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This study investigates tracking in monocular image sequences by a model-free, occlusion accommodating active contour method.
The objective functional contains a model-free shape tracking term to constrain the active curve in a frame to have a shape which
approximates as closely as possible the shape of the active curve in the preceding frame. It complements a kernel photometric
tracking term which constrains the active curve in a frame to enclose an intensity profile that matches as closely as possible the
profile within the curve in the preceding frame. This data term is in kernel form so as to forgo image modeling. The method, which
is exclusively driven by the curve/level set evolution equations derived from the objective functional Euler-Lagrange conditions,
can track several objects independently. Experimental validation includes examples with infrared imaging, occlusion, clutter, and
articulated motion.

1. Introduction

Visual tracking consists of following moving objects through
an image sequence. It is a central problem in computer
vision which currently serves major applications such as
scene understanding and monitoring, navigation, medical
therapy, and video image analysis and synthesis.

An image object can be tracked according to its photo-
metric appearance or its shape. Appearance-based tracking
uses the object intensity profile which it assumes is distinctive
of the object against its background. Shape tracking uses a
geometric description of the object modulo, a class of rele-
vant deformations. When an object is imaged from several
distinct viewpoints, three-dimensional pose information can
be recovered to assist tracking [1]. However, photometric
appearance and shape remain the basic visual support to
locate the same object from one image to the next in a
sequence.

To track an image object requires detecting it initially.
Detection is traditionally done by successive frame pointwise
differencing [2] followed by filtering of the difference image
to extract blob parts of the moving object. In general,
processing the blobs is tedious and unyielding beyond

circumscribing the moving object within figures such as
rectangles or ellipses. Such bounding figures meet the need
of applications where tracking is to follow the object grossly
placed about a mean position [3, 4]. However, they are largely
insufficient when it is necessary to identify the object or
interpret its behavior. An object contour can be formally
described by a closed plane curve which bounds a region
of a given appearance and satisfies some shape constraints.
These constraints can be embedded in a functional which
is minimized by the curve which coincides with the desired
object boundary. The most common shape constraint is
regularity, or smoothness, conveyed by a curve length term
in the objective functional. When available, the boundary
geometry can also be accounted for by a shape prior in
the functional [5–7]. The image appearance of the region
bounded by an object boundary is conveyed by a data term
in the functional. The most common such term measures the
conformity of the observed intensity to a model distribution
[8]. The minimization of the functional results in evolution
equations which drive a variable curve, called an active
contour, to coincide with the boundary of the desired
object. This variational active contour formalism has been
extensively used in image segmentation [8]. It has resulted
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in efficient and accurate algorithms whose behaviour can be
clearly explained by the curve evolution equations. A few
studies have also used active contours have which also been
used in tracking [9–13].

Tracking has been first addressed using active curves/level
sets using geodesic functionals where some tracking terms
are generally driven by the image gradient while detection
terms are driven by the distribution of the interframe image
difference at motion boundaries. Neither of such terms has
a provision for occlusion, so that only objects which move
in full view can be processed. In this setting, detection
is commonly performed to completion prior to tracking
by positioning an initial curve close to the image domain
boundary, so that it contains the moving object, and making
it move inward. The initial curve is so placed because the
direction of motion of a geodesic curve is constant, inward or
outward. Detection assumes a relatively uniform background
and a strong motion boundary contrast to prevent the
geodesic curve to move past the moving object boundary. A
leak would otherwise cause the curve to ultimately vanish.
Because tracking follows detection, the detected curve must
contain the object of interest since tracking is mediated by
a (inward moving) geodesic. When the tracking term has
closed up on the object, the detection process is restarted
with a curve open wide enough to circumscribe the object.

The region-based active curve/level set method of [9]
alleviates the geodesic major problems of curve leaking
through weak contrast motion boundaries and unidirec-
tional curve evolution. However, the method uses a back-
ground model learned a priori and, therefore, is applicable
only where such knowledge can be acquired.

A photometric appearance model can be used to selec-
tively detect a moving object and then track it. This is how
[10] stated the problem, using the image empirical distri-
bution (histogram) to describe the photometric appearance
of the moving object. The formalism has been adapted to
medical image sequences in [14]. The method is applicable
to a single object and the motion of the object must be slow
enough so that the detected contour at a given instant of time
is close to the object contour at the next instant. Histograms
may code the object boundary inaccurately because they are
obtained by summing up the image over the object region.
This would be of no consequence where the object need not
be identified nor its behaviour interpreted.

