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The modification of solid-liquid interfaces with polyelectrolyte multilayer films appears as a versatile tool to confer new
functionalities to surfaces in environmentally friendly conditions. Indeed such films are deposited by alternate dipping of the
substrates in aqueous solutions containing the interacting species or spraying these solutions on the surface of the substrate. Spin
coating is more and more used to produce similar films. The aim of this short review article is to provide an unifying picture about
the deposition mechanisms of polyelectrolyte multilayer films. Often those films are described as growing either in a linear or in
a supralinear growth regime with the number of deposited “layer pairs”. The growth regime of PEM films can be controlled by
operational parameters like the temperature or the ionic strength of the used solutions. The control over the growth regime of the
films as a function of the number of deposition steps allows to control their functional properties: either hard and impermeable
films in the case of linear growth or soft and permeable films in the case of supralinear growth. Such different properties can be

obtained with a given combination of interacting species by changing the operational parameters during the film deposition.

1. Introduction

The functionalization of surfaces is of interest since the
appearance of technology in the antiquity. More and more
surface coatings, as painting, were developed not only to
change the aesthetic appearance of a material but also to
protect it against the environment (for instance against
oxidants) and more and more to provide it with an additional
functionality, for instance drug release. This last point is of
particular importance in the functionalization of biomateri-
als.

The need for a better control of surface chemistry and the
understanding that the fundamental chemical unit is either
an atom or a stable assembly thereof, that is, a molecule,
incited researchers to deposit single molecular layers at
surfaces. Hence, during almost the half first of the 20th
century; the investigation of polymer and colloid deposition
was restricted to the deposition of monolayers.

The Langmuir or Langmuir-Blodgett deposition method
[1], consisting in the transfer of amphiphilic molecules from
the water-air interface, to a solid-air interface allows for
the transfer of multiple layers. But to reach that goal, it
requires very clean substrates and a dust-free atmosphere.
In addition the multilayers of amphiphiles are not robust
from a mechanical point of view and the deposition process
is very slow. Some strategies have been developed to crosslink
such assemblies using unsaturated molecules and UV light to
induce intermolecular bonds.

The first layer-by-layer deposition experiments from col-
loids (assemblies having an hydrodynamic radius between
Inm and about 1um) were performed using oppositely
charged silica particles [2]. The buildup of such assemblies
could be followed by means of an optical microscope. The
possibility to obtain multilayered architectures of smaller
assemblies was then totally neglected during almost 35 years.



The need to obtain alternative deposition strategies to over-
come the shortcomings of multilayered films obtained by
the Langmuir or the Langmuir-Blodgett deposition methods
led the researchers at the Institute for Physical Chemistry
in Mainz to obtain layered architectures from polymers and
bolaamphiphiles [3]. Very rapidly this concept was adapted
for the alternated adsorption of oppositely charged polymers
[4]. Such polymers are called polyelectrolytes. One has to
distinguish between strong and weak polyelectrolytes. The
former one carry a surface charge density (average charge
per unit length of the polymer) that is independent from
the pH of the aqueous solution whereas the ionization
of the latter one is pH dependent. Since the first papers
describing such architectures obtained trough sequential
deposition steps have been published by Decher et al. in 1991,
a fantastic enthusiasm for such coatings has appeared in
the scientific community. This deposition method will lead
to coatings produced in a “Layer-by-layer” (LBL) manner.
Nowadays, at the beginning of 2012, more than 1000
scientific papers are published a year, tens of patents have
been deposited and some commercial products based on the
LBL technology have been pushed on the market. To cite only
a few: coatings for contact lenses (Ciba Vision), coatings for
chromatography columns (Agilent Technologies).

The success of this coating technology relies on its sim-
plicity and versatility as it can be easily automated (Figure 1)
and, since that the LBL coatings can be deposited not only on
planar substrates but also on colloids, nanoparticles [5] and
in the pores [6] of all these materials.

It is the aim of this small review to describe the fun-
damental mechanisms allowing for the deposition of such
films and to provide a unifying view of this field in which
each combination of polyelectrolytes is often treated by
itself without comparison with other systems. The main
message of this paper is to show that films produced from
the alternated deposition of mutually interacting species can
have properties similar to those of rigid and impermeable
materials or to those of highly permeable gels. In addition,
such multilayered films display a dynamic response to
external stimulus like a change in ionic strength or in the
environmental temperature. Finally, some major application
fields of LBL films will be described. It is not our aim to be
exhaustive, but to provide a comprehensive overview of the
”LBL” deposition research. Interested readers may find some
specialized and exhaustive review articles [7, 8].

