalent to that derived by
Li and Wang [9] who solved the problem of two bonded
dissimilar piezoelectric media with an antiplane shear crack
perpendicular to and terminated at the interface. Next, we
denote that

g(x) = ∂wI(x, 0+)
∂x

. (47)

From the boundary conditions (23), g(x) should satisfy
the single-value displacement constraint condition, that is,

∫ a

0
g(x)dx = 0. (48)

Utilizing (25)1 in (23) leads to

wI(x, 0) =
∫∞

0
A1(ξ) cos(ξx)dξ = 0, x > a (49)

from which together with (47), by using the inverse Fourier
transform, can be deduced

A1(ξ) = − 2
πξ

∫ a

0
g(t) sin(ξt)dt. (50)

Now, we calculate the following:

∫∞

0

ξ

ξ2 + η2
A1
(
η
)
dη = − 2

π
ξ
∫ a

0
g(t)dt

∫∞

0

sin
(
ηt
)

η
(
ξ2 + η2

)dη.

(51)

Using the result

∫∞

0

sin
(
ηt
)

η
(
ξ2 + η2

)dη =
π
(

1− e−ξt
)

2ξ2
, (52)

we find with the use of (48) that

∫∞

0

ξ

ξ2 + η2
A1
(
η
)
dη =

∫ a

0

e−ξt

ξ
g(t)dt. (53)

Substitution of (53) into (42) yields the expressions for
B1(ξ), B2(ξ), C1(ξ), and D1(ξ) in terms of g(x).

From fraction-free condition (22) from (28)1, one can
derive

∫∞

0
ξ
[
cI

44A1(ξ) cos(ξx)

−
(
c̃ I

44B1(ξ)− αIC1(ξ)− βID1(ξ)
)
e−ξx

]
dξ = τI

0.

(54)

Substituting (50) and (42) with the use of (53) into (54),
we have with the help of known integrals

2
π

∫∞

0
sin(ξt) cos(ξx)dξ = 1

π

(
1

t − x +
1

t + x

)
,

∫∞

0
e−ξ(t+x)dξ = 1

t + x
; t + x > 0

(55)

the following singular integral equation with generalized
Cauchy kernel for g(t):

1
π

∫ a

0

(
1

t − x +
λ

t + x

)
g(t)dt = − τI

0

cI
44

; 0 < x < a, (56)

where
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λ = 1− 2
c̃II

44Δ +
(
eII

3 + eI
3

)
αII
(
αII − αI

)
+
(
eII

1 + eI
1

)
βII
(
βII − βI

)−
(
eII

2 + eI
2

)(
αIβII + βIαII + 2αIIβII

)

(
c̃I

44 + c̃II
44

)
Δ +

(
eII

3 + eI
3

)
(αII − αI)2 +

(
eII

1 + eI
1

)(
βII − βI

)2

×
⎡

⎣ c̃
I
44

cI
44
−
(
eII

3 + eI
3

)
αI
(
αII − αI

)
+
(
eII

1 + eI
1

)
βI
(
βII − βI

)−
(
eII

2 + eI
2

)(
αIβII + βIαII − 2αIβI

)

cI
44Δ

⎤

⎦

+ 2

(
eII

3 + eI
3

)
αIαII +

(
eII

1 + eI
1

)
βIβII −

(
eII

2 + eI
2

)(
αIβII + βIαII

)

cI
44Δ

.

(57)

For both piezoelectric materials, λ is obtained as follows:

λ =
(
cI

44 − cII
44

)(
εI

11 + εII
11

)
+
(
eI

15

)2 −
(
eII

15

)2
+ 2eI

15

(
eII

15 − eI
15

(
cII

44/c
I
44

))

(
cI

44 + cII
44

)(
εI

11 + εII
11

)
+
(
eI

15 + eII
15

)2 . (58)

The value of λ for both piezomagnetic materials is
obtained from formula (58) if we replace ε11 by μ11 and e15 by
q15. It is noted that, in a usual integral equation with Cauchy
kernel, other kernels except Cauchy kernel are continuous
over the entire interval involved. In addition to the singu-
larity of the Cauchy kernel terms 1/(t − x) as t → x in
(56), the other term λ/(t + x) is also unbonded as t, x →
0 simultaneously. Particularly for two elastic dielectric,
meaning e15 = 0, and diamagnetic, meaning q15 = 0, elastic
field and electric field, and elastic field and magnetic field are
not coupled as well as when d11 = 0, the electromagnetic field
does not occur. In this case, λ reduces to

λ = cI
44 − cII

44

cI
44 + cII

44
. (59)

Then the integral equation is simplified to

1
π

∫ a

0

(
1

t − x +
λ

t + x

)
g(t)dt = − τ0

c44
. (60)

This equation is equivalent to that derived by Cook and
Erdogan [6] and Erdogan and Cook [7], who were apparently
the first to publish the solution of an antiplane shear crack
terminating at the interface of two joined purely elastic
media.

