International Scholarly Research Network ISRN Geometry Volume 2012, Article ID 682829, 9 pages doi:10.5402/2012/682829

Research Article θ - \mathcal{O}_{g} -Closed Sets

M. Navaneethakrishnan¹ and S. Alwarsamy²

¹ Department of Mathematics, Kamaraj College, Thoothukudi 628003, India
² Department of Mathematics, RDM Government Arts College, Sivagankai 630561, India

Correspondence should be addressed to M. Navaneethakrishnan, navaneethan65@yahoo.co.in

Received 3 November 2011; Accepted 22 December 2011

Academic Editor: D. Franco

Copyright © 2012 M. Navaneethakrishnan and S. Alwarsamy. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We define θ - \mathcal{O}_g -*Closed* sets and discuss their properties. Using these sets, we characterize $\mathcal{T}_{1/2}$ -spaces and \mathcal{T}_2 -Spaces.

1. Introduction and Preliminaries

An *ideal* \mathcal{O} on a topological space (X, τ) is a nonempty collection of subsets of X which satisfies (i) $A \in \mathcal{O}$ and $B \subset A$ implies $B \in \mathcal{O}$ and (ii) $A, B \in \mathcal{O}$ implies $A \cup B \in \mathcal{O}$. Given a topological space (X, τ) with an ideal \mathcal{O} on X and if $\mathcal{P}(X)$ is the set of all subsets of X, a set operator $(\cdot)^*$: $\mathcal{P}(X) \to \mathcal{P}(X)$ called a *local function* [1] of A with respect to τ and \mathcal{O} is defined as follows: for $A \subset X, A^*(X, \tau) = \{x \in X \mid U \cap A \notin \mathcal{O}, \text{ for every } U \in \tau(x)\}$, where $\tau(x) = \{U \in \tau \mid x \in U\}$. A *Kuratowski closure operator* $cl^*(\cdot)$ for a topology $\tau^*(\mathcal{O}, \tau)$ called the *-*topology*, finer than τ , is defined by $cl^*(A) = A \cup A^*(\mathcal{O}, \tau)$ [2]. When there is no confusion we will simply write A^* for $A^*(\mathcal{O}, \tau)$ and τ^* for $\tau^*(\mathcal{O}, \tau)$. If \mathcal{O} is an ideal on X, then (X, τ, \mathcal{O}) is called an *ideal space*. A subset A of an ideal space (X, τ, \mathcal{O}) is said to be *-*closed* [3] if $A^* \subset A$. A subset A of an ideal space (X, τ, \mathcal{O}) is said to be an \mathcal{O}_g -*closed* [4] if $A^* \subset U$ whenever $A \subset U$ and U is open. A subset A of an ideal space (X, τ, \mathcal{O}) is said to be \mathcal{O}_g -*open* if X - A is \mathcal{O}_g -*closed*. An ideal space (X, τ, \mathcal{O}) is said to be a \mathcal{T}_Q -space [4] if every \mathcal{O}_g -*closed* set is *-*closed*. A subset A of an ideal space (X, τ, \mathcal{O}) is said to be \mathcal{O} -*locally**-*closed* set is an open set U and a *-*closed* set F such that $A = U \cap F$. If $\mathcal{O} = \{\emptyset\}$, then \mathcal{O} -*locally**-*closed* sets coincide with locally *closed* sets.

By a space, we always mean a topological space (X, τ) with no separation properties assumed. If $A \subset X$, cl(A) and int(A) will, respectively, denote the closure and interior of Ain (X, τ) and $int^*(A)$ will denote the interior of A in (X, τ^*) . A subset A of a topological space (X, τ) is said to be a *g*-closed set [6] if $cl(A) \subset U$ whenever $A \subset U$ and U is open. A subset A of a topological space (X, τ) is said to be a *g*-open set if X - A is a *g*-closed set. A space (X, τ) is said to be a $\mathcal{T}_{1/2}$ -space [6] if every *g*-closed set is a closed set.

For a subset *A* of a space (X, τ) , the θ -interior [7] of *A* is the union of all open sets of *X* whose closures contained in *A* and is denoted by $\operatorname{int}_{\theta}(A)$. The subset *A* is called θ -open if $A = \operatorname{int}_{\theta}(A)$. The complement of a θ -open set is called a θ -closed set. Equivalently, $A \subset X$ is called θ -closed [7] if $A = \operatorname{cl}_{\theta}(A)$, where $\operatorname{cl}_{\theta}(A) = \{x \in X \mid \operatorname{cl}(U) \cap A \neq \emptyset$ for all $U \in \tau(x)\}$. The family of all θ -open sets of *X* forms a topology [7] on *X*, which is coarser than τ and is denoted by τ_{θ} . A subset *A* of a topological space (X, τ) is said to be a θ -g-open set [8] if $\operatorname{cl}_{\theta}(A) \subset U$ whenever $A \subset U$ and *U* is open. A subset *A* of a space (X, τ) is said to be a Λ -set [9, 10] if $A = A^{\Lambda}$, where $A^{\Lambda} = \cap \{U \in \tau \mid A \subset U\}$.

