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We define θ-Ig-Closed sets and discuss their properties. Using these sets, we characterize
T1/2-spaces and TI-Spaces.

1. Introduction and Preliminaries

An ideal I on a topological space (X, τ) is a nonempty collection of subsets ofXwhich satisfies
(i) A ∈ I and B ⊂ A implies B ∈ I and (ii) A,B ∈ I implies A ∪ B ∈ I. Given a topological
space (X, τ)with an ideal I on X and if ℘(X) is the set of all subsets of X, a set operator (·)� :
℘(X) → ℘(X) called a local function [1] of Awith respect to τ and I is defined as follows: for
A ⊂ X, A�(X, τ) = {x ∈ X | U ∩A /∈ I, for every U ∈ τ(x)}, where τ(x) = {U ∈ τ | x ∈ U}.
A Kuratowski closure operator cl�(·) for a topology τ�(I, τ) called the �-topology, finer than τ ,
is defined by cl�(A) = A ∪ A�(I, τ) [2]. When there is no confusion we will simply write A�

for A�(I, τ) and τ� for τ�(I, τ). If I is an ideal on X, then (X, τ,I) is called an ideal space. A
subset A of an ideal space (X, τ,I) is said to be �-closed [3] if A� ⊂ A. A subset A of an ideal
space (X, τ,I) is said to be an Ig-closed [4] if A� ⊂ U whenever A ⊂ U and U is open. A
subset A of an ideal space (X, τ,I) is said to be Ig-open if X −A is Ig-closed. An ideal space
(X, τ,I) is said to be a TI-space [4] if every Ig-closed set is �-closed. A subset A of an ideal
space (X, τ,I) is said to be I-locally �-closed [5] if there exist an open set U and a �-closed set
F such thatA = U∩F. If I = {∅}, then I-locally � -closed sets coincide with locally closed sets.

By a space, we always mean a topological space (X, τ) with no separation properties
assumed. If A ⊂ X, cl(A) and int(A) will, respectively, denote the closure and interior of A
in (X, τ) and int�(A)will denote the interior ofA in (X, τ�). A subsetA of a topological space
(X, τ) is said to be a g-closed set [6] if cl(A) ⊂ U whenever A ⊂ U andU is open. A subset A
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of a topological space (X, τ) is said to be a g-open set if X −A is a g-closed set. A space (X, τ)
is said to be a T1/2-space [6] if every g-closed set is a closed set.

For a subset A of a space (X, τ), the θ-interior [7] of A is the union of all open sets of
X whose closures contained in A and is denoted by intθ(A). The subset A is called θ-open if
A = intθ(A). The complement of a θ-open set is called a θ-closed set. Equivalently, A ⊂ X is
called θ-closed [7] ifA = clθ(A), where clθ(A) = {x ∈ X | cl(U)∩A/= ∅ for all U ∈ τ(x)}. The
family of all θ-open sets ofX forms a topology [7] onX, which is coarser than τ and is denoted
by τθ. A subset A of a topological space (X, τ) is said to be a θ-g-closed set [8] if clθ(A) ⊂ U
whenever A ⊂ U and U is open. A subset A of a space (X, τ) is said to be a θ-g-open set [8]
if X −A is a θ-g-closed set. A subset A of a space (X, τ) is said to be a Λ-set [9, 10] ifA = AΛ,
where AΛ = ∩ {U ∈ τ | A ⊂ U}.

A subset A of an ideal space (X, τ,I) is said to be θ-I-closed [11] if cl�θ(A) = A, where
cl�θ(A) = {x ∈ X | A ∩ cl�(U)/=φ for all U ∈ τ(x)}. A is said to be θ-I-open if X − A is
θ-I-closed. If I = {∅}, cl�θ(A) = clθ(A). If I = ℘(X), cl�θ(A) = cl(A). For a subset A of X,
intθI(A) = ∪ {U ∈ τ | cl�(U) ⊂ A} [11]. We denote this intθI(A) by int�θ(A). The family of all
θ-I-open sets of (X, τ,I) is a topology and it is denoted by τθ-I (see [11, Theorem 1]).

