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We define 0-04-Closed sets and discuss their properties. Using these sets, we characterize
Ty /2-spaces and Ty-Spaces.

1. Introduction and Preliminaries

Anideal D on a topological space (X, T) is a nonempty collection of subsets of X which satisfies
(i) A€ Dand B C Aimplies B € O and (ii) A, B € O implies AU B € J. Given a topological
space (X, ) with an ideal 2 on X and if 9(X) is the set of all subsets of X, a set operator (-)* :
P(X) — p(X) called a local function [1] of A with respect to T and 9 is defined as follows: for
ACX, A*(X,T)={xeX|UNA¢D, for every U € T(x)}, where 7(x) = {U et |xelU}.
A Kuratowski closure operator cl*(-) for a topology 7*(9, ) called the *-topology, finer than 7,
is defined by cI*(A) = AU A*(D,7) [2]. When there is no confusion we will simply write A*
for A*(D,7) and 7* for 7*(J, 7). If J is an ideal on X, then (X, 7, D) is called an ideal space. A
subset A of an ideal space (X, 7,9) is said to be x-closed [3] if A* C A. A subset A of an ideal
space (X, 7,0) is said to be an J¢-closed [4] if A* C U whenever A C U and U is open. A
subset A of an ideal space (X, 7, 0) is said to be J,-open if X — A is J¢-closed. An ideal space
(X, 7,0) is said to be a Ty-space [4] if every D,-closed set is x-closed. A subset A of an ideal
space (X, T,9) is said to be J-locally *-closed [5] if there exist an open set U and a *-closed set
Fsuch that A = UNF.If D = {(}, then D-locally x-closed sets coincide with locally closed sets.

By a space, we always mean a topological space (X, T) with no separation properties
assumed. If A C X, cl(A) and int(A) will, respectively, denote the closure and interior of A
in (X, 7) and int*(A) will denote the interior of A in (X, 7*). A subset A of a topological space
(X, T) is said to be a g-closed set [6] if cl(A) C U whenever A C U and U is open. A subset A
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of a topological space (X, 7) is said to be a g-open setif X — A is a g-closed set. A space (X, T)
is said to be a Ty »-space [6] if every g-closed set is a closed set.

For a subset A of a space (X, T), the O-interior [7] of A is the union of all open sets of
X whose closures contained in A and is denoted by intg(A). The subset A is called 8-open if
A = intg(A). The complement of a 6-open set is called a 0-closed set. Equivalently, A C X is
called O-closed [7] if A = clg(A), where clg(A) = {x € X | d(U)NA#0 for all U € 7(x)}. The
family of all 0-open sets of X forms a topology [7] on X, which is coarser than 7 and is denoted
by T9. A subset A of a topological space (X, T) is said to be a 8-g-closed set [8] if clo(A) c U
whenever A C U and U is open. A subset A of a space (X, T) is said to be a 0-g-open set [8]
if X — A is a 0-g-closed set. A subset A of a space (X, 7) is said to be a A-set [9, 10] if A = A?,
where A =n{Uer|AcU).

A subset A of an ideal space (X, 7,9) is said to be 0-0-closed [11] if cl3(A) = A, where
cj(A) = {x e X | Anc*(U)#¢ for all U € 7(x)}. A is said to be 0-D-open if X — A is
0-O-closed. If 0 = {0}, clj(A) = clp(A). If 9 = p(X), clj(A) = cl(A). For a subset A of X,
inteI(A) =uU {U € 7| I"(U) C A} [11]. We denote this intgI (A) by int}(A). The family of all
0-0-open sets of (X, T,0) is a topology and it is denoted by 74.» (see [11, Theorem 1]).

Lemma 1.1 (see [11, Corollary 4 if Theorem 2]). 79 C T9.0 C T.

Lemma 1.2 (see [11, Proposition 3]). Let (X, T, D) be an ideal space. Then, we have

(1) if O = {¢p} or D = N, where N is the ideal of nowhere dense sets of (X, T), then To-p = 7o,

Q) if 0 = {}, then 795 = 7.

Lemma 1.3 (see [5, Theorem 2.13]). Let (X, 7,0) be an ideal space. Then every subset of X is
D¢-closed if and only if every open set is x-closed.