2. Kinds of Molecules That Can Be Deposited,
Deposition Methods and Growth Regimes of
Films Produced in an LBL Manner

If LBL films are produced from oppositely charged poly-
electrolytes, one speaks about polyelectrolyte multilayer
films (PEMs). It was rapidly demonstrated that the LBL
deposition methods do not only work with oppositely
charged polyelectrolytes, to yield PEM films, but also with all
kind of multitopic molecules presenting mutually interacting
binding sites. Among such molecules, one can site the
following.
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(i) Polymers carrying hydrogen donor and acceptor
moieties [9-11].

The fundamental mechanisms allowing for the depo-
sition of films prepared by the alternated adsorption
of hydrogen bond donors and acceptors have been
reviewed recently [12].

(ii) Stereoregular polymers carrying sites of opposite
chirality [13].

(iii) Host-guest interactions [14].
(iv) Charge transfer interactions [15].

(v) Specific biorecognition interactions like those be-
tween streptavidin and polymers carrying avidin
moieties [16].

(vi) m-m interactions between molecules carrying aro-
matic cycles and carbon nanotubes [17].

(vii) Covalent interactions using, for instance, polymers
carrying azides which react through 1,3 cyclo-
additions with polymers carrying alkynes, one of the
possible “click chemistry” based reactions [18].

The LBL deposition method can not only be applied to
polymers but also on combinations of polymers and particles
or just with mutually interacting nanoparticles [19].

The huge versatility of the LBL deposition methods
appears even more when one considers the different pos-
sibilities to deposit such films at solid liquid interfaces.
During almost 10 years, almost all the films produced
in an LBL manner have been deposited using alternated
dipping of the substrate to be coated in solutions containing
the interacting species (for instance polylectrolytes carrying
surface charge densities of opposite sign, or hydrogen bond
donors and acceptors). Two adsorption steps have to be
separated by rinse steps with the solvent (most often water
or an aqueous electrolyte solution) in order not only to
remove weakly adsorbed polyelectrolytes but also to avoid
cross-contamination of the solutions containing the mol-
ecules to be deposited. Indeed, if the polyelectrolytes interact
on a surface, they also interact in their solution: it is a well-
known phenomenon (even if a lot of research remains to
be performed in this field) that the mixture of oppositely
charged polyelectrolytes leads to phase separation, particu-
larly in conditions where the ratio of the number of positive
and negative charges is close to one [20]. Later on, this
phase separation phenomenon and its relationship with the
fundamental understanding of the interactions at the origin
of the deposition of PEM films will be explained.

Several successful trials have been made to avoid the
intermediate rinsing steps in order to increase the deposition
speed of PEM films. Among such methods one can note the
“dewetting” method [21].

The alternated dip coating method is easy to implement
and can be robotized in an straightforward manner. It is
however time consuming since each adsorption and rinsing
step usually lasts over several minutes. Indeed molecules to
be deposited have to diffuse at the interface, to adsorb, and
to find their equilibrium conformation, a process that may
be extremely slow.
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FIGUrg 1: Evolution of the thickness increment per layer pair
for PEI-(PSS-PAH), films deposited on glass substrates from a
Tris (Tris(hydroxymethyl)aminomethane) buffer at pH = 7.4 in
the presence of NaCl at different concentrations. The data have
been plotted as the film thickness increment versus the NaCl
concentration at a power «, with & = 0.10. The film thickness has
been measured by means of scanning angle reflectometry. Plotted
with the data from [29].

To speed up the deposition process, alternated spray
deposition [22, 23] and spin-coating [24] have been found
as good alternatives allowing for the deposition of a “layer”
in a typical time of a few seconds. Simultaneous spray
deposition from two spray cans containing the interacting
molecules allows also to produce some coatings whose
thickness increases linearly with the deposition time [25].
Even if such films may have many similar properties to films
produced in a regular LBL manner, one cannot anymore
speak about “LBL deposition”

Some investigations have shown that the nature of the
deposition method may have a pronounced influence of the
properties of the obtained coatings [26, 27]. It appears that
spin coated films are thinner, more transparent and of higher
elasticity than their counterparts produced via alternated
dipping [26]. This may be explained by the influence of shear
forces applied during the spin coating on the conformation
of the adsorbing polymer chains (see Scheme 1).