When a model of the moving object boundary shape is
available, it can assist tracking. This has been demonstrated
in [11]. First, a training set of distinct outlines of the object,
resulting from various viewing perspectives or distances, is
used to learn a geometric shape description of the moving
object by principal component analysis (PCA). PCA retains
of the boundary full string of descriptive points only a few
which are the most significant to characterize the boundary
shape. These few principal components, which economically
define a class of shapes, are embedded in a shape prior
of an active curve/level set formulation. Shape priors have
been investigated in several studies in image segmentation
[5–7, 15] but scarcely in tracking. To further accommodate
distortions caused by noise, clutter, and occlusions, tracking

continually updates the shape prior (termed a dynamic
prior) using a number of the previously observed contours
in the tracking trail. The data term plays a lesser role and
it simply assumes the intensity of both the object and
the background to be Gaussian, an assumption that is not
generally applicable.

Shape priors have also been used in [12] for multiobject
contour tracking with occlusion handling. The photometric
appearance, which fuses color and texture, is modeled by
a mixture of Gaussians. The formulation does not activate
the appearance and shape functionals concurrently. The
former is used for detecting the moving object when there
is no occlusion. The latter is considered only when an
occlusion starts. An independent external process detects
occlusion when it occurs between any two tracked objects,
but occlusions involving a tracked object and a static or a
nontracked moving object are not processed.

The study in [13, 16] has investigated tracking along a
quite different vein. For a moving object region at some
instant, the corresponding region at the next instant is
the one that best matches its intensity profile according to
an integral functional of best pointwise matches. Although
the pointwise match function uses an image neighborhood
bounded by the maximum expected pointwise displacement
of the object, there is no actual computation of motion.
The formulation can embed efficient object image models
in a simple manner. The method processes single objects. It
has no mechanism to address occlusion, via a shape model,
for instance, and the neighborhood operations can lose
some identifying detail along the object contour. Under the
method assumptions, an implementation has shown a sturdy
behaviour over long sequences.

The subject of our study is model-free, occlusion
accommodating contour tracking in an image sequence.
Although contour tracking from one image to the next in
a sequence can be viewed as a particular problem in image
segmentation, namely, determining in the next image a single
region described by an intensity profile or by the shape
of its boundary, it has three fundamental idiosyncrasies in
general application: (1) successive contour deformations,
even when no single one is substantial, can cumulate to alter
the contour shape out of any prior shape model, (2) sections
of the contour can be occluded unpredictably, and (3) several
objects can be targeted for tracking simultaneously. These
idiosyncrasies of general tracking are the main concern of
our study.

In controllable settings, models of contour shape or of
allowable contour deformations can be learned and con-
tribute subsequently to locate a particular object boundary.
However, this is not always possible or practicable. For
instance, training data may be unavailable or inaccessible,
or tracking may target objects which can be occluded, or
undergo profile variations during motion too complex to
circumscribe in a single model. The examples we used
show some of these situations: Figure 1 illustrates the case
of tracking a vehicle backing up toward the camera and
(Figure 2) a differently shaped vehicle receding, and the same
tracking formulation is to adapt to other vehicle shapes
as well. Figures 7 and 8 show movements which cause
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Figure 1: Tracking in an infrared (IR) image sequence. The contrast along the moving boundary is weak, particularly in the portion between
the car and the street. There is also partial occlusion behind the tree toward the end of the sequence. Top three rows: tracking with the proposed
kernel-based intensity tracking term. Fourth row: tracking in [13] with the Gaussian assumption. Bottom row: tracking by distributions with
the method in [10]. Under each image is the frame number.
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Figure 2: Tracking of an IR sequence. The active curve has been able to adapt to the changing size and outline of the object.

the objects profile to vary considerably so that the ensemble
of the sequence profiles would poorly fit a single model
description. Figure 3 shows an example of occlusion as can
occur in reality and Figure 6 depicts a case of multiple
object tracking. Designed to generalize ordinary geometric
models to effective general representations in settings where
learning object shape appearance is possible and practicable,
the method in [11, 17] is not applicable in such situations
as depicted by these examples. A more accessible model
would be the contour template drawn from an exemplar
object and subsequently used to track from one image to
the next via a general affine transformation. However, such
model and strategy are notoriously inapt at tracking in most
situations.