Lemma 1.4 (see [11, Proposition 1]). Let (X, T,0) be an ideal space and A a subset of X. Then A
is 0-0-open if and only if inty(A) = A.

Lemma 1.5. Let (X,7,0) be an ideal space and A a subset of X. Then clz(A) = {x € X | U N
cl*(A) # ¢ forall U € T(x)} is closed.

Proof. If x € cl(clj(A)) and U € 7(x), then U N clj(A) #¢. Then, y € U N clj(A) for some
y € X.Since U € 7(y) and y € clj(A), from the definition of clj(A) we have A N cl*(U) # .
Therefore, x € clj(A). So cl(clj(A)) C cly(A) and hence clj(A) is closed. O

Lemma 1.6. Let (X, 7,9) be an ideal space and A a subset of X. Then, X — cly(X — A) = intj(A).

Proof. x € X—clj(X—A) ifand onlyif x ¢ clj(X—A) if and only if there exist U € 7(x) such that
(X-A)nc"(U) = ¢ if and only if x € U and, cI"(U) C (A) if and only if x € U Cinty(A). O

2. 0-04~ Closed Sets

A subset A of an ideal space (X,7,0) is said to be a 6-D,-closed set if cly(A) ¢ U
whenever A C U and U is open. Every 0-0-closed set is a 0-0q-closed set. If O = {(}, then
clj(A) = clg(A) and hence 0-D4-closed sets coincide with 0-g-closed sets. If 2 = p(X), then
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cly(A) = cl(A) and hence 0-0¢-closed sets coincide with g-closed sets. Since cI*(A) C cl(A) C
clj(A) C clg(A), we have the following inclusion diagram:

0-g-closed — 0-0q-closed — g-closed — D4-closed. (2.1)

Example 2.1. shows that a g-closed set needs not to be 0-0¢-closed, and Example 2.2
shows that 6-0;-closed set needs not to be a 0-g-closed set.

Example 2.1. Let X = {a,b,c,d}, T = {¢,{b},{a,b}, (b} {ab,c} {ab,d}, X}, and D =
{p,{a}, {c}, {a,c}}. Let A = {c}. Then A is closed and hence g-closed. But A is not
0-04-closed because A C {b,c} and clj(A) = X¢{b,c}.

Example 2.2. Let X and 7 be the same as in Example 2.1. Let 0 = {¢, {a}, {b},{a,b}} and A =
{c}. Then A is a 0-0-closed and hence 6-0-closed. Since A C {b,c} and clg(A) = X ¢ {b,c},
A is not 8-g-closed.

Theorem 2.3. If A is a subset of an ideal space (X, T,0), then the following are equivalent.

(a) A is 0-0g4-closed.
(b) Forall x € clj(A), cl({x}) N A#¢.
(c) cly(A) — A contains no nonempty closed set.
Proof. (a) = (b). Suppose x € cly(A). If cl({x}) N A = ¢, then A C X — cl({x}). Since A is

0-D¢-closed, cly(A) C X —cl({x}). Itis a contradiction to the fact that x € clj(A). This proves
(b).

(b) = (c¢). Suppose F C clj(A) - A, Fisclosed and x € F.Since F C X— A and F closed,
cd({x}))nAcc(F)nA=FnA=¢.Since x € cly(A), by (b), cl({x}) N A#¢, a contradiction
which proves (c).

(c) = (a). Let U be an open set containing A. Since clj(A) is closed, clj(A) N (X - U)
is closed and ¢l (A) N (X — U) C clj(A) — A. By hypothesis, clj(A) N (X —U) = ¢ and hence
cly(A) c U. Thus, A is 6-04-closed. O

If we put 9 = {¢} in Theorem 2.3, we get Corollary 2.4 which gives characterizations
for 0-g-closed sets. If we put 9 = p(X) in Theorem 2.3, we get Corollary 2.5 which gives
characterizations for g-closed sets.

Corollary 2.4. If A is a subset of a topological space (X, T), then the following are equivalent.
(a) Ais 0-g-closed.
(b) Forall x € clg(A), cl({x}) N A#¢.
(c) clp(A) — A contains no nonempty closed set.