4. Magnetoelectroelastic Field

4.1. Solution of the Singular Integral Equation. Based on the
result derived by Bueckner [10], the desired solution for g(t)
of (56) subjected to (48) can be obtained as follows:

g(x) = τI
0

2cI
44 sin(πα/2)

×
[(

x

a +
√
a2 − x2

)α( αa√
a2 − x2

+ 1
)

+
(

x

a +
√
a2 − x2

)−α( αa√
a2 − x2

− 1
)]

(61)

for 0 < x < a with

cos(πα) = −λ, (62)

where 0 < α < 1.
Once g(t) is determined the crack tearing displacement

can be obtained by the following integrations:

wI(x, 0+) =
∫ x

0
g(x)dx

= − τI
0x

2cI
44 sin(πα/2)

×
[(

x

a +
√
a2 − x2

)α
−
(

x

a +
√
a2 − x2

)−α]

.

0 ≤ x ≤ a
(63)

4.2. Crack Tearing Displacement. Expanding the expression
(63) near the crack tips yields the asymptotic crack tearing
displacement as

wI(x, 0) = τI
0

cI
44

α

sin(πα/2)

√
2a(a− x) +O(r); r = a− x ≈ 0

wI(x, 0) = τI
0a

α

2cI
44 sin(πα/2)

x1−α +O(r); r = x ≈ 0

(64)

at the right and left crack tip.
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Figure 2: The curve λ = − cos(πα); λ is the bi-material parameter,
and α is singularity order parameter.

HereO(r) denotes the infinitesimal terms compared to r,
r being the distance from the crack tip. Only for α = 1/2 the
behaviours of the crack tearing displacement for both tips are
the same.

4.3. Asymptotic Crack-Tip Field. Antiplane shear crack and
in-plane electric displacement and magnetic induction may
be deduced by evaluating the following integrals:

τI
yz(x, 0) = 1

π
cI

44

∫ a

0

(
1

t − x +
λ

t + x

)
g(t)dt + τI

0,

DI
y(x, 0) = 1

π
eI

15

∫ a

0

(
1

t − x +
1− 2λD

1 + t

)
g(t)dt +DI,

BI
y(x, 0) = 1

π
qI

15

∫ a

0

(
1

t − x +
1− 2λB

1 + t

)
g(t)dt + BI,

(65)

for x > a and

τII
yz(x, 0) = 1− λ

π
cI

44

∫ a

0

g(t)
t − xdt + τII

0 ,

DII
y (x, 0) = 2λD

π
eI

15

∫ a

0

g(t)
t − xdt +DII,

BII
y (x, 0) = 2λB

π
qI

15

∫ a

0

g(t)
t − xdt + BII

(66)

for x < 0, where 1− λ is defined by (57) and

eI
15λD =

{
Δ
[(
c̃ II

44α
I + c̃ I

44α
II
)(
eII

3 + eI
3

)

−
(
c̃ II

44β
I + c̃ I

44β
II
)(
eII

2 + eI
2

)]
+
(
eII

3 + eI
3

)

×
(
eII

2 + eI
2

)(
αII − αI

)(
αIβII + βIαII + 2αIIβII

)

+
(
eII

3 + eI
3

)(
eII

1 + eI
1

)(
βII − βI

)(
αIβII − βIαII

)

+
(
eII

2 + eI
2

)2(
βII − βI

)(
αIβII + βIαII + 2αIIβII

)}

×
{
Δ
[(
c̃ I

44 + c̃ II
44

)
Δ +

(
eII

3 + eI
3

)(
αII − αI

)2

+
(
eII

1 + eI
1

)(
βII − βI

)2
]}−1

,

qI
15λB =

{
Δ
[(
c̃ II

44β
I + c̃ I

44β
II
)(
eII

1 + eI
1

)

−
(
c̃ II

44α
I + c̃ I

44α
II
)(
eII

2 + eI
2

)]
−
(
eII

1 + eI
1

)

×
(
eII

2 + eI
2

)(
βII − βI

)(
αIβII + βIαII + 2αIIβII

)

−
(
eII

2 + eI
2

)(
eII

1 + eI
1

)(
βII − βI

)(
αIβII − βIαII

)

−
(
eII

2 + eI
2

)2(
αII − αI

)(
αIβII + βIαII + 2αIIβII

)}

×
{
Δ
[(
c̃ I

44 + c̃ II
44

)
Δ +

(
eII

3 + eI
3

)(
αII − αI

)2

+
(
eII

1 + eI
1

)(
βII − βI

)2
]}−1

.

(67)

For both piezoelectric or piezomagnetic materials, (67)
give

eI
15λD =

eI
15

(
cII

44ε
II
11 +

(
eII

15

)2
)

+ eII
15

(
cI

44ε
I
11 +

(
eI

15

)2
)

(
cI

44 + cII
44

)(
εI

11 + εII
11

)
+
(
eI

15 + eII
15

)2 ,

qI
15λB = 0

(68)

or

eI
15λD = 0,

qI
15λB =

qI
15

(
cII

44μ
II
11 +

(
qII

15

)2
)

+ qII
15

(
cI

44μ
I
11 +

(
qI

15

)2
)

(
cI

44 + cII
44

)(
μI

11 + μII
11

)
+
(
qI

15 + qII
15

)2 .