The LBL deposition method allows to deposit PEM films
on almost all kinds of surfaces irrespective of its chemical
composition and surface charge: indeed only the thickness
of the first few deposited layers is dependent on the used
substrate. As soon as the surface coverage of the substrate
reaches a critical level, the further deposition of polyelec-
trolytes is not influenced anymore by the surface chemistry
of the substrate.

The advantage of the LBL deposition method is that the
film growth rate can be well controlled at the nanometer
scale. In most cases the film growth rate is a linear function
of the number of the layer pairs deposited, one layer pair
consisting in the successive adsorption of the two interacting
partners (the same concept holds for LBL films build from
polymers interacting through hydrogen bonds or the other
possible modes of interactions previously described). These
films will be denoted by (A-B), in the following where A and
B are the interacting species and 7 is the number of depo-
sition cycles, commonly called the number of “layer pairs.”
The thickness increase corresponding to the deposition of
one “layer pair” is of the order of a few nanometers and
corresponds roughly to the sum of the characteristic size of
the polycation and the polyanion. These sizes can be changed
by modifying the conformation of the polyelectrolytes in
solution. This is possible by playing on the charge density
of the polyelectrolytes, that is, by changing the pH of the
solution in the case of weak polyelectrolytes or by modifying
the intramolecular interactions in a polyelectrolyte chain
by screening the electrostatic interactions. This is easily
achieved by playing with the salt concentration. In the
low salt concentration regime, the film thickness increment
per “layer pair”, d, increases with the salt concentration
(Figure 1) according to a power law of the type:

i-a().

where dy is a characteristic film thickness, C the salt
concentration used during the experiment, and Cy = 1 mol/L.

For all the investigated polyelectrolyte pairs, the exponent
o lies between 0.1 and 0.5 [28]. In the particular case of the
films prepared from poly(allylamine hydrochloride) (PAH)
and from poly(sodium-4-styrene sulfonate) (PSS) at pH =
7.4 and in the presence of NaCl, the exponent « is equal to
0.10 = 0.04 [29].

Very soon in the history of LBL deposition, it was found
that the average surface potential (measured as the zeta
potential) of PEM films is alternated after each deposition
step [29-31]. This finding is expected if the degree of in-
terpenetration of the chains is not too high (we will deal
with this point later on), meaning that each new adsorbed
polyelectrolyte neutralizes almost all the charges of the
previously adsorbed one just providing a small amount of
excess charge through polymer loops or trains dangling
in solution. This excess of surface charge constitutes then
the driving force for further adsorption of an oppositely
charged polyelectrolyte. It occurs in almost all the PEM films
investigated up to now (Figure 2).

Upon the deposition of the last polyelectrolyte the surface
composition change is also reflected by a change in its
wettability for water. This is reflected by a regular change of
the static water contact angle between two limiting values
(Figure 3) [32, 33]. This has first been exemplified with
films made from the alternated adsorption of PAH and
poly(sodium acrylate) (PAA) [33].

The regular reversal of the surface potential seems
however not to be an absolute requirement for the deposition
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FIGURE 2: Zeta potential of a PEM film made from PAH and from PSS from a Tris(hydroxymethyl)aminomethane buffer at pH 7.4 containing
5mg-mL™! of each polyelectrolyte. The glass substrate was first covered with a layer of poly(ethylene imine) (PEI) aimed to produce a stable
anchoring layer. Results plotted from the data of reference [29]. The structure of the repeat unit of each employed polyelectrolyte is indicated.
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FIGURE 3: Static contact angles of water droplets (1 4L in volume)
measured on PEM films made from PAH and PAA as the
polyelectrolytes (dipping solutions at pH 2.5 containing 1072M of
polyelectrolytes based on the repeat unit’s molecular mass). Results
plotted from the data of [33].

of a film from oppositely charged polyelectrolytes [34]. This
recent finding made on deposits made from PAH as a poly-
cation and from sodium polyphosphate (PSP) as a polyanion
raises many questions about the driving force leading to PEM
films.