Corollary 2.5 (see [12, Theorem 2.2]). If A is a subset of a topological space (X, T), then the
following are equivalent.

(a) Ais g-closed.
(b) Forall x € cl(A), cl({x}) N A#¢.

(c) cl(A) — A contains no nonempty closed set.
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The following Corollary 2.6 shows that in T;-space, 6-0;-closed sets are 0-0-closed,
the proof of which follows from Theorem 2.3(c). Corollary 2.7 gives the relation between
0-0¢-closed and 0-0-closed sets.

Corollary 2.6. If (X, 7,0) is a Ci-space and A is 0-04-closed then A is a 6-0-closed set.

Corollary 2.7. If (X, 7,0) is an ideal space and A is a 0-D4-closed set, then the following are
equivalent.

(a) Aisa 8-D-closed set.
(b) cly(A) — Ais a closed set.

Proof. (a) = (b).If A is 6-O-closed, then clj(A) — A = ¢ and so cly(A) — (A) is closed.
(b) = (a). If clj(A) - (A) is closed, since A is 0-D¢-closed, by Theorem 2.3(c), clg(A) -
(A) = ¢ and so A is 0-0-closed. O

If we put 9 = {¢} in Corollary 2.7, we get Corollary 2.8. If we put 2 = p(X) in
Corollary 2.7, we get Corollary 2.9.

Corollary 2.8. If (X, T,) is a topological space and A is a 0-g-closed set, then the following are
equivalent.

(a) Aisa0-closed set.
(b) clg(A) — A is a closed set.

Corollary 2.9 (see [6, Corollary 2.3]). If (X, ) is an topological space and A is a g-closed set,
then the following are equivalent.

(a) Aisa closed set.

(b) cl(A) — Ais a closed set.

Theorem 2.10. If every open set of an ideal space (X, ,0) is x-closed, then every g-closed set is
0-0¢-closed.

Proof. Since every open set is x-closed, cI*(U) = U for every U € 7. Therefore, for every subset
Aof X, inty(A) =u{U et | cl"(U) c A} =u{U e T |U C A} = int(A). So cl(A) = cl(A) for
every subset A of X. This implies that every g-closed set is 6-0¢-closed. O

Corollary 2.11. If every subset of an ideal space (X, T, D) is Dg-closed, then every g-closed set is
0-0g4-closed.

The proof follows from Lemma 1.3 and Theorem 2.10.

Theorem 2.12. Let (X, 7,0) be an ideal space. Then every subset of X is 6-0¢-closed if and only if
every open set is 0-0-closed.

Proof. Suppose every subset of X is 6-0¢-closed. If U is open, then U is 0-0¢-closed and so
cly(U) c U. Hence U is 6-0-closed. Conversely, suppose A C U and U is open. Since every
open set is 6-0-closed, cl3(A) C U and so A is 0-04-closed. O

If we put 9 = {¢} in Theorem 2.12, we get Corollary 2.13. If we put 9 = p(X) in
Theorem 2.12, we get Corollary 2.14.
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Corollary 2.13. Let (X, T) be a topological space. Then every subset of X is 0-g-closed if and only if
every open set is 0-closed.

Corollary 2.14 (see [6, Theorem 2.10]). Let (X, T) be a topological space. Then every subset of X is
g-closed if and only if every open set is closed.

Theorem 2.15. If every 0-Dq-closed set of an ideal space (X, 7,0) is 0-closed, then (X,T) is a
'Cy space.

Proof. Suppose {x} is not closed for some x € X. Then, B = X — {x} is not open. So B is
0-04-closed. By hypothesis, B is 6-closed. Therefore, {x} is 0-open. So {x} is both open and
closed, a contradiction. Hence, (X, 7) is a Cy-space. O

If we put 2 = {¢} in Theorem 2.15, we get Corollary 2.16.

Corollary 2.16. If every 0-g-closed set of a space (X, T) is O-closed, then (X, T) is a Ty space.

Theorem 2.17. Intersection of a 6-04-closed set and a 0-0-closed set is always 6-04-closed.