(69)

The analytical expressions for physical quantities may
be obtained substituting the solution (61) into (65) and
(66). We omit full solution and pay our attentions to the
asymptotic crack-tip field. This is very interest from the view
point of fracture mechanics. From (61), one can write out
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the singular behaviour of the function g(x) near the point
x = 0 and x = a by the following asymptotic expressions:

g(x) = − τI
0

2cI
44

α

sin(πα/2)

√
2a
a− x +O(1); x ≈ a− 0,

(70)

g(x) = − τI
0

2cI
44

α− 1
sin(πα/2)

[
2(a− x)

x

]α
+O(1); x ≈ 0 + 0,

(71)

where O(1) stands for nonsingular terms.
Now we define the intensity factor at the right crack tip in

the homogeneous solid and the left crack tip at the interface
of a bimedium as

K
q
hom = lim

x→ a+

√
2π(x − a)qI(x, 0+),

K
q
int = lim

x→ 0−
(−2πx)αqII(x, 0+),

(72)

respectively, where q stands for one of τyz, γyz, Dy , By , Ey ,
and Hy .

4.3.1. Magnetoelectroelastic Field near the Crack Tip in the
Homogeneous PEMO-Elastic Ceramics. Using the integral

1
π

∫ a

0

1
(t − x)

√
a− t dt = −

2
π
√
x − a tan−1

√
a

x − a , x > a,

(73)

we obtain from (65)1 that

τI
yz(x, 0) = 1

π
cI

44

∫ a

0

g(t)
t − xdt +O(1) = Kτ

hom√
2π(x − a)

, (74)

where

Kτ
hom =

α

sin(πα/2)
τI
o

√
πa (75)

the stress intensity factor at the right crack tip. Other field
intensity factors are related to Kτ

hom as follows:

K
γ
hom=

1
cI

44
Kτ

hom, KD
hom=

eI
15

cI
44
Kτ

hom, KB
hom=

qI
15

cI
44
Kτ

hom,

K
φ
hom = K

ψ
hom = KE

hom = KH
hom = 0.

(76)

For the crack tip in homogeneous PEMO-elastic medium
the elastic, electric, and magnetic fields still exhibit an
inverse square-root singularity at the crack tip. Application of
electric and magnetic fields does not alter the stress intensity
factors. The stress intensity factor depends on the material
properties of two PEMO-elastic ceramics involved since it
is governed by (75) and α by (62). The intensity factors
K
γ
hom, KD

hom, and KB
hom are related to Kτ

hom and also depend
on the material properties, as shown in (76).

4.3.2. Magnetoelectroelastic Field near the Crack Tip at the
Interface. Using the known result [11],

1
π

∫ a

0

1
(t−x)

(
a−t
t

)α
dt= 1

sin(πα)

[(
x−a
x

)α
−1

]
, x<0

(77)

putting (71) into (66) and using (77), we obtain the asymp-
totic expressions for the antiplane shear stress and in-plane
electric displacement and magnetic induction, as well as
elastic strain, electric and magnetic field, ahead on the left
crack tip at the interface as follows:

[
Kτ

int;K
D
int;K

B
int;K

γ
int;K

E
int;K

H
int

]

=
√

2(1− α)

(1 + λ)
√

1− λ
τI

0

cI
44

(4πa)α

×
[
cI

44
1− λ

2
; eI

15λD; qI
15λB; λγ; λE; λH

]
,

(78)

where the identity is used as follows:

sin(πα) sin
(
πα

2

)
= (1 + λ)

√
1− λ

2
(79)

and where

λγ=
[
c̃ I

44Δ−
(
eII

3 + eI
3

)
αI
(
αII − αI

)
−
(
eII

1 + eI
1

)
βI
(
βII − βI

)

+
(
eII

2 + eI
2

)(
αIβII + βIαII + 2αIIβII

)]

×
[(
c̃ I

44 + c̃ II
44

)
Δ +

(
eII

3 + eI
3

)(
αII − αI

)2

+
(
eII

1 + eI
1

)(
βII − βI

)2
]−1

λE =
{
λγ
[
αIΔ +

(
αII − αI

)(
eI

1

(
eII

3 + eI
3

)
− eI

2

(
eII

2 + eI
2

))

−
(
βII − βI

)(
eI

1e
II
2 − eI

2e
II
1

)]

− αII
(
eI

1

(
eII

3 + eI
3

)
− eI

2

(
eII

2 + eI
2

))

+βII
(
eI

1e
II
2 − eI

2e
II
1

)}
Δ−1

λH =
{
λγ
[
βIΔ +

(
βII − βI

)(
eI

3

(
eII

1 + eI
1

)
− eI

2

(
eII

2 + eI
2

))

−
(
αII − αI

)(
eI

2e
II
3 − eI

3e
II
2

)]

− βII
(
eI

2

(
eII

2 + eI
2

)
− eI

3

(
eII

1 + eI
1

))

+αII
(
eI

2e
II
3 − eI

3e
II
2

)}
Δ−1

(80)
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for PEMO-elastic bimaterial and

λγ =
cI

44

(
εI

11 + εII
11

)
+ eI

15

(
eI

15 + eII
15

)

(
cI

44 + cII
44

)(
εI

11 + εII
11

)
+
(
eI

15 + eII
15

)2 ,

λE = cII
44e

I
15 − cI

44e
II
15

(
cI

44 + cII
44

)(
εI

11 + εII
11

)
+
(
eI

15 + eII
15

)2 ,

λH = 0

(81)

for piezoelectric bi-material and

λγ =
cI

44

(
μI

11 + μII
11

)
+ qI

15

(
qI

15 + qII
15

)

(
cI

44 + cII
44

)(
μI

11 + μII
11

)
+
(
qI

15 + qII
15

)2 ,

λE = 0,

λH = cII
44q

I
15 − cI

44q
II
15

(
cI

44 + cII
44

)(
μI

11 + μII
11

)
+
(
qI

15 + qII
15

)2

(82)

for piezomagnetic bi-material.
Note that for piezoelectric bi-material, we have

λτ = 1− λ
2

=
cI

44

(
εI

11 + εII
11

)
+
(
eII

15

)2
+
(
eI

15

)2(
cII

44/c
I
44

)

(
cI

44 + cII
44

)(
εI

11 + εII
11

)
+
(
eI

15 + eII
15

)2 .