A subset *A* of an ideal space (X, τ, \mathcal{O}) is said to be θ - \mathcal{O} -closed [11] if $cl_{\theta}^{*}(A) = A$, where $cl_{\theta}^{*}(A) = \{x \in X \mid A \cap cl^{*}(U) \neq \phi \text{ for all } U \in \tau(x)\}$. *A* is said to be θ - \mathcal{O} -open if X - A is θ - \mathcal{O} -closed. If $\mathcal{O} = \{\emptyset\}$, $cl_{\theta}^{*}(A) = cl_{\theta}(A)$. If $\mathcal{O} = \wp(X)$, $cl_{\theta}^{*}(A) = cl(A)$. For a subset *A* of *X*, $int_{\theta}I(A) = \bigcup \{U \in \tau \mid cl^{*}(U) \subset A\}$ [11]. We denote this $int_{\theta}I(A)$ by $int_{\theta}^{*}(A)$. The family of all θ - \mathcal{O} -open sets of (X, τ, \mathcal{O}) is a topology and it is denoted by $\tau_{\theta - \mathcal{O}}$ (see [11, Theorem 1]).

Lemma 1.1 (see [11, Corollary 4 if Theorem 2]). $\tau_{\theta} \subset \tau_{\theta-\mathcal{I}} \subset \tau$.

Lemma 1.2 (see [11, Proposition 3]). Let (X, τ, \mathcal{I}) be an ideal space. Then, we have

(1) if $\mathcal{O} = \{\phi\}$ or $\mathcal{O} = \mathcal{N}$, where \mathcal{N} is the ideal of nowhere dense sets of (X, τ) , then $\tau_{\theta - \mathcal{O}} = \tau_{\theta}$,

(2) if $\mathcal{I} = \{\phi\}$, then $\tau_{\theta - \mathcal{I}} = \tau$.

Lemma 1.3 (see [5, Theorem 2.13]). Let (X, τ, \mathcal{I}) be an ideal space. Then every subset of X is \mathcal{I}_g -closed if and only if every open set is \star -closed.

Lemma 1.4 (see [11, Proposition 1]). Let (X, τ, \mathcal{I}) be an ideal space and A a subset of X. Then A is θ - \mathcal{I} -open if and only if $\operatorname{int}_{\theta}^{*}(A) = A$.

Lemma 1.5. Let (X, τ, \mathcal{I}) be an ideal space and A a subset of X. Then $cl_{\theta}^{\star}(A) = \{x \in X \mid U \cap cl^{\star}(A) \neq \phi \text{ for all } U \in \tau(x)\}$ is closed.

Proof. If $x \in cl(cl^*_{\theta}(A))$ and $U \in \tau(x)$, then $U \cap cl^*_{\theta}(A) \neq \phi$. Then, $y \in U \cap cl^*_{\theta}(A)$ for some $y \in X$. Since $U \in \tau(y)$ and $y \in cl^*_{\theta}(A)$, from the definition of $cl^*_{\theta}(A)$ we have $A \cap cl^*(U) \neq \phi$. Therefore, $x \in cl^*_{\theta}(A)$. So $cl(cl^*_{\theta}(A)) \subset cl^*_{\theta}(A)$ and hence $cl^*_{\theta}(A)$ is closed.

Lemma 1.6. Let (X, τ, \mathcal{I}) be an ideal space and A a subset of X. Then, $X - cl^{+}_{\theta}(X - A) = int^{+}_{\theta}(A)$.

Proof. $x \in X - \text{cl}^{*}_{\theta}(X - A)$ if and only if $x \notin \text{cl}^{*}_{\theta}(X - A)$ if and only if there exist $U \in \tau(x)$ such that $(X - A) \cap \text{cl}^{*}(U) = \phi$ if and only if $x \in U$ and, $\text{cl}^{*}(U) \subset (A)$ if and only if $x \in U \subset \text{int}^{*}_{\theta}(A)$. \Box

2. θ - \mathcal{O}_{g} - Closed Sets

A subset *A* of an ideal space (X, τ, \mathcal{O}) is said to be a θ - \mathcal{O}_g -closed set if $cl_{\theta}^*(A) \subset U$ whenever $A \subset U$ and *U* is open. Every θ - \mathcal{O} -closed set is a θ - \mathcal{O}_g -closed set. If $\mathcal{O} = \{\emptyset\}$, then $cl_{\theta}^*(A) = cl_{\theta}(A)$ and hence θ - \mathcal{O}_g -closed sets coincide with θ -g-closed sets. If $\mathcal{O} = \emptyset(X)$, then $cl^*_{\theta}(A) = cl(A)$ and hence θ - \mathcal{O}_g -closed sets coincide with *g*-closed sets. Since $cl^*(A) \subset cl(A) \subset cl^*_{\theta}(A) \subset cl^*_{\theta}(A)$, we have the following inclusion diagram:

$$\theta$$
-g-closed $\longrightarrow \theta$ - \mathcal{I}_{g} -closed $\longrightarrow g$ -closed $\longrightarrow \mathcal{I}_{g}$ -closed. (2.1)

Example 2.1. shows that a *g*-closed set needs not to be θ - \mathcal{O}_g -closed, and Example 2.2 shows that θ - \mathcal{O}_g -closed set needs not to be a θ -*g*-closed set.