Our purpose is model-free contour tracking rather than
contour tracking via modeling, applicable in such situations
as depicted in the experimentation examples, occlusion and
multiobject tracking for instance. The method we investigate
does this by taking the object photometric and shape appear-
ance in one frame as the guide to locate the object in the next.
This natural strategy is simple and effective. The use of the
contour shape in the previous frame as a geometric model
for the contour in the current frame decomposes a possibly
significant deformation occurring over an extended period

of time into a sequence of generally simpler in-between
frame deformations, affording the possibility to track in the
presence of large cumulative shape alteration. This is of
considerable benefit when modeling object shape variations
is not possible or practicable. The object photometric and
shape tracking constraints are each embedded in an objective
functional and resolved by Euler-Lagrange equations via level
sets. The photometric tracking term is of the form in [13,
16] but expressed in a kernel induced space [18–20]. This
kernel expression forgoes the need for image data models,
which can be a significant advantage when the photometric
appearance of the objects to track is not known beforehand
or is too disparate to model reliably. The purpose of the shape
tracking term is to assist tracking in the presence of partial
occlusion, whether the occluding object is static or mobile.

The method is exclusively driven by the curve/level set
evolution equations; no other processes intervene. Against
the background of contour tracking methods, the scheme
accumulates the following advantages: (1) it is model-free,
(2) it accommodates occlusion, (3) it is applicable via a
kernel mapping to image sequences of different modalities,
and (4) it is applicable to multiple-object tracking.

The remainder of this paper is organized as follows.
Section 2 describes the proposed tracking energy. Section 2.1
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Figure 3: Tracking on the Car-behind-trees sequence with total occlusion. The car velocity is constant during the time of observation.
Significant partial occlusion and total occlusion occur in the sequence. Top three rows: tracking with the proposed method. During total
occlusion, the shape tracking term predominates to guide contour evolution. After total occlusion (third row) the car is detected although
the detected silhouette is inaccurate. Fourth row: tracking with the method in [13]. Last row: tracking with the method in [10].

develops the kernel-based intensity tracking term and
Section 2.2 the shape tracking term. Section 3 derives the
level set representation of the objective functional and
corresponding Euler Lagrange descent. Section 4 provides
experiments for proof of concept and comparisons. Finally,
Section 5 contains a conclusion.

2. Formulation

Let (In)n, where n is a nonnegative integer representing time
instants, be a sequence of images defined on a common open
domainΩ. Assume that we are given a moving region R0 ⊂ Ω
in the image, Ik, at instant k. We estimate its corresponding
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region, R1, in the next image, Ik+1, by minimizing an
objective functional, E , which is the sum of a photometric
tracking term, EP , and a shape tracking term, ES :

E(R | Ik, Ik+1, R0) = EP (Ik+1 | Ik, R0, R) + ES(R | R0),

R1 = arg min
R

E(R | Ik, Ik+1, R0).
(1)

Such a problem has been stated in [13] using a MAP
estimation argument as in [21]. The photometric tracking
term will bias the solution toward a region in Ik+1 whose
intensity profile closely matches the one of R0 and the
shape tracking term will look for a region whose boundary
closely resembles the boundary of R0. The photometric term
uses the image transformed by a kernel function so as to
accommodate various image models without recourse to
model learning. The shape tracking term, also model-free,
assists tracking and accommodates occlusion.

2.1. Kernel-Based Photometric Tracking Term. Following
[13], we will use a photometric tracking term which embeds
a pointwise correspondence between Ik+1 and Ik. The basic
premise is that there exists a one-to-one mapping between
R0 and R1, hence between Rc

0 and Rc
1, and that the image

at corresponding points is the same up to additive noise.
Gaussian noise leads to a data term which is the squared
image difference at corresponding points integrated over a
region and its complement [13, 16]. However, the Gaussian
model is not generally applicable [8]. To allow more general
models, we use the following photometric tracking term:

EP (Ik+1 | Ik, R0, R)

=
∫

R
inf

{l:‖l‖≤δ,x+l∈R0}
(
φ(Ik+1(x))− φ(Ik(x + l))

)2
dx

+
∫

Rc
inf

{l:‖l‖≤δ,x+l∈Rc
0}
(
φ(Ik+1(x))− φ(Ik(x + l))