(83)

The material parameters for piezoelectric ceramics coin-
cide, in general, with the ones derived by Li and Wang
[9]. But in λ, defined exactly by (58), the fourth term in
numerator of (58) is omitted in (46) of Li and Wang paper.
In consequence, the conclusions in Table 2 of Li and Wang
paper that λ vanishes also in the case of ceramics poled in
opposite direction are incorrect. The formula (58) shows
that only for two bonded piezoelectric ceramics with c44

unchanged poled in the same direction (not opposite) the
field singularity at the interface crack tip maintains the
inverse square root singularity, since in this case is λ = 0
and α = 1/2. The parameter λE in this paper has opposite
sign to that presented by Li and Wang. This gives that for
ρc > 1 (cII

44 > cI
44) meaning that piezoelectric ceramic II is

more stiffer that piezoelectric ceramic I (eII
15 = eI

15), in this

case λE > 0, so stands also KE
int > 0, and KE

int increases with

ρc. Also it is seen that KE
int decreases with the ratio ρe of

eII
15 to eI

15. In the paper Li and Wang [9], the conclusions,

associated with KE
int, are inverse. The presented conclusions

are consistent with physical consideration. The field intensity
factors must satisfy the constitutive equations

Kτ = cII
44K

γ − eII
15K

E, KD = eII
15K

γ + εII
11K

E, (84)

or material parameters must satisfy the equivalent equations

cI
44λτ = cII

44λγ − eII
15λE, eI

15λD = eII
15λγ + εII

11λE. (85)

It is easily verified that both constitutive relations (85) are
satisfied by the coefficients defined by (68), (81), and (83). In

general, for Magnetoelectroelastic ceramic, the field intensity
factors must satisfy the constitutive equations

⎡

⎢
⎢
⎢
⎣

Kτ
int

K
φ
int

K
ψ
int

⎤

⎥
⎥
⎥
⎦
=

⎡

⎢
⎢
⎢
⎣

c̃44 −α −β
α e1 e2

β e2 e3

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

Kw

KD

KB

⎤

⎥
⎥
⎥
⎦

, (86)

as shown in (14). Of course, we have K
φ
int = −KE

int and K
ψ
int =

−KH
int.

4.4. The Energy Release Rate. For magnetoelectrically per-
meable crack, the energy release rates are very important to
evaluate the behaviours of crack tips. In accordance with the
definition of the energy release rate proposed by [12] (the
virtual crack closure integral), the energy release rate can
finally be derived as

G = 1
2cI

44

[
(
Kτ

hom

)2 +
(
πa

2

)1−2α(
Kτ

int

)2

]

= Ghom
1
2

[(
kτhom

)2 +
(
kτint

)2
]

,

(87)

where

Ghom =
πa
(
τI

0

)2

2cI
44

, (88)

kτhom =
Kτ

hom

τI
0

√
πa/2

, (89)

kτint =
Kτ

int

τI
0(πa/2)α

(90)

are the energy release rate for homogeneous material (no bi-
material) and normalized stress intensity factors at right and
left crack tip. One interesting observation from equation (87)
is that though the energy release rate, G, is independent on
the applied electric-magnetic load, it is affected by electric-
magnetic properties of two constituents of the bi-material
media.

4.5. Electric Displacement and Magnetic Induction inside the
Crack. Since the medium inside the crack (usually air or
vacuum) allows some penetrations of the some electric and
magnetic fields, these fields may not be zero. Suppose that the
normal components of the electric displacement and mag-
netic induction inside the crack are d0 and b0, respectively.
Then from permeable crack boundary conditions (18) and
solutions (78), it follows that the quantities d0 and b0 are as
follows:

d0 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

DI
0 −

eI
15τ

I
0

cI
44

2λD
1− λ , case I

eI
15τ

I
0

cI
44

(
1− 2λD

1− λ
)

+

⎛

⎜
⎝εI

11 +

(
eI

15

)2

cI
44

⎞

⎟
⎠EI

0

+

(

dI
11 +

eI
15q

I
15

cI
44

)

H I
0, case II
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b0 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

BI
0 −

qI
15τ

I
0

cI
44

2λB
1− λ , case I

qI
15τ

I
0

cI
44

(
1− 2λB

1− λ
)

+

⎛

⎜
⎝μI

11 +

(
qI

15

)2

cI
44

⎞

⎟
⎠H I

0

+

(

dI
11 +

eI
15q

I
15

cI
44

)

EI
0. case II

(91)