Lemma 1.1 (see [11, Corollary 4 if Theorem 2]). τθ ⊂ τθ-I ⊂ τ .

Lemma 1.2 (see [11, Proposition 3]). Let (X, τ,I) be an ideal space. Then, we have

(1) if I = {φ} or I = N, whereN is the ideal of nowhere dense sets of (X, τ), then τθ-I = τθ,

(2) if I = {φ}, then τθ-I = τ .

Lemma 1.3 (see [5, Theorem 2.13]). Let (X, τ,I) be an ideal space. Then every subset of X is
Ig-closed if and only if every open set is �-closed.

Lemma 1.4 (see [11, Proposition 1]). Let (X, τ,I) be an ideal space and A a subset of X. Then A
is θ-I-open if and only if int�θ(A) = A.

Lemma 1.5. Let (X, τ,I) be an ideal space and A a subset of X. Then cl�θ(A) = {x ∈ X | U ∩
cl�(A)/=φ for allU ∈ τ(x)} is closed.

Proof. If x ∈ cl(cl�θ(A)) and U ∈ τ(x), then U ∩ cl�θ(A)/=φ. Then, y ∈ U ∩ cl�θ(A) for some
y ∈ X. Since U ∈ τ(y) and y ∈ cl�θ(A), from the definition of cl�θ(A) we have A ∩ cl�(U)/=φ.
Therefore, x ∈ cl�θ(A). So cl(cl�θ(A)) ⊂ cl�θ(A) and hence cl�θ(A) is closed.

Lemma 1.6. Let (X, τ,I) be an ideal space and A a subset of X. Then, X − cl�θ(X −A) = int�θ(A).

Proof. x ∈ X−cl�θ(X−A) if and only if x /∈ cl�θ(X−A) if and only if there existU ∈ τ(x) such that
(X −A) ∩ cl�(U) = φ if and only if x ∈ U and, cl�(U) ⊂ (A) if and only if x ∈ U ⊂ int�θ(A).

2. θ-Ig- Closed Sets

A subset A of an ideal space (X, τ,I) is said to be a θ-Ig-closed set if cl�θ(A) ⊂ U
whenever A ⊂ U and U is open. Every θ-I-closed set is a θ-Ig-closed set. If I = {∅}, then
cl�θ(A) = clθ(A) and hence θ-Ig-closed sets coincide with θ-g-closed sets. If I = ℘(X), then
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cl�θ(A) = cl(A) and hence θ-Ig-closed sets coincide with g-closed sets. Since cl�(A) ⊂ cl(A) ⊂
cl�θ(A) ⊂ clθ(A), we have the following inclusion diagram:

θ-g-closed −→ θ-Ig-closed −→ g-closed −→ Ig-closed. (2.1)

Example 2.1. shows that a g-closed set needs not to be θ-Ig-closed, and Example 2.2
shows that θ-Ig-closed set needs not to be a θ-g-closed set.

Example 2.1. Let X = {a, b, c, d}, τ = {φ, {b}, {a, b}, {b, c}, {a, b, c}, {a, b, d}, X}, and I =
{φ, {a}, {c}, {a, c}}. Let A = {c}. Then A is closed and hence g-closed. But A is not
θ-Ig-closed because A ⊂ {b, c} and cl�θ(A) = X/⊂{b, c}.

Example 2.2. Let X and τ be the same as in Example 2.1. Let I = {φ, {a}, {b}, {a, b}} and A =
{c}. Then A is a θ-I-closed and hence θ-Ig-closed. Since A ⊂ {b, c} and clθ(A) = X /⊂ {b, c},
A is not θ-g-closed.

Theorem 2.3. If A is a subset of an ideal space (X, τ,I), then the following are equivalent.

(a) A is θ-Ig-closed.

(b) For all x ∈ cl�θ(A), cl({x}) ∩A/=φ.

(c) cl�θ(A) −A contains no nonempty closed set.