)2
dx,

(2)

where φ(·) is a nonlinear mapping of the original image data
into a space of higher dimension (called the kernel Hilbert
space) where the Gaussian model becomes applicable. This
mapping is done implicitly via a kernel function [22, 23]
as explained subsequently. Kernel methods have been very
effective in image segmentation [19, 20] and image denoising
[18] as well as data clustering [24]. According to the Mercer
theorem [22], there is no need to know function φ explicitly
because the dot product in the space of the transformed data
can be expressed using a continuous, symmetric, positive
semidefinite kernel function. The kernel function, K(y, z),
verifies

K
(

y, z
) = φ

(
y
)T · φ(z), ∀(y, z

) ∈ R2, (3)

where “·” is the dot product in the feature space. Application
of this kernel trick [22, 23] to ‖φ(Ik+1)− φ(Ik)‖2 gives

DK (Ik+1, Ik) ≡ ∥∥φ(Ik+1)− φ(Ik)
∥∥2

= (φ(Ik+1)− φ(Ik)
)T · (φ(Ik+1)− φ(Ik)

)

= φ(Ik+1)T · φ(Ik+1)− φ(Ik)T · φ(Ik+1)

− φ(Ik+1)T · φ(Ik) + φ(Ik)T · φ(Ik)

= K(Ik+1, Ik+1) + K(Ik, Ik)− 2K(Ik+1, Ik).

(4)

In terms of DK , which is a non-Euclidian distance in the
image data space, (2) is written as

EP (Ik+1 | Ik, R0, R1)

=
∫

R
inf

{l:‖l‖≤δ,x+l∈R0}
DK (Ik+1(x), Ik(x + l))dx

+
∫

Rc
inf

{l:‖l‖≤δ,x+l∈Rc
0}
DK (Ik+1(x), Ik(x + l))dx.

(5)

Several kernels are available in practice [23]. We will use the
radial basis function (RBF) [24, 25], a kernel which has been
very effective in image segmentation [19, 20]:

K
(

y, z
) = exp

(−∥∥y − z
∥∥2

σ2

)
, σ > 0. (6)

2.2. Shape Tracking Term. We represent the object boundary
by a closed regular plane curve C, defined implicitly as the
zero level set of an embedding function Φ : R2 → R
[26], with the convention that the interior of C corresponds
to Φ > 0. The level set representation has been used
almost systematically for active contours in computer vision
problems [27–29] such as image segmentation [8] and
tracking [9, 10, 16]. Among other advantages, the level
set representation allows the topology of an evolving curve
to change and can be implemented by numerically stable
schemes. We will use the evolving contour-signed distance
function (SDF) as its level set function. In this case, Φ(x) is
the smallest distance from x to the contour, positive inside
and negative outside the region bounded by the contour.

Let Φ0 be the signed distance level set function of the
object of interest at time k and R0 = {x ∈ Ω | Φ0(x) > 0}.
We will use Φ0 as a shape prior at time k to estimate the
region R1 corresponding to R0 at the next instant k + 1.
Therefore, the shape tracking term, ES , will measure the
similarity between the evolving minimization SDF Φ and the
SDF Φ0. Several such similarities are available [6, 15, 30]. We
will use the displaced SDF difference distance:

d2(Φ,Φ0) =
∫
Ω

(H(Φ(x))−H(Φ0(x + h)))2dx, (7)

where H(·) denotes the Heaviside step function and h is the
displacement vector field between the frames at times k and
k + 1. This field can be included as a variable in the objective
functional. However, this is not necessary in tracking.
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Instead, it is sufficient to approximate h by the average
SDF difference between the previous two frames because the
functional minimization with both the photometric and the
shape terms will further seek to align the evolving and the
previous SDFs. If we also impose regularity to the evolving
contour, using curve length, the shape tracking term at time
k is given by

ES(R | R0) = λsp

2
d2(Φ,Φ0) + λL

∮
∂R
ds, (8)

where λsp and λL are positive reals, and R = {x ∈ Ω | Φ(x) >
0}.

Using the photometric and the shape tracking terms (5)
and (8), the tracking functional is

E(R | Ik, Ik+1, R0)

=
∫

R
inf

{l:‖l‖≤δ,x+l∈R0}
DK (Ik+1(x), Ik(x + l))dx

+
∫

Rc
inf

{l:‖l‖≤δ,x+l∈Rc
0}
DK (Ik+1(x), Ik(x + l))dx

+ λL

∮
∂R
ds +

λsp

2
d2(Φ,Φ0).