Then, using (21), we obtain that

DI − d0 = eI
15τ

I
0

cI
44

2λD
1− λ ,

BI − b0 = qI
15τ

I
0

cI
44

2λB
1− λ

(92)

in both cases of loading conditions.
The electric displacement and magnetic induction inten-

sity factors are proportional to DI
0 − d0 and BI

0 − b0,
respectively [13], and the following relations hold

KD
int = Kτ

int
eI

15

cI
44

2λD
1− λ ,

KB
int = Kτ

int
qI

15

cI
44

2λB
1− λ

(93)

which are in agreement with the solutions (78). For piezo-
electric bi-materials or piezomagnetic bi-materials we have,
for instance,

KD
int = Kτ

int

cII
44ε

II
11e

I
15 + cI

44ε
I
11e

II
15 + eI

15e
II
15

(
eI

15 + eII
15

)

cII
44c

I
44

(
εI

11 + εII
11

)
+ cI

44

(
eII

15

)2
+ cII

44

(
eI

15

)2 ,

KB
int = Kτ

int

cII
44μ

II
11q

I
15 + cI

44μ
I
11q

II
15 + qI

15q
II
15

(
qI

15 + qII
15

)

cII
44c

I
44

(
μI

11 + μII
11

)
+ cI

44

(
qII

15

)2
+ cII

44

(
qI

15

)2 .

(94)

In particular, for a fully permeable crack considered here,
and two identical magneto or electroelastic planes polarized
in opposite directions we have (from (94))

KD
int = KB

int = 0. (95)

Note that the crack tip electric displacement KD
int and

the electric displacement inside the crack d0 exist only in
the piezoelectric plane. Alternatively the crack tip magnetic
induction intensity factor KB

int and the magnetic induction
inside the crack b0 exist only in the piezomagnetic plane. All
quantities occur in the PEMO-elastic bimaterial.

5. Results and Discussions

In studying the fracture behaviour of the PEMO-elastic
material, the field intensity factors are of significance. In
this section, examples are given to illustrate the effects of
material properties on the field intensity factor and the order
of singularity.

Table 1: Relevant material properties [14, 15] and values of mate-
rial parameters m and 1/m.

c44

[109 N/m2]
e15

[C/m2]
ε11

[10−9 C/Vm]
m 1/m

BaTiO3 43,0 11,60 11,20 0,279 4,348

PZT-5H 35,3 17,00 15,10 0,542 1,844

PZT-4 25,6 13,44 6,00 1,175 0,851

P-7 25,0 13,50 17,10 0,430 2,325

C-205 87,0 13,59 7,95 0,210 4,761

PZT-PIC151 20,0 12,00 9,82 0,733 1,364

5.1. Effect of Material Constants on the Singularity Order. We
now consider the dependence of the singularity order on
2 × 6-constituent independent piezo-electromagnetoelastic
constants. Although analytical evaluation of the relative
sensitivities is possible, on the basis of the results presented
above, it is rather cumbersome. Therefore, the sensitivity is
evaluated here in other way.

Firstly, we assume that both materials are piezoelectric
and cII

44 = ρcc
I
44, eII

15 = ρee
I
15, and εII

11 = ρεε
I
11, and analyze the

situations

(a) ρc changes and ρe = ρε = 1, that is, not change,

(b) ρe changes and ρc = ρε = 1,

(c) ρε changes and ρc = ρe = 1.

This states that it is analyzed that right half-plane is fixed,
and left one contains a fictitious material with only changing
ρc or ρe or ρε.

(a) The changes of the ratio ρc of cII
44 to cI

44: we have

λ =
(
1− ρc

)
(1 +m)

1 + ρc + 2m
, m =

(
(e15)2

c44ε11

)I

,

|λ| < 1, ρc < 3 +
2
m

for ρe = ρε = 1

(96)

or

λ = 1− ρc
1 + ρc

−m,

λ = 0 for ρc = 1−m
1 +m

, ρc <
2
m
− 1,

0 < m < 1 for ρe = −1, ρε = 1.

(97)

Figure 3 shows the effects of varying elastic stiffness ρc
on λ and αwith unchanging piezoelectric and piezomagnetic
constants ρe = ρε = 1 or ρe = −1 and ρε = 1. Note that λ = 0
and α = 1/2 for ρe = −1, ρε = 1 and if (cI

44 − cII
44)cI

44ε
I
11 =

(cI
44 +cII

44)(eI
15)

2
, eII

15 = −eI
15 or if ρc = 1 and ρe = ρε = 1. Note

also that λ(ρe = 1, ρε = 1) > λ(ρe = −1, ρε = 1) for all of ρc.
The singularity order α is larger for two of the same

ceramics poled in opposite directions together since α(ρe =
1, ρε = 1) < α(ρe = −1, ρε = 1).

We take six kinds of particular piezoelectric ceramics as
representatives, the relevant material constants and parame-
ters m, and 1/m of which are listed in Table 1 (with materials
poling axes aligned in the positive z-direction).
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Figure 3: Effect of ρc on λ and α with ρe = ρε = 1 (Case I) and ρe = −1, ρε = 1 (Case II).