Proof. (a) ⇒ (b). Suppose x ∈ cl�θ(A). If cl({x}) ∩ A = φ, then A ⊂ X − cl({x}). Since A is
θ-Ig-closed, cl

�
θ(A) ⊂ X − cl({x}). It is a contradiction to the fact that x ∈ cl�θ(A). This proves

(b).
(b) ⇒ (c). Suppose F ⊂ cl�θ(A)−A, F is closed and x ∈ F. Since F ⊂ X−A and F closed,

cl({x}) ∩A ⊂ cl(F) ∩A = F ∩A = φ. Since x ∈ cl�θ(A), by (b), cl({x}) ∩A/=φ, a contradiction
which proves (c).

(c) ⇒ (a). Let U be an open set containing A. Since cl�θ(A) is closed, cl�θ(A) ∩ (X −U)
is closed and cl�θ(A) ∩ (X −U) ⊂ cl�θ(A) −A. By hypothesis, cl�θ(A) ∩ (X −U) = φ and hence
cl�θ(A) ⊂ U. Thus, A is θ-Ig-closed.

If we put I = {φ} in Theorem 2.3, we get Corollary 2.4 which gives characterizations
for θ-g-closed sets. If we put I = ℘(X) in Theorem 2.3, we get Corollary 2.5 which gives
characterizations for g-closed sets.

Corollary 2.4. If A is a subset of a topological space (X, τ), then the following are equivalent.

(a) A is θ-g-closed.

(b) For all x ∈ clθ(A), cl({x}) ∩A/=φ.

(c) clθ(A) −A contains no nonempty closed set.

Corollary 2.5 (see [12, Theorem 2.2]). If A is a subset of a topological space (X, τ), then the
following are equivalent.

(a) A is g-closed.

(b) For all x ∈ cl(A), cl({x}) ∩A/=φ.

(c) cl(A) −A contains no nonempty closed set.
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The following Corollary 2.6 shows that in T1-space, θ-Ig-closed sets are θ-I-closed,
the proof of which follows from Theorem 2.3(c). Corollary 2.7 gives the relation between
θ-Ig-closed and θ-I-closed sets.

Corollary 2.6. If (X, τ,I) is a T1-space and A is θ-Ig-closed then A is a θ-I-closed set.

Corollary 2.7. If (X, τ,I) is an ideal space and A is a θ-Ig-closed set, then the following are
equivalent.

(a) A is a θ-I-closed set.

(b) cl�θ(A) −A is a closed set.

Proof. (a) ⇒ (b). If A is θ-I-closed, then cl�θ(A) −A = φ and so cl�θ(A) − (A) is closed.
(b) ⇒ (a). If cl�θ(A) − (A) is closed, since A is θ-Ig-closed, by Theorem 2.3(c), cl�θ(A) −

(A) = φ and so A is θ-I-closed.

If we put I = {φ} in Corollary 2.7, we get Corollary 2.8. If we put I = ℘(X) in
Corollary 2.7, we get Corollary 2.9.

Corollary 2.8. If (X, τ, ) is a topological space and A is a θ-g-closed set, then the following are
equivalent.

(a) A is a θ-closed set.

(b) clθ(A) −A is a closed set.

Corollary 2.9 (see [6, Corollary 2.3]). If (X, τ) is an topological space and A is a g-closed set,
then the following are equivalent.

(a) A is a closed set.

(b) cl(A) −A is a closed set.

Theorem 2.10. If every open set of an ideal space (X, τ,I) is �-closed, then every g-closed set is
θ-Ig-closed.

Proof. Since every open set is �-closed, cl�(U) = U for everyU ∈ τ . Therefore, for every subset
A of X, int�θ(A) = ∪{U ∈ τ | cl�(U) ⊂ A} = ∪ {U ∈ τ | U ⊂ A} = int(A). So cl�θ(A) = cl(A) for
every subset A of X. This implies that every g-closed set is θ-Ig-closed.

Corollary 2.11. If every subset of an ideal space (X, τ,I) is Ig-closed, then every g-closed set is
θ-Ig-closed.

The proof follows from Lemma 1.3 and Theorem 2.10.