Example 2.1. Let $X = \{a, b, c, d\}, \tau = \{\phi, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}, \{a, b, d\}, X\}$, and $\mathcal{O} = \{\phi, \{a\}, \{c\}, \{a, c\}\}$. Let $A = \{c\}$. Then A is closed and hence *g*-closed. But A is not θ - \mathcal{O}_g -closed because $A \subset \{b, c\}$ and $cl_{\theta}^{\star}(A) = X \not\in \{b, c\}$.

Example 2.2. Let *X* and τ be the same as in Example 2.1. Let $\mathcal{O} = \{\phi, \{a\}, \{b\}, \{a, b\}\}$ and $A = \{c\}$. Then *A* is a θ - \mathcal{O} -closed and hence θ - \mathcal{O}_g -closed. Since $A \subset \{b, c\}$ and $cl_{\theta}(A) = X \notin \{b, c\}$, *A* is not θ -*g*-closed.

Theorem 2.3. If A is a subset of an ideal space (X, τ, \mathcal{I}) , then the following are equivalent.

- (a) A is θ - \mathcal{I}_g -closed.
- (b) For all $x \in cl_{\theta}^{\star}(A)$, $cl(\{x\}) \cap A \neq \phi$.
- (c) $cl_{\theta}^{\star}(A) A$ contains no nonempty closed set.

Proof. (*a*) \Rightarrow (*b*). Suppose $x \in cl_{\theta}^{*}(A)$. If $cl(\{x\}) \cap A = \phi$, then $A \subset X - cl(\{x\})$. Since *A* is $\theta - \mathcal{O}_{g}$ -closed, $cl_{\theta}^{*}(A) \subset X - cl(\{x\})$. It is a contradiction to the fact that $x \in cl_{\theta}^{*}(A)$. This proves (b).

 $(b) \Rightarrow (c)$. Suppose $F \subset cl_{\theta}^{*}(A) - A$, F is closed and $x \in F$. Since $F \subset X - A$ and F closed, $cl(\{x\}) \cap A \subset cl(F) \cap A = F \cap A = \phi$. Since $x \in cl_{\theta}^{*}(A)$, by (b), $cl(\{x\}) \cap A \neq \phi$, a contradiction which proves (c).

 $(c) \Rightarrow (a)$. Let U be an open set containing A. Since $cl_{\theta}^{*}(A)$ is closed, $cl_{\theta}^{*}(A) \cap (X - U)$ is closed and $cl_{\theta}^{*}(A) \cap (X - U) \subset cl_{\theta}^{*}(A) - A$. By hypothesis, $cl_{\theta}^{*}(A) \cap (X - U) = \phi$ and hence $cl_{\theta}^{*}(A) \subset U$. Thus, A is θ - \mathcal{O}_{g} -closed.

If we put $\mathcal{O} = \{\phi\}$ in Theorem 2.3, we get Corollary 2.4 which gives characterizations for θ -*g*-*closed* sets. If we put $\mathcal{O} = \wp(X)$ in Theorem 2.3, we get Corollary 2.5 which gives characterizations for *g*-*closed* sets.

Corollary 2.4. If A is a subset of a topological space (X, τ) , then the following are equivalent.

- (a) A is θ -g-closed.
- (b) For all $x \in cl_{\theta}(A)$, $cl(\{x\}) \cap A \neq \phi$.
- (c) $cl_{\theta}(A) A$ contains no nonempty closed set.

Corollary 2.5 (see [12, Theorem 2.2]). If A is a subset of a topological space (X, τ) , then the following are equivalent.

- (a) A is g-closed.
- (b) For all $x \in cl(A)$, $cl(\{x\}) \cap A \neq \phi$.
- (c) cl(A) A contains no nonempty closed set.

The following Corollary 2.6 shows that in \mathcal{T}_1 -space, θ - \mathcal{I}_g -closed sets are θ - \mathcal{I} -closed, the proof of which follows from Theorem 2.3(c). Corollary 2.7 gives the relation between θ - \mathcal{I}_g -closed and θ - \mathcal{I} -closed sets.

Corollary 2.6. If (X, τ, \mathcal{I}) is a \mathcal{T}_1 -space and A is θ - \mathcal{I}_g -closed then A is a θ - \mathcal{I} -closed set.

Corollary 2.7. If (X, τ, \mathcal{I}) is an ideal space and A is a θ - \mathcal{I}_g -closed set, then the following are equivalent.

(a) A is a θ - \mathcal{D} -closed set.

(b) $\operatorname{cl}_{\theta}^{\star}(A) - A$ is a closed set.

Proof. $(a) \Rightarrow (b)$. If A is θ - \mathcal{O} -closed, then $cl_{\theta}^{\star}(A) - A = \phi$ and so $cl_{\theta}^{\star}(A) - (A)$ is closed. $(b) \Rightarrow (a)$. If $cl_{\theta}^{\star}(A) - (A)$ is closed, since A is θ - \mathcal{O}_g -closed, by Theorem 2.3(c), $cl_{\theta}^{\star}(A) - (A) = \phi$ and so A is θ - \mathcal{O} -closed.