(9)

3. Functional Minimization

The objective functional (9) can be minimized by rewriting
it terms of the level set function Φ and deriving the
corresponding Euler-Lagrange equations which will give the
evolution equations of Φ.

3.1. Level Set Evolution Equations. The tracking functional
(9) is rewritten in terms of the level set function Φ as

E(Φ) =
∫
Ω
H(Φ) inf

{l:‖l‖≤δ,x+l∈R0}
DK (Ik+1(x), Ik(x + l))dx

+
∫
Ω
(1−H(Φ)) inf

{l:‖l‖≤δ,x+l∈Rc
0}
DK (Ik+1(x), Ik(x + l))dx

+ λL

∫
Ω
|∇H(Φ)|dx

+
λsp

2

∫
Ω

(H(Φ(x))−H(Φ0(x + h)))2dx,

(10)

which gives the following level set evolution equations for its
minimization [8]:

∂Φ

∂τ
= − ∂E(Φ)

∂Φ
= −δ(Φ)

×
[
ξ1(x)− ξ2(x) + λL div

( ∇Φ
|∇Φ|

)

+λsp(HΦ(x)−HΦ0(x + h))

]
,

(11)

where HΦ ≡ H(Φ) (for notational convenience), τ is the
algorithmic time, and δ is the Dirac distribution, and

ξ1(x) = inf
{l:‖l‖≤δ,x+l∈R0}

DK (Ik+1(x), Ik(x + l))dx,

ξ2(x) = inf
{l:‖l‖≤δ,x+l∈Rc

0}
DK (Ik+1(x), Ik(x + l))dx.

(12)

The behaviour of the algorithm when an occlusion
sets in is as follows. Consider the object is visible at the
current instant and a moderate partial occlusion occurs at
the next. In the occluded segment of the object, there will
be a competition for points between the object and the
background as follows: for a point in this segment, the term
ξ1 − ξ2 will likely be negative because the point intensity
will likely match better that of a point in the background
than in the object. In such a case, and given the meaning of
distance functions Φ, Φ0, and displacement h, HΦ − HΦ0

will be 1 and the shape term will be equal to λsp. Omitting
the smoothness term, the point will be claimed by the
background if λsp is smaller than ξ1 − ξ2. Otherwise it will be
claimed by the object. Therefore, for a value of λsp sufficiently
large, the point will be claimed by the object as desired.
A good value for the algorithm to behave in this desired
way is determined empirically. However, a value determined
for one or a few sequences in an application generally
remains fixed for the application. Adjusting the value for
applications where occlusion is moderate between frames,
that is, where it occurs progressively, is not an arduous task.
What is perhaps more important to bear in mind is that a
properly resolved occluded segment of the object at some
instant will become “part” of the object at the next and
will likely continue to be resolved properly. The occluding
object region will move out of the object when the occluded
part of the object reappears progressively. The algorithm
behaviour is, of course, similar when an occluded part of
the object is progressively uncovered. Notwithstanding its
ability to keep track of objects in their movement during
progressive occlusion, the scheme has no explicit provision
to recover portions lost to tracking, that is, which are
visible but unrecorded by the tracking process. Also, as a
general tracking process, it can be overwhelmed by sudden
significant occlusion activity.

3.2. Generalizations. The method can be used for inten-
sity as well as vector-valued images such as color image
sequences. The generalization to vector-valued images is
straightforward and, of course, affects only the photometric
term of the tracking functional [19, 20]. The generalization
to multiple object tracking is also straightforward. Consider
the problem of tracking N objects in a sequence and let
Φi, i = 1, . . . ,N , be N different level set functions, each
affected to a different object. Then each level set is simply
evolved independently using evolution equations as in (11).
The experimental section shows examples for both vector-
valued image sequences and multiple-object tracking.
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4. Experimentation

The purpose of the following experimentation is to demon-
strate the validity of the formulation and its implementation.
The experiments have been carefully chosen so as to serve
as proof of concept and be relevant for an informative com-
parison to state-of-the-art contour tracking methods. Each
example stresses a particular aspect of the algorithm: there
are examples with infrared images to show the relevance of
using a kernel function in the photometric tracking term;
examples with occlusion and clutter to show the relevance
of the shape tracking term; examples with simultaneous
multiobject tracking and shape altering articulated motion.
The comparisons, on pertinent sequences, are made with the
tracking algorithm without motion computation of [13] and
the nonparametric distribution tracking algorithm of [10],
both discussed in the literature review of Section 1.