Theorem 2.12. Let (X, τ,I) be an ideal space. Then every subset of X is θ-Ig-closed if and only if
every open set is θ-I-closed.

Proof. Suppose every subset of X is θ-Ig-closed. If U is open, then U is θ-Ig-closed and so
cl�θ(U) ⊂ U. Hence U is θ-I-closed. Conversely, suppose A ⊂ U and U is open. Since every
open set is θ-I-closed, cl�θ(A) ⊂ U and so A is θ-Ig-closed.

If we put I = {φ} in Theorem 2.12, we get Corollary 2.13. If we put I = ℘(X) in
Theorem 2.12, we get Corollary 2.14.
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Corollary 2.13. Let (X, τ) be a topological space. Then every subset of X is θ-g-closed if and only if
every open set is θ-closed.

Corollary 2.14 (see [6, Theorem 2.10]). Let (X, τ) be a topological space. Then every subset of X is
g-closed if and only if every open set is closed.

Theorem 2.15. If every θ-Ig-closed set of an ideal space (X, τ,I) is θ-closed, then (X, τ) is a
T1 space.

Proof. Suppose {x} is not closed for some x ∈ X. Then, B = X − {x} is not open. So B is
θ-Ig-closed. By hypothesis, B is θ-closed. Therefore, {x} is θ-open. So {x} is both open and
closed, a contradiction. Hence, (X, τ) is a T1-space.

If we put I = {φ} in Theorem 2.15, we get Corollary 2.16.

Corollary 2.16. If every θ-g-closed set of a space (X, τ) is θ-closed, then (X, τ) is a T1 space.

Theorem 2.17. Intersection of a θ-Ig-closed set and a θ-I-closed set is always θ-Ig-closed.

Proof. Let A be a θ-Ig-closed set and F a θ-I-closed set of an ideal space (X, τ,I). Suppose
A ∩ F ⊂ U and U is open in X. Then, A ⊂ U ∪ (X − F). Now X − F is θ-I-open and hence
open. SoU∪ (X−F) is an open set containingA. SinceA is θ-Ig-closed, cl

�
θ(A) ⊂ U∪ (X−F).

Therefore, cl�θ(A) ∩ F ⊂ U which implies that cl�θ(A ∩ F) ⊂ U. So A ∩ F is θ-Ig-closed.

If we put I = {φ} in Theorem 2.17, we get Corollary 2.18. If we put I = ℘(X) in
Theorem 2.17, we get Corollary 2.19.

Corollary 2.18 (see [8, Proposition 3.11]). Intersection of a θ-g-closed set and a θ-closed set is
always θ-g-closed.

Corollary 2.19 (see [6, Corollary 2.7]). Intersection of a g-closed set and a closed set is always a
g-closed set.

Theorem 2.20. A subset A of an ideal space (X, τ,I) is θ-Ig-closed if and only if cl�θ(A) ⊂ AΛ.

Proof. Suppose A is θ-Ig-closed and x ∈ cl�θ(A). If x /∈ AΛ, then there exists an open set
U such that A ⊂ U, but x /∈ U. Since A is θ-Ig-closed, cl

�
θ(A) ⊂ U and so x /∈ cl�θ(A), a

contradiction. Therefore, cl�θ(A) ⊂ AΛ. Conversely, suppose that cl�θ(A) ⊂ AΛ. IfA ⊂ U andU
is open, then AΛ ⊂ U and so cl�θ(A) ⊂ U. Therefore, A is θ-Ig-closed.

If we put I = {φ} in Theorem 2.20, we get Corollary 2.21. If we put I = ℘(X) in
Theorem 2.20, we get Corollary 2.22.

Corollary 2.21. A subset A of a space (X, τ) is θ-g-closed if and only if clθ(A) ⊂ AΛ.

Corollary 2.22. A subset A of a space (X, τ) is g-closed if and only if cl(A) ⊂ AΛ.

Theorem 2.23. Let A be a Λ-set of an ideal space (X, τ,I). Then A is θ-Ig-closed if and only if A
is θ-I-closed.