If we put $\mathcal{O} = \{\phi\}$ in Corollary 2.7, we get Corollary 2.8. If we put $\mathcal{O} = \wp(X)$ in Corollary 2.7, we get Corollary 2.9.

Corollary 2.8. If (X, τ) is a topological space and A is a θ -g-closed set, then the following are equivalent.

(a) A is a θ -closed set.

(b) $cl_{\theta}(A) - A$ is a closed set.

Corollary 2.9 (see [6, Corollary 2.3]). If (X, τ) is an topological space and A is a g-closed set, then the following are equivalent.

- (a) A is a closed set.
- (b) cl(A) A is a closed set.

Theorem 2.10. If every open set of an ideal space (X, τ, \mathcal{I}) is \star -closed, then every g-closed set is θ - \mathcal{I}_g -closed.

Proof. Since every open set is *-*closed*, $cl^*(U) = U$ for every $U \in \tau$. Therefore, for every subset A of X, $int^*_{\theta}(A) = \bigcup \{U \in \tau \mid cl^*(U) \subset A\} = \bigcup \{U \in \tau \mid U \subset A\} = int(A)$. So $cl^*_{\theta}(A) = cl(A)$ for every subset A of X. This implies that every *g*-*closed* set is θ - \mathcal{O}_g -*closed*.

Corollary 2.11. If every subset of an ideal space (X, τ, \mathcal{I}) is \mathcal{I}_g -closed, then every g-closed set is θ - \mathcal{I}_g -closed.

The proof follows from Lemma 1.3 and Theorem 2.10.

Theorem 2.12. *Let* (X, τ, \mathcal{I}) *be an ideal space. Then every subset of* X *is* θ - \mathcal{I}_g *-closed if and only if every open set is* θ - \mathcal{I} *-closed.*

Proof. Suppose every subset of X is θ - \mathcal{D}_g -*closed*. If U is open, then U is θ - \mathcal{D}_g -*closed* and so $cl^*_{\theta}(U) \subset U$. Hence U is θ - \mathcal{D} -*closed*. Conversely, suppose $A \subset U$ and U is open. Since every open set is θ - \mathcal{D} -*closed*, $cl^*_{\theta}(A) \subset U$ and so A is θ - \mathcal{D}_g -*closed*.

If we put $\mathcal{I} = {\phi}$ in Theorem 2.12, we get Corollary 2.13. If we put $\mathcal{I} = \rho(X)$ in Theorem 2.12, we get Corollary 2.14.

ISRN Geometry

Corollary 2.13. Let (X, τ) be a topological space. Then every subset of X is θ -g-closed if and only if every open set is θ -closed.

Corollary 2.14 (see [6, Theorem 2.10]). Let (X, τ) be a topological space. Then every subset of X is *g*-closed if and only if every open set is closed.

Theorem 2.15. If every θ - \mathcal{O}_g -closed set of an ideal space (X, τ, \mathcal{O}) is θ -closed, then (X, τ) is a \mathcal{T}_1 space.

Proof. Suppose {*x*} is not closed for some $x \in X$. Then, $B = X - \{x\}$ is not open. So *B* is θ - \mathcal{O}_g -closed. By hypothesis, *B* is θ -closed. Therefore, {*x*} is θ -open. So {*x*} is both open and closed, a contradiction. Hence, (*X*, τ) is a \mathcal{T}_1 -space.

If we put $\mathcal{D} = \{\phi\}$ in Theorem 2.15, we get Corollary 2.16.

Corollary 2.16. If every θ -g-closed set of a space (X, τ) is θ -closed, then (X, τ) is a \mathcal{T}_1 space.

Theorem 2.17. Intersection of a θ - \mathcal{O}_g -closed set and a θ - \mathcal{O} -closed set is always θ - \mathcal{O}_g -closed.

Proof. Let *A* be a θ - \mathcal{O}_g -*closed* set and *F* a θ - \mathcal{O} -*closed* set of an ideal space (X, τ, \mathcal{O}) . Suppose $A \cap F \subset U$ and *U* is open in *X*. Then, $A \subset U \cup (X - F)$. Now X - F is θ - \mathcal{O} -*open* and hence open. So $U \cup (X - F)$ is an open set containing *A*. Since *A* is θ - \mathcal{O}_g -*closed*, $cl_{\theta}^*(A) \subset U \cup (X - F)$. Therefore, $cl_{\theta}^*(A) \cap F \subset U$ which implies that $cl_{\theta}^*(A \cap F) \subset U$. So $A \cap F$ is θ - \mathcal{O}_g -*closed*.

If we put $\mathcal{O} = \{\phi\}$ in Theorem 2.17, we get Corollary 2.18. If we put $\mathcal{O} = \wp(X)$ in Theorem 2.17, we get Corollary 2.19.