All of the experiments focus on tracking proper. How-
ever, by definition, tracking must be initially provided with
an object to track. Object detection has been addressed using
a variety of means such as geodesics evolved by motion
sensitive image statistics and image segmentation by region
statistics [31]. Because the subject of this study is tracking
proper, initialization was expeditiously treated semimanually
as follows: a contour is placed approximately but near the
outline of the object to track and made to move for a better
initialization by a few iterations of the algorithm using the
photometric tracking term alone.

4.1. Infrared (IR) Sequences. A recorded infrared (IR) signal
is typically of low spatial resolution, low contrast, severely
noisy, and variant with atmospheric conditions [32]. The
sensor has built-in postprocessing algorithms and archi-
tectures to produce a visually meaningful image sequence.
However, the processed images remain of low resolution
and low contrast and carry distortions which are difficult
to characterize or model. The purpose of the following IR
examples is to show the pertinence of the kernel transform in
the photometric term when tracking in the presence of such
complex non-Gaussian noise. Accordingly, the algorithm was
run without the shape tracking term (λsp = 0) so as to show
exclusively the role of the kernel photometric tracking term.
δ has been set to 10 pixels.

In this first example (Figure 1), a car is filmed backing up
in a neighborhood street. This sequence presents two main
difficulties. First, the contrast along the moving boundary is
weak, particularly in the portion between the car and the
street. The larger filming distance at the beginning of the
sequence causes elevated noise which weakens the moving
boundary definition. The second difficulty is caused by the
partial occlusion behind the tree toward the end of the
sequence. The first three rows of Figure 1 show the behaviour
of the algorithm with the kernel photometric tracking
term. Tracking has followed closely the moving boundary
throughout the sequence, even though the upper portion
is approximate toward the end. The fourth row of Figure 1
depicts the application of the photometric term without a
kernel transformation of the image as in [13]; in this case,
tracking has lost the moving boundary by the 12th frame.

The last row of Figure 1 shows the results corresponding
to the histogram matching method in [10]. In general,
histograms would not code object boundaries accurately
when the intensity distributions inside and outside the object
region overlap substantially, which is the case with this
sequence. As a result, the active contour tracks only grossly
the object, missing some of its parts and including portions
from the background.

The second example, depicted in Figure 2, further docu-
ments the behaviour of the kernel photometric tracking term
on an IR sequence. One obvious difficulty with the sequence
is the faint contrast at the boundary between the image of the
moving car and the upper background, particularly toward
the end of the sequence when the image of the car is so small
as to expose a major portion of its boundary to the similarly
looking upper background. Another obvious difficulty is the
variation in the tracked shape (its size and outline) during its
run through the sequence. The active contour has kept close
to the moving car boundary; it adhered most of the time
although its position becomes approximate toward the end
of the sequence.

The next examples will take up the role of the shape
tracking term. This term is notably useful to assist tracking
in the presence of occlusion.

4.2. Occlusion. The shape tracking term assists tracking
because it constrains the active curve in a frame to have
a shape which approximates as closely as possible the
shape of the active curve in the preceding frame. This
term complements the photometric tracking term which
constrains the active curve in a frame to enclose an intensity
profile that matches as closely as possible the profile within
the curve in the preceding frame. The role of the shape
tracking term becomes essential with occlusion, which often
occurs when viewing moving objects. A moving object
can be occluded partially or totally by another object and
self-occlusion can also occur, particularly with articulated
objects.