Proof. Suppose A is θ-Ig-closed. By Theorem 2.20, cl�θ(A) ⊂ AΛ = A, since A is a
Λ-set. Therefore, A is θ-I-closed. Converse follows from the fact that every θ-I-closed is
θ-Ig-closed.
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If we put I = {φ} in Theorem 2.23, we get Corollary 2.24. If we put I = ℘(X) in
Theorem 2.23, we get Corollary 2.25.

Corollary 2.24. Let A be aΛ-set of a space (X, τ). Then A is θ-g-closed if and only if A is θ-closed.

Corollary 2.25. Let A be a Λ-set of a space (X, τ). Then A is g-closed if and only if A is closed.

Theorem 2.26. Let (X, τ,I) be an ideal space and A ⊂ X. If AΛ is θ-Ig-closed, then A is also
θ-Ig-closed.

Proof. Suppose that AΛ is a θ-Ig-closed set. If A ⊂ U and U is open, then AΛ ⊂ U. Since AΛ

is θ-Ig-closed, cl
�
θ(A

Λ) ⊂ U. But, cl�θ(A) ⊂ cl�θ(A
Λ). Therefore, A is θ-Ig-closed.

If we put I = {φ} in Theorem 2.26, we get Corollary 2.27. If we put I = ℘(X) in
Theorem 2.26, we get Corollary 2.28.

Corollary 2.27. Let (X, τ) be a topological space and A ⊂ X. If AΛ is θ-g-closed, then A is also
θ-g-closed.

Corollary 2.28. Let (X, τ) be a space and A ⊂ X. If AΛ is g-closed set, then A is also g-closed.

Theorem 2.29. For an ideal space (X, τ,I), the following are equivalent.

(a) Every θ-Ig-closed set is θ-I-closed.

(b) Every singleton of X is closed or θ-I-open.

Proof. (a) ⇒ (b). Let x ∈ X. If {x} is not closed, then A = X − {x} /∈ τ and then A is trivially
θ-Ig-closed. By (a), A is θ-I-closed. Hence {x} is θ-I-open.

(b) ⇒ (a). Let A be a θ-Ig-closed set and let x ∈ cl�θ(A). We have the following cases.

Case 1. {x} is closed. By Theorem 2.3, cl�θ(A) −A does not contain a nonempty closed subset.
This shows {x} ∈ A.

Case 2. {x} is θ-I-open. Then, {x} ∩A/=φ. Hence, x ∈ A.

Thus in both cases x ∈ A and so A = cl�θ(A), that is, A is θ-I-closed, which proves
(a).

If we put I = {φ} in Theorem 2.29, we get Corollary 2.30. If we put I = ℘(X) in
Theorem 2.29, we get Corollary 2.31.

Corollary 2.30. For an ideal space (X, τ), the following are equivalent.

(a) Every θ-g-closed set is θ-closed.

(b) Every singleton of X is closed or θ-open.

Corollary 2.31 (see [13, Theorem 2.5]). For an ideal space (X, τ), the following are equivalent.

(a) Every g-closed set is closed.

(b) Every singleton of X is closed or open.

Theorem 2.32. Let (X, τ,I) be an ideal space and A ⊂ X. Then A is θ-Ig-closed if and only if
A = F −N, where F is θ-I-closed and N contains no nonempty closed set.
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Proof. IfA is θ-Ig-closed, then by Theorem 2.3,N = cl�θ(A)−A contains no nonempty closed
set. If F = cl�θ(A), then F is θ-I-closed such that F −N = cl�θ(A)− (cl�θ(A)−A) = cl�θ(A)∩ ((X−
cl�θ(A)) ∪ A) = A. Conversely, suppose A = F − N, where F is θ-I-closed and N contains
no nonempty closed set. Let U be an open set such that A ⊂ U. Then, F − N ⊂ U which
implies that F ∩ (X −U) ⊂ N. Now,A ⊂ F and F is θ-I-closed implies that cl�θ(A)∩ (X −U) ⊂
cl�θ(F)∩(X−U) ⊂ F∩(X−U) ⊂ N. Since θ-I-closed sets are closed, cl�θ(A)∩(X−U) is closed.
By hypothesis, cl�θ(A) ∩ (X −U) = φ and so cl�θ(A) ⊂ U, which implies that A is θ-Ig-closed.