Corollary 2.18 (see [8, Proposition 3.11]). *Intersection of a* θ *-g-closed set and a* θ *-closed set is always* θ *-g-closed.*

Corollary 2.19 (see [6, Corollary 2.7]). *Intersection of a g-closed set and a closed set is always a g-closed set.*

Theorem 2.20. A subset A of an ideal space (X, τ, \mathcal{I}) is $\theta - \mathcal{I}_g$ -closed if and only if $cl_{\theta}^+(A) \subset A^{\Lambda}$.

Proof. Suppose *A* is θ - \mathcal{O}_g -*closed* and $x \in cl^*_{\theta}(A)$. If $x \notin A^{\Lambda}$, then there exists an open set *U* such that $A \subset U$, but $x \notin U$. Since *A* is θ - \mathcal{O}_g -*closed*, $cl^*_{\theta}(A) \subset U$ and so $x \notin cl^*_{\theta}(A)$, a contradiction. Therefore, $cl^*_{\theta}(A) \subset A^{\Lambda}$. Conversely, suppose that $cl^*_{\theta}(A) \subset A^{\Lambda}$. If $A \subset U$ and *U* is open, then $A^{\Lambda} \subset U$ and so $cl^*_{\theta}(A) \subset U$. Therefore, *A* is θ - \mathcal{O}_g -*closed*.

If we put $\mathcal{O} = \{\phi\}$ in Theorem 2.20, we get Corollary 2.21. If we put $\mathcal{O} = \wp(X)$ in Theorem 2.20, we get Corollary 2.22.

Corollary 2.21. A subset A of a space (X, τ) is θ -g-closed if and only if $cl_{\theta}(A) \subset A^{\Lambda}$.

Corollary 2.22. A subset A of a space (X, τ) is g-closed if and only if $cl(A) \subset A^{\Lambda}$.

Theorem 2.23. Let A be a Λ -set of an ideal space (X, τ, \mathcal{I}) . Then A is θ - \mathcal{I}_g -closed if and only if A is θ - \mathcal{I} -closed.

Proof. Suppose *A* is θ - \mathcal{O}_g -*closed*. By Theorem 2.20, $cl^*_{\theta}(A) \subset A^{\Lambda} = A$, since *A* is a Λ -*set*. Therefore, *A* is θ - \mathcal{O} -*closed*. Converse follows from the fact that every θ - \mathcal{O} -*closed* is θ - \mathcal{O}_g -*closed*.

If we put $\mathcal{O} = \{\phi\}$ in Theorem 2.23, we get Corollary 2.24. If we put $\mathcal{O} = \wp(X)$ in Theorem 2.23, we get Corollary 2.25.

Corollary 2.24. Let A be a Λ -set of a space (X, τ) . Then A is θ -g-closed if and only if A is θ -closed.

Corollary 2.25. Let A be a Λ -set of a space (X, τ) . Then A is g-closed if and only if A is closed.

Theorem 2.26. Let (X, τ, \mathcal{I}) be an ideal space and $A \in X$. If A^{Λ} is θ - \mathcal{I}_g -closed, then A is also θ - \mathcal{I}_g -closed.

Proof. Suppose that A^{Λ} is a θ - \mathcal{O}_g -closed set. If $A \subset U$ and U is open, then $A^{\Lambda} \subset U$. Since A^{Λ} is θ - \mathcal{O}_g -closed, $cl^*_{\theta}(A^{\Lambda}) \subset U$. But, $cl^*_{\theta}(A) \subset cl^*_{\theta}(A^{\Lambda})$. Therefore, A is θ - \mathcal{O}_g -closed.

If we put $\mathcal{O} = \{\phi\}$ in Theorem 2.26, we get Corollary 2.27. If we put $\mathcal{O} = \wp(X)$ in Theorem 2.26, we get Corollary 2.28.

Corollary 2.27. Let (X, τ) be a topological space and $A \subset X$. If A^{Λ} is θ -g-closed, then A is also θ -g-closed.

Corollary 2.28. Let (X, τ) be a space and $A \in X$. If A^{Λ} is g-closed set, then A is also g-closed.

Theorem 2.29. For an ideal space (X, τ, \mathcal{I}) , the following are equivalent.

(a) Every θ - \mathcal{I}_{g} -closed set is θ - \mathcal{I} -closed.

(b) Every singleton of X is closed or θ - \mathcal{D} -open.

Proof. (*a*) \Rightarrow (*b*). Let $x \in X$. If $\{x\}$ is not closed, then $A = X - \{x\} \notin \tau$ and then A is trivially θ - \mathcal{I}_g -closed. By (a), A is θ - \mathcal{I} -closed. Hence $\{x\}$ is θ - \mathcal{I} -open.

 $(b) \Rightarrow (a)$. Let *A* be a θ - \mathcal{O}_g -closed set and let $x \in cl_{\theta}^*(A)$. We have the following cases.

Case 1. {*x*} is closed. By Theorem 2.3, $cl_{\theta}^{*}(A) - A$ does not contain a nonempty closed subset. This shows {*x*} $\in A$.

Case 2. {*x*} is θ - \mathcal{O} -open. Then, {*x*} $\cap A \neq \phi$. Hence, $x \in A$.