(b) The changes of the ratio ρe of eII
15 to eI

15: we have

λ = −
(
1− ρe

)2

4/m +
(
1 + ρe

)2 , ρe > − 1
m
= −

(
c44ε11

(e15)2

)I

,

λmax = 0 for ρe = 1,

λmin = −1−m for ρe = −1− 2
m
< − 1

m
,

λ = −1 for ρe = − 1
m

,

λ = − m

4 +m
for ρe = 0

λ = −m for ρe = −1.

(98)

For −1/m < ρe < 1, the singularity parameter λ increases
from −1 to maximum λ = 0 and for ρe > 1 declines
to −1. Then the singularity parameter α varies between
(0, 0, 5), respectively. If both poling directions are opposite;
that is, one is in the z-direction and second is in the (−z)-
direction, then to satisfy the condition λ > −1 must hold

|eII(−)
15 |/eI(+)

15 < 1/m or |eII(−)
15 |eI(+)

15 < cI
44ε

I
11. If the selection of

eII
15 violates the condition |λ| < 1, then the electroelastic field

near the interface crack tip is dominant by either logarithmic
singularity or is bonded. This situation seems unlikely, take
place for realistic piezoelectric ceramics, and it is not beyond
the scope of abilities of results of this paper.

(c) For ρε varying and other parameter unchanged, it is
easily found that λ = 0 and α = 0, 5 for ρc = ρε = 1 and
varying ρε. But if ρe = −1, then

λ = − 2m
1 + ρε

; m =
(

(e15)2

c44ε11

)I

. (99)

Figure 5 shows the variation of λ and α with the ratio ρε
for eII(−)

15 /eI(+)
15 = −1.

The parameter λ assumes negative values and increases
from −2m to zero with ρε > 0. The singularity parameter α

is positive and increases from (1/π)arc cos(2m) to 1/2 with
ρε > 0. Note that 2m must be less unity if ρε tends to zero
or m < 1 for ρε > 1. Some materials shown in Table 1 limit
the range of ρε; for example, PZT-4 has m = 1, 175, and ρε
must be larger 1,35 to ensure that λ < −1. Of course this
situation is addressed to two piezoelectrics poled in opposite
directions.

For piezomagnetic materials, the parameter m is

m =
((

q15
)2

c44μ11

)I

, (100)

and for magnetostrictive material CoFe2O4 assumes the
value m = 0, 0113.

For CoFe2O4 we have

c44 = 45, 3 GPa, q15 = 550 N/Am,

μ11 = 590 × 10−6 N/A2.
(101)

The “relative sensitivity” analysis includes three cases:
(a) The changes of ratio ρc of cII

44 to cI
44: we have

λ = 1, 0113
(
1− ρc

)

1, 0226 + ρc
, ρc < 20, 7 ρq = ρμ = 1 (102)

or

λ = 1− ρc
1 + ρc

− 0, 0113, ρc < 16, 7 ρq = −1, ρμ = 1.

(103)

Approximately,

λ = 1− ρc
1 + ρc

, ρc < 16. (104)

For Magnetoelectroelastic composite BaTiO3-CoFe2O4

(Vf = 0, 5)(q15)2/c44μ11 = 0, 005 and (e15)2/c44ε11 ≈ 0, 135.
Figure 6 shows the effect of ρc on λ and α for CoFe2O4

magnetostrictive ceramic.
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For both poling directions, the values of λ and α are the
same.

(b) The changes of the ratio ρq of qII
15 to qI

15: we have

λ = −
(

1− ρq
)2

35, 4 +
(

1 + ρq
)2 , ρq > −8, 85,

λmax = 0 for ρq = 1,

λ = −1 for ρq = −8, 85.

(105)

Figure 7 shows the effect of ρq on λ and α for CoFe2O4

ceramic.
(c) The changes of the ratio ρμ of μII

15 to μI
15: we have

λ = −0, 0226
1 + ρμ

for ρq = −1,

λ = 0 for ρq = 1, always ρc = 1.

(106)

Figure 8 shows the effect of ρμ on λ and α for CoFe2O4.

5.2. Effect of Material Constants on the Field Intensity Factors.
The material constants also affect the intensity factors.
Figure 9 presents the variation of normalized SIFs kτhom and
kτint defined by (89) and (90) which depend on α and λ

kτhom =
2α√
1 + λ

,

kτint = 23α−1/2 1− α
1 + λ

√
1− λ.

(107)

For 0 < α < 1 kτhom increasing monotonously from 2
√

2/π
through 1 to

√
2 as α tends to zero and equals 1/2 and 1,

respectively. From Figures 8 and 2, one can observe that
the effect of ρc on kτint is more evident than that on kτhom.
Moreover, ρc increased the singularity parameter α that
decreases (see Figure 3), and kτint rises suddenly, while kτhom
falls down slightly. For ρc < 1 and ρe = 1 or ρc < (1 −
m)/(1 + m) and ρe = −1, we have α > 1/2. This means
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that if piezoelectric II is more elastically complaisant than
piezoelectric ceramic I, in this case kτhom > kτint. On the
other hand, for ρc > 1, which gives α < 1/2, meaning
that piezoelectric II is stiffer than piezoelectric I in this case
kτhom < kτint. From the Figures 3, 4, and 5, we see that the range
0 < α < 1/2 corresponds to ρc > 1 or ρc > (1 −m)/(1 + m)
(in the case ρe = −1), ρe > −1/m, and ρε > 0. Then always
kτint > kτhom. The range 1/2 < α < 1 is for 0 < ρc < 1 or
0 < ρc < (1 − m)/(1 + m) (in the case ρe = −1). Then,
kτint < k

τ
hom for all of α.