Proof. Let A be a 0-04-closed set and F a 0-0-closed set of an ideal space (X, 7,0). Suppose
ANF cUand U is open in X. Then, A c U U (X - F). Now X — F is 0-0-open and hence
open. So UU (X - F) is an open set containing A. Since A is 0-0¢-closed, cly(A) c UU (X —F).
Therefore, clj(A) N F ¢ U which implies that clj (AN F) c U.So ANF is 6-D,-closed. O

If we put 9 = {¢} in Theorem 2.17, we get Corollary 2.18. If we put 9 = p(X) in
Theorem 2.17, we get Corollary 2.19.

Corollary 2.18 (see [8, Proposition 3.11]). Intersection of a 0-g-closed set and a 0-closed set is
always 0-g-closed.

Corollary 2.19 (see [6, Corollary 2.7]). Intersection of a g-closed set and a closed set is always a
g-closed set.

Theorem 2.20. A subset A of an ideal space (X, T,0) is 0-0q-closed if and only if cly(A) C A™.

Proof. Suppose A is 0-Oq-closed and x € clj(A). If x ¢ A”, then there exists an open set
U such that A ¢ U, but x ¢ U. Since A is 8-D,-closed, clg(A) ¢ U and so x ¢ cl3(A), a
contradiction. Therefore, clj;(A) C A*. Conversely, suppose that cljj(A) ¢ A*. If A c U and U
is open, then A* c U and so clj(A) c U. Therefore, A is -Og-closed. O

If we put 9 = {¢} in Theorem 2.20, we get Corollary 2.21. If we put 2 = H(X) in
Theorem 2.20, we get Corollary 2.22.

Corollary 2.21. A subset A of a space (X, T) is 0-g-closed if and only if clg(A) C A™.

Corollary 2.22. A subset A of a space (X, T) is g-closed if and only if cl(A) C A™.

Theorem 2.23. Let A be a A-set of an ideal space (X, T,0). Then A is 0-D¢-closed if and only if A
is 6-0-closed.

Proof. Suppose A is 0-Og-closed. By Theorem 220, clg(A) c A" = A, since A is a
A-set. Therefore, A is 0-0-closed. Converse follows from the fact that every 0-0-closed is
0-04-closed. O
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If we put 9 = {¢} in Theorem 2.23, we get Corollary 2.24. If we put 2 = p(X) in
Theorem 2.23, we get Corollary 2.25.

Corollary 2.24. Let A be a A-set of a space (X, T). Then A is 0-g-closed if and only if A is 0-closed.
Corollary 2.25. Let A be a A-set of a space (X, T). Then A is g-closed if and only if A is closed.

Theorem 2.26. Let (X, 7,0) be an ideal space and A C X. If A® is 0-Dg4-closed, then A is also
0-0g4-closed.

Proof. Suppose that A is a 6-Og-closed set. If A ¢ U and U is open, then A* c U. Since A*
is 0-04-closed, cly(A™) c U. But, clg(A) C cly(A?). Therefore, A is 0-0,4-closed. O

If we put 9 = {¢} in Theorem 2.26, we get Corollary 2.27. If we put 2 = p(X) in
Theorem 2.26, we get Corollary 2.28.

Corollary 2.27. Let (X, T) be a topological space and A C X. If AN is 0-g-closed, then A is also
0-g-closed.

Corollary 2.28. Let (X, T) be a space and A C X. If A™ is g-closed set, then A is also g-closed.
Theorem 2.29. For an ideal space (X, T,0), the following are equivalent.

(a) Every 6-04-closed set is 0-0-closed.

(b) Every singleton of X is closed or 6-0-open.

Proof. (a) = (b). Let x € X. If {x} is not closed, then A = X — {x} ¢ 7 and then A is trivially
0-04-closed. By (a), A is 0-0-closed. Hence {x} is 6-0-open.
(b) = (a). Let A be a 0-D4-closed set and let x € clj(A). We have the following cases.

Case 1. {x} is closed. By Theorem 2.3, clj(A) — A does not contain a nonempty closed subset.
This shows {x} € A.

Case 2. {x} is 0-D-open. Then, {x} N A# ¢. Hence, x € A.

Thus in both cases x € A and so A = clg(A), that is, A is 0-D-closed, which proves
(a). O

If we put 9 = {¢} in Theorem 2.29, we get Corollary 2.30. If we put 0 = p(X) in
Theorem 2.29, we get Corollary 2.31.