Thus in both cases $x \in A$ and so $A = cl_{\theta}^{*}(A)$, that is, A is θ - \mathcal{O} -closed, which proves (a).

If we put $\mathcal{I} = {\phi}$ in Theorem 2.29, we get Corollary 2.30. If we put $\mathcal{I} = \phi(X)$ in Theorem 2.29, we get Corollary 2.31.

Corollary 2.30. For an ideal space (X, τ) , the following are equivalent.

(a) Every θ -g-closed set is θ -closed.

(b) Every singleton of X is closed or θ -open.

Corollary 2.31 (see [13, Theorem 2.5]). For an ideal space (X, τ) , the following are equivalent.

(a) Every g-closed set is closed.

(b) Every singleton of X is closed or open.

Theorem 2.32. Let (X, τ, \mathcal{I}) be an ideal space and $A \in X$. Then A is θ - \mathcal{I}_g -closed if and only if A = F - N, where F is θ - \mathcal{I} -closed and N contains no nonempty closed set.

ISRN Geometry

Proof. If A is $\theta - \mathcal{O}_g$ -*closed*, then by Theorem 2.3, $N = cl^*_{\theta}(A) - A$ contains no nonempty closed set. If $F = cl^*_{\theta}(A)$, then F is θ - \mathcal{O} -*closed* such that $F - N = cl^*_{\theta}(A) - (cl^*_{\theta}(A) - A) = cl^*_{\theta}(A) \cap ((X - cl^*_{\theta}(A)) \cup A) = A$. Conversely, suppose A = F - N, where F is θ - \mathcal{O} -*closed* and N contains no nonempty closed set. Let U be an open set such that $A \subset U$. Then, $F - N \subset U$ which implies that $F \cap (X - U) \subset N$. Now, $A \subset F$ and F is θ - \mathcal{O} -*closed* implies that $cl^*_{\theta}(A) \cap (X - U) \subset cl^*_{\theta}(F) \cap (X - U) \subset F \cap (X - U) \subset N$. Since θ - \mathcal{O} -*closed* sets are closed, $cl^*_{\theta}(A) \cap (X - U)$ is closed. By hypothesis, $cl^*_{\theta}(A) \cap (X - U) = \phi$ and so $cl^*_{\theta}(A) \subset U$, which implies that A is θ - \mathcal{O}_g -*closed*.

If we put $\mathcal{O} = \{\phi\}$ in Theorem 2.32, we get Corollary 2.33. If we put $\mathcal{O} = \wp(X)$ in Theorem 2.32, we get Corollary 2.34.

Corollary 2.33. Let (X, τ) be a space and $A \subset X$. Then A is θ -g-closed subset of X if and only if A = F - N, where F is θ -closed and N contains no nonempty closed set.

Corollary 2.34 (see [12, Corollary 2.3]). Let (X, τ) be a space and $A \subset X$. Then A is g-closed if and only if A = F - N, where F is closed and N contains no nonempty closed set.

Theorem 2.35. Let (X, τ, \mathcal{I}) be an ideal space. If A is a θ - \mathcal{I}_g -closed subset of X and $A \subset B \subset cl_{\theta}^*(A)$, then B is also θ - \mathcal{I}_g -closed.

Proof. $cl^{\star}_{\theta}(B) - B \subset cl^{\star}_{\theta}(A) - A$, and since $cl^{\star}_{\theta}(A) - A$ has no nonempty closed subset, neither does $cl^{\star}_{\theta}(B) - B$. By Theorem 2.3, B is $\theta - \mathcal{O}_g$ -closed.

If we put $\mathcal{I} = {\phi}$ in Theorem 2.35, we get Corollary 2.36. If we put $\mathcal{I} = \phi(X)$ in Theorem 2.35, we get Corollary 2.37.

Corollary 2.36. *Let* (X, τ) *be a space. If* A *is a* θ *-g-closed subset of* X *and* $A \subset B \subset cl_{\theta}(A)$ *, then* B *is also* θ *-g-closed.*

Corollary 2.37 (see [6, Theorem 2.8]). *Let* (X, τ) *be a space. If* A *is a* g*-closed subset of* X *and* $A \in B \in cl(A)$, *then* B *is also* g*-closed.*

A subset *A* of an ideal space (X, τ, \mathcal{I}) is said to be θ - \mathcal{I}_g -open if X - A is θ - \mathcal{I}_g -closed.

Theorem 2.38. A subset A of an ideal space (X, τ, \mathcal{I}) is θ - \mathcal{I}_g -open if and only if $F \subset \operatorname{int}_{\theta}^*(A)$ whenever F is closed and $F \subset A$.

Proof. Suppose *A* is a θ - \mathcal{D}_g -*open* set and *F* is a closed set contained in *A*, then $X - A \subset X - F$ and X - F is open. Since X - A is θ - \mathcal{D}_g -*closed*, $cl_{\theta}^*(X - A) \subset (X - F)$ and so $F \subset X - cl_{\theta}^*(X - A) = int_{\theta}^*(A)$. Conversely, suppose $X - A \subset U$ and X - U is closed. By hypothesis, $X - U \subset int_{\theta}^*(A)$, which implies that $cl_{\theta}^*(X - A) = X - int_{\theta}^*(A) \subset U$. Therefore, X - A is θ - \mathcal{D}_g -*closed* and hence *A* is θ - \mathcal{D}_g -*open*.