If we put I = {φ} in Theorem 2.32, we get Corollary 2.33. If we put I = ℘(X) in
Theorem 2.32, we get Corollary 2.34.

Corollary 2.33. Let (X, τ) be a space and A ⊂ X. Then A is θ-g-closed subset of X if and only if
A = F −N, where F is θ-closed and N contains no nonempty closed set.

Corollary 2.34 (see [12, Corollary 2.3]). Let (X, τ) be a space and A ⊂ X. Then A is g-closed if
and only if A = F −N, where F is closed and N contains no nonempty closed set.

Theorem 2.35. Let (X, τ,I) be an ideal space. If A is a θ-Ig-closed subset of X andA ⊂ B ⊂ cl�θ(A),
then B is also θ-Ig-closed.

Proof. cl�θ(B) − B ⊂ cl�θ(A) − A, and since cl�θ(A) − A has no nonempty closed subset, neither
does cl�θ(B) − B. By Theorem 2.3, B is θ-Ig-closed.

If we put I = {φ} in Theorem 2.35, we get Corollary 2.36. If we put I = ℘(X) in
Theorem 2.35, we get Corollary 2.37.

Corollary 2.36. Let (X, τ) be a space. If A is a θ-g-closed subset of X and A ⊂ B ⊂ clθ(A), then B
is also θ-g-closed.

Corollary 2.37 (see [6, Theorem 2.8]). Let (X, τ) be a space. If A is a g-closed subset of X and
A ⊂ B ⊂ cl(A), then B is also g-closed.

A subset A of an ideal space (X, τ,I) is said to be θ-Ig-open if X −A is θ-Ig-closed.

Theorem 2.38. A subset A of an ideal space (X, τ,I) is θ-Ig-open if and only if F ⊂ int�θ(A)
whenever F is closed and F ⊂ A.

Proof. Suppose A is a θ-Ig-open set and F is a closed set contained in A, then X −A ⊂ X − F
andX−F is open. SinceX−A is θ-Ig-closed, cl

�
θ(X−A) ⊂ (X−F) and so F ⊂ X−cl�θ(X−A) =

int�θ(A). Conversely, suppose X−A ⊂ U and X −U is closed. By hypothesis, X −U ⊂ int�θ(A),
which implies that cl�θ(X −A) = X − int�θ(A) ⊂ U. Therefore, X −A is θ-Ig-closed and hence
A is θ-Ig-open.

If we put I = {φ} in Theorem 2.38, we get Corollary 2.39. If we put I = ℘(X) in
Theorem 2.38, we get Corollary 2.40.

Corollary 2.39. A subset A of a space (X, τ) is θ-g-open if and only if F ⊂ intθ(A) whenever F is
closed and F ⊂ A.

Corollary 2.40 (see [6, Theorem 4.2]). A subset A of a space (X, τ) is g-open if and only if F ⊂
int(A) whenever F is closed and F ⊂ A.
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Theorem 2.41. Let (X, τ,I) be an ideal space and A ⊂ U. Then the following are equivalent.

(a) A is θ-Ig-closed.

(b) A ∪ (X − cl�θ(A)) is θ-Ig-closed.

(c) cl�θ(A) −A is θ-Ig-open.

Proof. (a) ⇒ (b). Suppose A is θ-Ig-closed. If U is any open set containing A ∪ (X − cl�θ(A)),
then X −U ⊂ X − (A∪ (X − cl�θ(A)) = cl�θ(A)−A. SinceA is θ-Ig-closed, by Theorem 2.3(c), it
follows thatX−U = φ and soX = U. SinceX is the only open set containingA∪ (X− cl�θ(A)),
A ∪ (X − cl�θ(A)) is θ-Ig-closed.