Corollary 2.30. For an ideal space (X, T), the following are equivalent.

(a) Every 0-g-closed set is 0-closed.
(b) Every singleton of X is closed or 6-open.

Corollary 2.31 (see [13, Theorem 2.5]). For an ideal space (X, T), the following are equivalent.

(a) Every g-closed set is closed.

(b) Every singleton of X is closed or open.

Theorem 2.32. Let (X, 7,0) be an ideal space and A C X. Then A is 0-Oq-closed if and only if
A = F — N, where F is 0-0-closed and N contains no nonempty closed set.
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Proof. If A is -D4-closed, then by Theorem 2.3, N = cl3(A) — A contains no nonempty closed
set. If F = clj(A), then F is 6-0-closed such that F - N = clj(A) — (clj(A) - A) = clp(A) N (X -
cly(A)) U A) = A. Conversely, suppose A = F — N, where F is 6-0-closed and N contains
no nonempty closed set. Let U be an open set such that A ¢ U. Then, F — N C U which
implies that FN (X -U) ¢ N.Now, A C F and F is 0-0-closed implies that cl3(A) N (X -U) C
cj(F)n(X-U) c FN(X-U) ¢ N. Since 8-0-closed sets are closed, clj(A) N (X -U) is closed.
By hypothesis, clj(A) N (X - U) = ¢ and so cl5(A) ¢ U, which implies that A is 6-04-closed.

O

If we put 9 = {¢} in Theorem 2.32, we get Corollary 2.33. If we put 9 = p(X) in
Theorem 2.32, we get Corollary 2.34.

Corollary 2.33. Let (X, T) be a space and A C X. Then A is 0-g-closed subset of X if and only if
A =F — N, where F is 0-closed and N contains no nonempty closed set.

Corollary 2.34 (see [12, Corollary 2.3]). Let (X, T) be a space and A C X. Then A is g-closed if
and only if A = F — N, where F is closed and N contains no nonempty closed set.

Theorem 2.35. Let (X, 7,0) be an ideal space. If A is a 0-Dq-closed subset of X and A C B C cly(A),
then B is also 6-0¢-closed.

Proof. clj(B) — B C clj(A) — A, and since clj(A) — A has no nonempty closed subset, neither
does clj(B) — B. By Theorem 2.3, B is 0-04-closed. O

If we put 9 = {¢} in Theorem 2.35, we get Corollary 2.36. If we put 9 = p(X) in
Theorem 2.35, we get Corollary 2.37.

Corollary 2.36. Let (X, T) be a space. If A is a 0-g-closed subset of X and A C B C clg(A), then B
is also 6-g-closed.

Corollary 2.37 (see [6, Theorem 2.8]). Let (X, T) be a space. If A is a g-closed subset of X and
A C B ccl(A), then B is also g-closed.

A subset A of an ideal space (X, 7, 0) is said to be 0-0,-open if X — A is 0-0¢-closed.

Theorem 2.38. A subset A of an ideal space (X,T,0) is 0-D4-open if and only if F C intj(A)
whenever F is closed and F C A.

Proof. Suppose A is a 0-04-open set and F is a closed set contained in A, then X - A C X - F
and X - F is open. Since X — A is 0-D4-closed, cl3(X - A) C (X-F)andso F ¢ X-cl3(X-A) =
intj (A). Conversely, suppose X - A C U and X - U is closed. By hypothesis, X —U C int}(A),
which implies that clj(X — A) = X —intj(A) C U. Therefore, X - A is 6-0,-closed and hence
Ais 0-04-open. O

If we put 9 = {¢} in Theorem 2.38, we get Corollary 2.39. If we put 9 = p(X) in
Theorem 2.38, we get Corollary 2.40.

Corollary 2.39. A subset A of a space (X, T) is 0-g-open if and only if F C intg(A) whenever F is
closed and F C A.

Corollary 2.40 (see [6, Theorem 4.2]). A subset A of a space (X, T) is g-open if and only if F C
int(A) whenever F is closed and F C A.
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Theorem 2.41. Let (X, T,0) be an ideal space and A C U. Then the following are equivalent.