The Car-behind-trees sequence, depicted in Figure 3,
shows a car driven behind a row of trees. Partial occlusions
occur repeatedly and there is total occlusion towards the
end of the sequence before the car reappears. When occlu-
sion occurs there is less relevant information available to
the photometric correspondence process to assist tracking.
The contribution of the photometric tracking term to the
minimization of the objective functional decreases and that
of the shape tracking term increases, the more so with more
extensive occlusions. Therefore, the role of the shape tracking
term which, we recall, acts via the displaced SDF difference,
becomes essential. This is illustrated in Figure 3 which shows
the results of tracking with the shape tracking term and
without. With the shape tracking term (the top three rows
of Figure 3), the active contour delineates correctly the
moving car during partial occlusion by recovering its hidden
parts. During total occlusion, the curve evolves essentially
to keep as closely as possible its shape in the preceding
frame, although the exact shape is elusive in such cases.
The fourth row of Figure 3 shows the results obtained using
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Figure 4: Tracking on the grey scale sequence Walk. Top two rows: method in [13]: the active curve encroaches on the object region though
the blur between the walker feet and the grassy ground and continues drifting in due to the smoothness term and the uncertain outcome of
intensity matching within the object uniform area. Third row: tracking with the method in [10]: the region intensity histogram representation
allowed only a gross outline of the object. Bottom two rows: proposed method: by constraining the curve to retain a similar shape between
consecutive frames, encroachment on the object and subsequent movement inward are averted.

the algorithm without the shape tracking term. Tracking was
confused early in the sequence and lost the object by the 10th
frame, without recovery in subsequent frames. The bottom
row shows the results obtained by applying the method in
[10]. With partial occlusion, the contour has kept the track of
the appearing part of the car. After that, the contour has lost

completely the target and disappeared from the scene right
after frame number 9.

This next example is a grey level sequence depicting
a man walking across a field (Figure 4). There are two
difficulties which make it an interesting example for contour
tracking. One difficulty is self occlusion. The left leg swings
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(15) (20) (25)

(0) (5) (10)

(15) (20) (25)

Figure 5: Tracking on the fish sequence. The first two rows depict results with algorithm in [13]. The last two rows depict tracking results
with the proposed method. Note that the shape prior term helped in maintaining a similar tracked shape during evolution. Under each
image is the frame number.

forward to progressively occlude the right leg by the 5th
frame. The other difficulty is clutter, in the sense that the
moving object and the background have a similar random
texture along their common border [33]. Clutter of the
sort makes matching between frames uncertain and, as
a result, the photometric tracking term alone may not
sufficiently constrain tracking of the moving boundary.
Clutter in this sequence is present, right at the onset, in
the left foot/background area, and in the hair/background
area. The top two rows of Figure 4 show the results of

applying the algorithm without the shape tracking term
in [13]. Without a geometric constraint to prevent it, the
active curve encroaches unrestrained on the object region
though the blur between the walker feet and the grassy
ground. Once in, the shape regularity constraint and the
uncertain outcome of intensity matching within the uniform
area of the pants keep it drifting inward. The middle row
shows tracking results obtained with the method in [10].
Here, the distinction between the intensity histograms inside
and outside the curve, on which the evolution equation
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(0) (21) (41)

(61) (81) (100)

(0) (25) (45)

(65) (85) (99)

Figure 6: Single-object and multiobject tracking. First two rows: two level-set functions are simultaneously evolved. Last two rows: only one
level-set function is evolved. Under each image is the frame number.

depends, has only been able to delineate grossly the walker.
The bottom two rows depict the results when adding the
shape tracking term. The active curve has closely followed
the walker silhouette. By constraining the curve to retain a
similar shape between consecutive frames, encroachment on
the object and subsequent movement inward are averted.

4.3. The Fish Sequence. Fish segmentation and tracking is
currently a research problem in a major European study to
model fish form and behaviour. The scene in this example
(Figure 5) contains several fish swimming in a lighted tank.

The purpose is to track that particular fish in foreground.
The main difficulty, peculiar to images of swimming fish,
is that every movement of the fish changes the orientation
of its mirror-like scales. This causes a variation from frame
to frame of the reflected brightness pattern. This variation,
which can be significant at times, is difficult to characterize
or model. Perusal of the sequence shows that there is also
some clutter. It occurs right at the onset of the sequence in
the middle portion of the tail. This triangular portion is not
covered by skin and the background behind is visible. The
initialization includes this part of the background, causing
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(0) (8) (20)

(25) (30) (40)

(45) (55) (70)

Figure 7: Tracking on the lifting sequence with partial occlusion. The tracking method delineates correctly the silhouette of the athlete
including parts occluded by the weight bar. The frame index is under each image.

the algorithm correspondence process to look for it in
subsequent frames to keep as part of the fish. There is also
some clutter in the nose area. Although the initialization
delineates the nose correctly, this clutter is a source of
confusion as to where the fish/background boundary is in
this area. The top two rows in Figure 5 depict the tracking
without the shape tracking term. Both difficulties, clutter
and the scales orientation variation, have overwhelmed the
algorithm. However, the added support of the shape tracking
term was able to keep track of the fish boundary throughout
the sequence (bottom two rows of Figure 5).