Note that the case α = 1, λ = 1 gives the limiting values
kτint = 0 and kτhom =

√
2 which gives

Kτ
int = 0, Kτ

hom = τI
0

√
πa. (108)

This is the solution for edge crack of length a.
The normalized intensity factors for strain, electric dis-

placement, magnetic induction, electric field, and magnetic
field at the interface crack tip are defined by (78) and by the
following formula:

k
q
int =

cI
44

τI
o

K
q
int

(πa/2)α
, (109)

where q stands for one of γ, D, B, E, and H .
Then we have
[
k
γ
int; k

D
int; k

B
int; k

E
int; k

H
int

]

=
√

2(1− α)8α

(1 + λ)
√

1− λ
[
λγ; eI

15λD; qI
15λB; λE; λH

]
,

(110)

respectively.
Of course, the normalized intensity factors satisfy the

constitutive equations (5), that is,
[
kτint; k

D
int; k

B
int

]
= CII

[
k
γ
int;−kEint;−kHint

]
(111)

with the matrix (6) or inverse form with the use of matrix
(CII)

−1
, defined by (17).

The analysis above implies that, for the magnetically
(or electrically) permeable interfacial cracks, the applied
magnetic (or electric) loadings have no influence on the
fracture behaviours of the crack tips.

Figures 10 and 11 are devoted to the variation of kτint and
kτhom.

We have

kτhom =
2
√

2
π

for ρc = 3 +
2
m

(
ρe = ρε = 1

)

or ρc = 2
m
− 1

(
ρe = −1, ρε = 1

)
.

(112)

The figures show that the normalized stress intensity
factor in homogeneous solid is only weakly dependent on the
elastic constants and dielectric permeabilities. In contrast kτint
strongly depends on ρc and ρe. This is consistent with phys-
ical considerations; for large difference of piezocoefficients
ρe < 0 or ρe > 1 the kτint are larger than kτhom (Figure 11).
From the Figure 10 it can be shown that the piezoelectric
ceramic II is more complaisant than piezoelectric ceramic I
(ρc < 1), then kτhom > kτint. In contrast if ρc > 1 meaning that
piezoelectric ceramic II is stiffer than piezoelectric ceramic I,
in this case kτhom < kτint.

Other normalized field intensity factors are presented on
Figures 12 and 13.

The kEint is equal to zero for ρc = 1 (Figure 12) and for
ρe = 1 (Figure 13). From (81) one finds that kEint = 0 occurs
only when cII

44/c
I
44 = eII

15/e
I
15. In Figure 13 we see that ρe has a

strong influence on kDint and kEint and k
γ
int if ρe < 1, and when

ρe = 1, k
γ
int = 1, kEint = 0, and kDint = eI

15, as expected.
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Figure 10: Normalized SIFs as a function of ρc with ρe = ρε = 1 (Case I) and ρe = −1, ρε = 1 (Case II).
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Figure 11: Normalized SIFs as a function of ρe with ρc = ρε = 1.

Figure 14 presents the variation of normalized ERRs,
G/Ghom obtained from (87) with the use of (107).

There are two states where G = Ghom. The first state, in
which α = 1/2 and λ = 0, that is, cII

44 = cI
44, corresponds

to crack in monolithic medium (no bi-material). The second
state, in which α and λ tend to unity, corresponds to edge
crack problem (the second material is air). For α > 1/2 ERRs
decrease weakly from 1 to 0,69 for α = 3/4 and later increase
to unity for α → 1. In this case the piezoelectric ceramic
II is more elastically complaisant. The range 0 < α < 1/2

corresponds to the following cases: ρc > 1 or ρc > (1−m)/(1+
m) (in the case ρe = −1); ρe > −1/m and ρε > 0 (for any ε).
Then always G > Ghom and piezoelectric II are stiffer than
piezoelectric I. Similar conclusions may be formulated for
magnetostrictive material, changing material parameters e15

and ε11 by q15 and μ11, respectively.

5.2.1. A Crack between a Piezoelectric Material and a Piezo-
magnetic Material. Magnetoelectroelastic materials usually
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Figure 12: Variation of k
γ
int, k

D
int (in C/m2) and kEint (in 106 kV/m) against ρc with ρe = ρε = 1.

comprise alternating piezoelectric medium and piezomag-
netic medium. Here, we consider a special case. This is a
right medium I that is a piezoelectric and the left medium
II is a piezomagnetic (Case I) or inversely (Case II). The
material constants of the piezoelectric medium (No. I) and
piezomagnetic medium (No. II) have the following values
[16–18]:

BaTiO3-piezoelectric (barium titanate)

cI
44 = 43 × 109 Nm−2, eI

15 = 11, 6 Cm−2,

qI
15 = 0, εI

11 = 11, 2 × 10−9 CV−1m−1,

dI
11 = 0, μI

11 = 5, 0 × 10−6 NA−2

(113)

CoFe2O4-piezomagnetic (cobalt iron oxide)

cII
44 = 45, 3 × 109 Nm−2, eII

15 = 0,

qII
15 = 550 NA−1m−1, εII

11 = 0, 08 × 10−9 CV−1m−1,

dII
11 = 0, μII

11 = 590 × 10−6 NA−2.
(114)
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Figure 13: Variation of k
γ
int, k

D
int (in C/m2) and kEint (in 106 kV/m) against ρe with ρc = ρε = 1.