If we put $\mathcal{O} = \{\phi\}$ in Theorem 2.38, we get Corollary 2.39. If we put $\mathcal{O} = \wp(X)$ in Theorem 2.38, we get Corollary 2.40.

Corollary 2.39. A subset A of a space (X, τ) is θ -g-open if and only if $F \subset int_{\theta}(A)$ whenever F is closed and $F \subset A$.

Corollary 2.40 (see [6, Theorem 4.2]). A subset A of a space (X, τ) is g-open if and only if $F \subset$ int(A) whenever F is closed and $F \subset A$.

Theorem 2.41. Let (X, τ, \mathcal{I}) be an ideal space and $A \subset U$. Then the following are equivalent.

- (a) A is θ - \mathcal{I}_{q} -closed.
- (b) $A \cup (X cl^{\star}_{\theta}(A))$ is $\theta \mathcal{I}_{g}$ -closed.
- (c) $\operatorname{cl}_{\theta}^{\star}(A) A$ is θ - \mathcal{O}_g -open.

Proof. (*a*) \Rightarrow (*b*). Suppose *A* is θ - \mathcal{O}_g -*closed*. If *U* is any open set containing $A \cup (X - cl^*_{\theta}(A))$, then $X - U \subset X - (A \cup (X - cl^*_{\theta}(A)) = cl^*_{\theta}(A) - A$. Since *A* is θ - \mathcal{O}_g -*closed*, by Theorem 2.3(c), it follows that $X - U = \phi$ and so X = U. Since *X* is the only open set containing $A \cup (X - cl^*_{\theta}(A))$, $A \cup (X - cl^*_{\theta}(A))$ is θ - \mathcal{O}_g -*closed*.

 $(b) \Rightarrow (a)$. Suppose $A \cup (X - cl_{\theta}^{*}(A))$ is $\theta - \mathcal{O}_{g}$ -closed. If F is any closed set contained in $cl_{\theta}^{*}(A) - A$, then $A \cup (X - cl_{\theta}^{*}(A)) \subset X - F$ and X - F is open. Therefore, $cl_{\theta}^{*}(A \cup (X - cl_{\theta}^{*}(A)) \subset X - F$, which implies that $cl_{\theta}^{*}(A) \cup cl_{\theta}^{*}(X - cl_{\theta}^{*}(A)) \subset X - F$ and so $X \subset X - F$; it follows that $F = \phi$. Hence A is $\theta - \mathcal{O}_{g}$ -closed.

The equivalence of (b) and (c) follows from the fact that $X - (cl_{\theta}^{\star}(A) - A) = A \cup (X - cl_{\theta}^{\star}(A))$.

If we put $\mathcal{O} = \{\phi\}$ in Theorem 2.41, we get Corollary 2.42. If we put $\mathcal{O} = \wp(X)$ in Theorem 2.41, we get Corollary 2.43.

Corollary 2.42. *Let* (X, τ) *be a space and* $A \in U$ *. Then the following are equivalent.*

- (a) A is θ -g-closed.
- (b) $A \cup (X cl_{\theta}(A))$ is θ -g-closed.
- (c) $cl_{\theta}(A) A$ is θ -g-open.

Corollary 2.43. *Let* (X, τ) *be an ideal space and* $A \in U$ *. Then the following are equivalent.*

- (a) A is g-closed.
- (b) $A \cup (X cl(A))$ is g-closed.
- (c) cl(A) A is g-open.

3. Characterization of $T_{1/2}$ and T_2 -Space

Theorem 3.1. In an ideal space (X, τ, \mathcal{I}) , the following are equivalent.

- (a) Every θ -g-closed set is closed.
- (b) (X, τ) is a $\mathcal{T}_{1/2}$ -space.
- (c) Every θ - \mathcal{I}_g -closed set is closed.

Proof. (*a*) \Leftrightarrow (*b*). Equivalence of (a) and (b) follows from Theorem 4.1 of [8].

 $(b) \Rightarrow (c)$. Let *A* be a θ - \mathcal{I}_g -closed set. Since every θ - \mathcal{I}_g -closed set is *g*-closed, *A* is *g*-closed. By hypothesis, *A* is closed.

 $(c) \Rightarrow (b)$. Let $x \in X$. If $\{x\}$ is not closed, then $B = X - \{x\}$ is not open. So B is θ - \mathcal{I}_g -closed. By hypothesis, B is closed and so $\{x\}$ is open. By Corollary 2.31, (X, τ) is a $\mathcal{T}_{1/2}$ -space.

Theorem 3.2. In an ideal space (X, τ, \mathcal{I}) the following, are equivalent.

(a) Every θ -g-closed set is \star -closed.