(a) Ais 0-04-closed.

(b) AU (X - cl§(A)) is 0-Dg-closed.

(c) cl§g(A) — Ais 0-Dg-open.
Proof. (a) = (b). Suppose A is 0-D¢-closed. If U is any open set containing A U (X - cl§(A)),
then X -U € X - (AU(X —clj(A)) = clj(A) — A. Since A is 6-0,4-closed, by Theorem 2.3(c), it
follows that X —U = ¢ and so X = U. Since X is the only open set containing AU (X —clj(A)),
AU (X —clj(A)) is 0-Dg-closed.

(b) = (a). Suppose AU (X - clj(A)) is 0-D4-closed. If F is any closed set contained in
cly(A) — A, then AU (X —cly(A)) € X—F and X — F is open. Therefore, clj(A U (X —clj(A)) C
X - F, which implies that clj(A) U cly(X — cl3(A)) € X - F and so X C X — F; it follows that
F = ¢. Hence A is 0-0,-closed.

The equivalence of (b) and (c) follows from the fact that X — (clj(A) - A) = AU (X -
clj(A)). O

If we put 9 = {¢} in Theorem 2.41, we get Corollary 2.42. If we put 9 = p(X) in
Theorem 2.41, we get Corollary 2.43.
Corollary 2.42. Let (X, ) be a space and A C U. Then the following are equivalent.

(a) A is 0-g-closed.

(b) AU (X —clg(A)) is 8-g-closed.

(c) clp(A) — Ais 0-g-open.
Corollary 2.43. Let (X, T) be an ideal space and A C U. Then the following are equivalent.

(a) Ais g-closed.

(b) AU (X —cl(A)) is g-closed.

(c) cl(A) — A is g-open.

3. Characterization of C,,, and T)-Space

Theorem 3.1. In an ideal space (X, T, 0), the following are equivalent.

(a) Every 0-g-closed set is closed.
(b) (X, T) isa Ty o-space.
(c) Every 0-04-closed set is closed.
Proof. (a) < (b). Equivalence of (a) and (b) follows from Theorem 4.1 of [8].
(b) = (c). Let A be a 0-0,-closed set. Since every 0-O,-closed set is g-closed, A is
g-closed. By hypothesis, A is closed.
(c) = (b). Let x € X. If {x} is not closed, then B = X — {x} is not open. So B is

0-04-closed. By hypothesis, B is closed and so {x} is open. By Corollary 2.31, (X, 7) is a
Ty 2-space. O

Theorem 3.2. In an ideal space (X, T, D) the following, are equivalent.

(a) Every 0-g-closed set is x-closed.
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(b) (X, 7,0) isa Ty-Space.

(c) Every 0-0D4-closed set is x-closed.

Proof. (a) = (b). Let x € X. If {x} is not closed, then X is the only open set containing X — {x}
and so X — {x} is 0-g-closed. By hypothesis, X — {x} is x-closed. Equivalently {x} is x-open.
Thus, every singleton set in X is either closed or x-open. By Theorem 3.3 of [4], (X, 7,0) is a
Cy-Space.

(b) = (a). The proof follows from the fact that every 0-g-closed set is J4-closed.

(b) = (c). The proof follows from the fact that every set is 0-0,-closed J4-closed.

(c) = (b). Let x € X. If {x} is not closed, then X is the only open set containing
x —{x} and so x — {x} is 0-04-closed. By hypothesis, X — {x} is x-closed. Thus, {x} is x-open.
Therefore, every singleton set in X is either x-open or closed. By Theorem of 3.3 [4], (X, T,0)
is a Cy-Space. O

The proof of the Corollary 3.3 follows from Theorem 3.2 and Theorem 3.10 of [5].
If we put 0 = {¢} in Corollary 3.3, we get Corollary 3.4.

Corollary 3.3. In an ideal space (X, T,0), the following are equivalent.

(a) Every 0-g-closed set is x-closed.
(b) Every 0-04-closed set is x-closed.

(c) Every D4-closed set is an D-locally x-closed set.

Corollary 3.4. In a topological space (X, T), the following are equivalent.

(a) Every 0-g-closed set is closed.
(b) Every g-closed set is a locally closed set.
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