4.4. Multiple-Object Tracking. The purpose of this example
(Figure 6) is to illustrate the algorithm’s ability to track
several objects simultaneously. We mentioned in Section 3.2
that it does this simply by affecting a different level set
function to each object contour to track. The level set
functions are then evolved independently using evolution
equations as in (11). The top two rows show tracking of
the woman and man/child independently (blue and yellow

curves). Tracking a single person is shown in the bottom two
rows.

4.5. Further Examples. The lifting sequence illustrated in
Figure 7 is a film of a weight lifting movement. The purpose
of the experiment is to use the algorithm to keep track of
the outline of the athlete while excluding the weights he is
lifting. The athlete’s articulated outline changes considerably
in the course of the lifting movement. This movement also
causes an occlusion of the athlete’s body along the weight bar
in front. The occluded portion is of relatively small extent in
most frames but it covers extensively the arms at about frame
30. However, the presence of distinctive color should be able
to lessen the impact of occlusion. This is indeed the case as
the active contour adheres to the outline of the athlete’s body
throughout the sequence.

Another example of sports articulated motion in color
sequences is shown in Figure 8. The main challenges in this
Karate move images are self-occlusion (the right hand and
leg are occluded in most frames) and the significant, fast
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(0) (5) (10)

(15) (20) (23)

(2) (7) (16)

Figure 8: Tracking on the Kick sequence with self occlusion. Top two rows: tracking with the proposed method. Although the right hand and
leg are often occluded, the method performed well before, during, and after occlusion. Bottom row: tracking with the method in [10]: the
histogram region intensity representation only allowed a gross delineation of the object.

change in the athlete’s outline in the course of the 23-frame
sequence. The active curve adheres to the moving boundary
throughout the sequence. The bottom row depicts the results
obtained using the method in [10]. Similarly to the previous
examples, the histogram matching allows keeping track of
the moving target grossly without delineating accurately the
athlete’s silhouette.

One last example is depicted in Figure 9 (walker, color
sequence). The right hand is occluded during the first frames.
This hand is undetected after it appears in frame 5 because
it has no correspondent in previous frames. Of course, it
remains undetected in subsequent frames. To handle such
cases, a formulation must resort to additional information
such as boundary contrast and motion. In this sequence, the
object and the background intensity profiles are very distinct;
one would not expect the shape term to be influent. Similar
results have been obtained by using the method without
shape term in [13]. The bottom row shows some of the
results obtained using the method in [10]. Even though some
parts of the background were included within the tracking
contour, the object has been grossly tracked until the end of
the sequence.

5. Conclusion

This work investigated a model-free, occlusion accommo-
dating active contour/level set method for tracking moving
objects in monocular image sequences. The objective func-
tional contained a photometric tracking term expressed in a
kernel-induced space, and a model-free shape tracking term
to assist tracking in presence of occlusion and clutter. The
method, exclusively driven by the level set evolution equa-
tions derived from the objective functional Euler-Lagrange
conditions, has performed accurately in several experi-
ments with infrared image sequences, grey level, and color
sequences with clutter, partial/total, and self-occlusions. The
method can be studied further in several ways. First, a
discrete formulation to implement by graph cuts [34] for
an execution much faster than level sets can be investigated
by inquiry into shape terms consistent with the graph cut
formulation. A graph cut statement of this study’s method
would be very useful because level set implementations can
be slow to execute and may not satisfy the requirements
of applications such as surveillance. In our examples, the
typical run time is 1-2 minutes for video sequences of
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(52) (57) (64)

Figure 9: Tracking of side walk with self occlusion. The contour delineates perfectly the silhouette of the person, except for the appearing
right hand clearly visible from frame 5. Bottom row: results by the method in [10].

typically 60 images (we used MATLAB programs run on a
Pentium 1.75 GHz processor with 1 Go Memory), and no
attempt was made at using special techniques to reduce
the computations. Second, new terms can be investigated
which bring in motion information without dependence
on the availability of accurate motion. Finally, automatic
initializations can be investigated so that the method can be
of a more general practical use.
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