ISRN Geometry

- (b) (X, τ, \mathcal{I}) is a $\mathcal{T}_{\mathcal{I}}$ -Space.
- (c) Every θ - \mathcal{I}_g -closed set is \star -closed.

Proof. (*a*) \Rightarrow (*b*). Let $x \in X$. If {*x*} is not closed, then *X* is the only open set containing *X* – {*x*} and so *X* – {*x*} is θ -*g*-*closed*. By hypothesis, *X* – {*x*} is *-*closed*. Equivalently {*x*} is *-*open*. Thus, every singleton set in *X* is either closed or *-*open*. By Theorem 3.3 of [4], (*X*, τ , \mathcal{I}) is a \mathcal{T}_2 -*Space*.

 $(b) \Rightarrow (a)$. The proof follows from the fact that every θ -*g*-*closed* set is \mathcal{O}_g -*closed*.

 $(b) \Rightarrow (c)$. The proof follows from the fact that every set is θ - \mathcal{I}_g -closed \mathcal{I}_g -closed.

 $(c) \Rightarrow (b)$. Let $x \in X$. If $\{x\}$ is not closed, then X is the only open set containing $x - \{x\}$ and so $x - \{x\}$ is $\theta - \mathcal{O}_g$ -closed. By hypothesis, $X - \{x\}$ is \star -closed. Thus, $\{x\}$ is \star -open. Therefore, every singleton set in X is either \star -open or closed. By Theorem of 3.3 [4], (X, τ, \mathcal{O}) is a \mathcal{T}_2 -Space.

The proof of the Corollary 3.3 follows from Theorem 3.2 and Theorem 3.10 of [5]. If we put $\mathcal{O} = \{\phi\}$ in Corollary 3.3, we get Corollary 3.4.

Corollary 3.3. In an ideal space (X, τ, \mathcal{I}) , the following are equivalent.

- (a) Every θ -g-closed set is \star -closed.
- (b) Every θ - \mathcal{I}_{g} -closed set is \star -closed.
- (c) Every \mathcal{D}_g -closed set is an \mathcal{D} -locally \star -closed set.

Corollary 3.4. In a topological space (X, τ) , the following are equivalent.

- (a) Every θ -g-closed set is closed.
- (b) Every *g*-closed set is a locally closed set.

References

- [1] K. Kuratowski, Topology, vol. 1, Academic Press, New York, NY, USA, 1966.
- [2] R. Vaidyanathaswamy, Set Topology, Chelsea Publishing, New York, NY, USA, 1946.
- [3] D. Janković and T. R. Hamlett, "New topologies from old via ideals," The American Mathematical Monthly, vol. 97, no. 4, pp. 295–310, 1990.
- [4] J. Dontchev, M. Ganster, and T. Noiri, "Unified operation approach of generalized closed sets via topological ideals," *Mathematica Japonica*, vol. 49, no. 3, pp. 395–401, 1999.
- [5] M. Navaneethakrishnan and D. Sivaraj, "Generalized locally closed sets in ideal topological spaces," Bulletin of the Allahabad Mathematical Society, vol. 24, no. 1, pp. 13–19, 2009.
- [6] N. Levine, "Generalized closed sets in topology," Rendiconti del Circolo Matematico di Palermo, vol. 19, no. 2, pp. 89–96, 1970.
- [7] N. V. Veličko, "H-closed topological spaces," Matematicheskii Sbornik, vol. 70, no. 112, pp. 98–112, 1966.
- [8] J. Dontchev and H. Maki, "On θ-generalized closed sets," International Journal of Mathematics and Mathematical Sciences, vol. 22, no. 2, pp. 239–249, 1999.
- [9] H. Maki, J. Umehara, and K. Yamamura, "Characterizations of \mathcal{\mathcal{\mathcal{L}}_{1/2}}-spaces using generalized V-sets," Indian Journal of Pure and Applied Mathematics, vol. 19, no. 7, pp. 634–640, 1988.
- [10] M. Mršević, "On pairwise \mathcal{R} and pairwise \mathcal{R}_{∞} bitopological spaces," Bulletin Mathématique de la Société des Sciences Mathématiques de la République Socialiste de Roumanie, vol. 30(78), no. 2, pp. 141–148, 1986.
- [11] M. Akdag, "θ I-open sets," Kochi Journal of Mathematics, vol. 3, pp. 217–229, 2008.
- [12] W. Dunham and N. Levine, "Further results on generalized closed sets in topology," Kyungpook Mathematical Journal, vol. 20, no. 2, pp. 169–175, 1980.
- [13] W. Dunham, "*C*_{1/2}-spaces," *Kyungpook Mathematical Journal*, vol. 17, no. 2, pp. 161–169, 1977.

Advances in **Operations Research**

The Scientific World Journal

Hindawi

Submit your manuscripts at http://www.hindawi.com

Algebra

Journal of Probability and Statistics

International Journal of Differential Equations

Complex Analysis

International Journal of

Mathematics and Mathematical Sciences

Mathematical Problems in Engineering

Abstract and Applied Analysis

Discrete Dynamics in Nature and Society

Function Spaces

International Journal of Stochastic Analysis