(b) ⇒ (a). Suppose A ∪ (X − cl�θ(A)) is θ-Ig-closed. If F is any closed set contained in
cl�θ(A)−A, thenA∪ (X − cl�θ(A)) ⊂ X −F and X −F is open. Therefore, cl�θ(A ∪ (X − cl�θ(A)) ⊂
X − F, which implies that cl�θ(A) ∪ cl�θ(X − cl�θ(A)) ⊂ X − F and so X ⊂ X − F; it follows that
F = φ. Hence A is θ-Ig-closed.

The equivalence of (b) and (c) follows from the fact that X − (cl�θ(A) −A) = A ∪ (X −
cl�θ(A)).

If we put I = {φ} in Theorem 2.41, we get Corollary 2.42. If we put I = ℘(X) in
Theorem 2.41, we get Corollary 2.43.

Corollary 2.42. Let (X, τ) be a space and A ⊂ U. Then the following are equivalent.

(a) A is θ-g-closed.

(b) A ∪ (X − clθ(A)) is θ-g-closed.

(c) clθ(A) −A is θ-g-open.

Corollary 2.43. Let (X, τ) be an ideal space and A ⊂ U. Then the following are equivalent.

(a) A is g-closed.

(b) A ∪ (X − cl(A)) is g-closed.

(c) cl(A) −A is g-open.

3. Characterization of T1/2 and TI-Space

Theorem 3.1. In an ideal space (X, τ,I), the following are equivalent.

(a) Every θ-g-closed set is closed.

(b) (X, τ) is a T1/2-space.

(c) Every θ-Ig-closed set is closed.

Proof. (a) ⇔ (b). Equivalence of (a) and (b) follows from Theorem 4.1 of [8].
(b) ⇒ (c). Let A be a θ-Ig-closed set. Since every θ-Ig-closed set is g-closed, A is

g-closed. By hypothesis, A is closed.
(c) ⇒ (b). Let x ∈ X. If {x} is not closed, then B = X − {x} is not open. So B is

θ-Ig-closed. By hypothesis, B is closed and so {x} is open. By Corollary 2.31, (X, τ) is a
T1/2-space.

Theorem 3.2. In an ideal space (X, τ,I) the following, are equivalent.

(a) Every θ-g-closed set is �-closed.
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(b) (X, τ,I) is a TI-Space.

(c) Every θ-Ig-closed set is �-closed.

Proof. (a) ⇒ (b). Let x ∈ X. If {x} is not closed, thenX is the only open set containing X −{x}
and so X − {x} is θ-g-closed. By hypothesis, X − {x} is �-closed. Equivalently {x} is �-open.
Thus, every singleton set in X is either closed or �-open. By Theorem 3.3 of [4], (X, τ,I) is a
TI-Space.

(b) ⇒ (a). The proof follows from the fact that every θ-g-closed set is Ig-closed.
(b) ⇒ (c). The proof follows from the fact that every set is θ-Ig-closed Ig-closed.
(c) ⇒ (b). Let x ∈ X. If {x} is not closed, then X is the only open set containing

x − {x} and so x − {x} is θ-Ig-closed. By hypothesis, X − {x} is �-closed. Thus, {x} is �-open.
Therefore, every singleton set in X is either �-open or closed. By Theorem of 3.3 [4], (X, τ,I)
is a TI-Space.

The proof of the Corollary 3.3 follows from Theorem 3.2 and Theorem 3.10 of [5].
If we put I = {φ} in Corollary 3.3, we get Corollary 3.4.

Corollary 3.3. In an ideal space (X, τ,I), the following are equivalent.

(a) Every θ-g-closed set is �-closed.

(b) Every θ-Ig-closed set is �-closed.

(c) Every Ig-closed set is an I-locally �-closed set.

Corollary 3.4. In a topological space (X, τ), the following are equivalent.

(a) Every θ-g-closed set is closed.

(b) Every g-closed set is a locally closed set.

References

[1] K. Kuratowski, Topology, vol. 1, Academic Press, New York, NY, USA, 1966.
[2] R. Vaidyanathaswamy, Set Topology, Chelsea Publishing, New York, NY, USA, 1946.
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