The material parameter (57) assumes the values

λ = 1− 2

cJ44/
(
cI

44 +
(
eI

15

)2
/
(
εI

11 + εII
11

))
+ cJ44/

(
cII

44 +
(
qII

15

)2
/
(
μI

11 + μII
11

)) ; J = I, II. (115)

where cJ44 is the shear modulus of the cracked material, for
Case I and Case II, respectively. We have λ =

⎧
⎨

⎩

−0, 1618, Case I

−0, 1028, Case II
α =

⎧
⎨

⎩

0, 4483, Case I

0, 4672, Case II.
(116)
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(2α2/(1 + λ))[1 + 82α−1(1− 1/α)2(1 − λ)/(1 + λ)], λ = − cos(πα),
α = 3/4, λ = 1/

√
2, G/Ghom = (11

√
2− 10)/8, α = 1/4, λ = −1/

√
2,

G/Ghom = (67 + 47
√

2)/16.

The energy release rates are obtained as follows

G =
⎧
⎪⎨

⎪⎩

πa(15, 0)× 10−12
(
τI

0

)2 × [m2/N
]
, Case I

πa(12, 9)× 10−12
(
τI

0

)2 × [m2/N
]
, Case II.

(117)

For “homogenous” composite BaTiO3/CoFe2O4 with the
ratio roughly 50 : 50, we have with the use of arithmetic mean
c44 = 44, 15 × 109 Nm−2, and Ghom assumes the value

Ghom = πa
(

11, 4 × 10−12
(
τI

0

)2
)
× [m2/N

]
. (118)

We see that ERRs for bi-materials cannot be determined
by the mixture rule since it is a significant new feature in
interface crack problem considered in this paper.

Obviously for piezoelectric/piezomagnetic composite
(I/II) is μI

11 	 μII
11 and εII

11 	 εI
11, and (115) reduces to the

following formula:

λ = 1− c̃∗44

cJ44

; J = I, II, (119)

where c̃∗44 is the harmonic mean of the piezoelectric and
piezomagnetic stiffened elastic constants c̃ I

44 and c̃ II
44 defined

as follows:

1
c̃∗44

= 1
2

(
1
c̃I

44
+

1
c̃II

44

)

, (120)

where

c̃I
44 = cI

44 +

(
eI

15

)2

εI
11

, c̃II
44 = cII

44 +

(
qII

15

)2

μII
11

. (121)

Using (119) to (121), we obtain that

λ =
⎧
⎨

⎩

−0, 1626, Case I

−0, 1036, Case II
α =

⎧
⎨

⎩

0, 4480, Case I,

0, 4670, Case II,

G =
⎧
⎪⎨

⎪⎩

πa(15, 0)× 10−12
(
τI

0

)2 × [m2/N
]
, Case I,

πa(12, 9)× 10−12
(
τI

0

)2 × [m2/N
]
, Case II.

(122)

6. Conclusions

A crack perpendicular to and terminating at the interface
of two bonded dissimilar piezo-electromagnetoelastic media
are studied in this paper. Analytical solutions and numerical
simulations suggest the following conclusions.

(i) Closed form solution has been obtained for a
crack between two dissimilar magneto electro-elastic
ceramics. The crack is localized in one materials, and
its one tip lies on the interface. Expressions for the
crack-tip field intensity factors, the electromagnetic
fields inside the crack, are given for electrically and
magnetically permeable crack assumptions.

(ii) The energy release rate can be explicitly expressed in
terms of the intensity factors. It is affected by electric-
magnetic properties of the constituents of the bi-
material media. The normalized energy release rate
is unity for homogeneous medium (ρc = 1) and for
edge crack (ρc = 0) and assumes minimum value 0,69
for ρc = 3−2

√
2 = 0,18. If ρc tends to infinity, also this

quantity tends to infinity (the interface is clamped).

(iii) For two identical Magnetoelectroelastic planes polar-
ized in opposite directions, we have KD

int = 0 = KB
int.

(iv) At interface we have KE
int = 0 when cII

44/c
I
44 = eII

15/e
I
15,

while KH
int = 0 if cII

44/c
I
44 = qII

15/q
I
15.

(v) Application of electric and magnetic fields do not
alter the stress intensity factors; they depend on
the elastic, electric, and magnetic constants of bi-
material ceramic.

(vi) The coupling between electromagnetic fields and
mechanical field leads to existing electric displace-
ment and magnetic induction intensity factors at
the crack tip, which respond to the applied stress
intensity factor.

(vii) If magnetic effects are neglected, the result of the
stress intensity factors is the same as the solution for
the piezoelectric materials given by Li and Wang [9],
but kEint differs in sign.

The results could be of particular interest to the analysis
and design of smart sensors and actuators constructed
from Magnetoelectroelastic composite laminates. Nowadays,
electromagnetoelastic coupled multiphase composite has
wide range applications in science and engineering such as
space planes, supersonic air planes, rockets, missiles nuclear
fusion, reactors, and submarines.
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