In addition to the linear growth regime of the PEM
films, two other film growth regimes have been observed: the
supralinear [35-37] and the unstable adsorption-desorption
regime [38]. The supralinear growth of PEM films offers
the advantage to yield very thick films (more than 1um
after less than 10 alternated deposition cycles when the films
remain hydrated) compared to the characteristic size of the
polyelectrolytes (a few nanometers) in a small number of
deposition steps.

Linearly growing films display some fuzzy structuration
with small interpenetration of the alternating chains as
has been demonstrated by means of small angle neutron
scattering [39, 40]. In these experiments, perdeuterated
PSS chains, giving some scattering contrast with respect to
hydrogenated chains, were deposited at regular levels during
the film deposition. Even if some small intermixing occurs,
the chains stay roughly at the position where they were
initially deposited.

In strong contrast with linearly growing films, in the
case of supralinear growth (Figure 4), which is indeed most
often an exponential growth (up to a critical film thickness
where the growth turns again in a linear regime but with an
increment per layer pair that can be of a few hundreds of
nm), the films are characterized by a high chain mobility not
only in the direction perpendicular to the film, but also in the
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FIGURE 4: An example of exponential growth followed by a
transition to linear growth for PEI-(PGA-PAH), films deposited on
silicon by means of alternated spray deposition (5s per deposition
and buffer rinse step). The inset shows the thickness increase of the
film for the first 22 layer pairs. The following function has been
fitted to the data: d = 2 +9.52 X exp(0.13 X n), where d (nm) and n
are the film thickness and the number of “layer pairs,” respectively.
The slope of the linear growth regime following the first exponential
growth is of 17.5 nm per “layer pair”. These data have been plotted
from the data of reference [41].

plane of the film. Figure 4 displays the change in thickness
of films made by the alternated spraying of poly(-L-glutamic
acid) (PGA) and PAH as a function of the number of layer
pairs.

This chain mobility has been observed by means of
confocal laser scanning microscopy (CLSM) combined with
fluorescence recovery after photobleaching (FRAP) [37, 42,
43]. It was proven that the diffusion of at least one of the
constituent chains in and out of the film can be at the
origin of the exponential growth [37]. Indeed, let us make
the assumption that the film is constituted by a fraction of
fixed chains establishing relatively strong interactions with
the oppositely charged polyelectrolyte. This assumption is
reasonable, otherwise the films would never be stable. Imag-
ine now that the film preparation ends with the adsorption
of the diffusing polyelectrolyte. A further assumption is
that the only species able to diffuse is the polycation (as
was observed experimentally for films made from poly(-L-
lysine), PLL, whereas Hyaluronic acid, HA, is not diffusing
through the whole thickness of the film [37]. The adsorption
of PLL from the solution stops when the intermolecular
electrostatic repulsions between the similar charged chains
overcome the attractive interactions with the oppositely
charged chains. The nonadsorbed chains in solution are
then removed upon rinsing with the electrolyte solution
(water plus a small molecular mass electrolyte). The chemical



potential of these chains in solution drops to —oo as their
concentration drops to zero. The weakly bound polycations
should then desorb from the film in the solution in order to
reach again equilibrium. This diffusion is nevertheless slowed
down by the presence of an electrostatic barrier at the film
solution interface (Scheme 2). When the film is then put
in contact with the polyanion solution, which is assumed
not to diffuse in the film, the polyanionic chains adsorb
on the surface of the film. This leads to a neutralization
of the positive charges at the origin of the initial diffusion
(see Figure 2). Hence the film/solution interface acquires a
negative charge and the electrostatic barrier impeding the
diffusion of the fraction of free polycationic chains from
the film to the solution disappears. Hence the polycationic
chains start to diffuse in the solution where they build
up complexes with the available polyanions. Provided the
formed complexes adhere to the film, the growth of the film
continues up to the level where all the available polycationic
reservoir has been used. If the structure of the film is
homogeneous, and if the contact time with the polyanion
containing solution is sufficient, the amount of polycationic
chains diffusing out of the film should be proportional to
the film thickness. Hence the increase in film thickness, due
to polycation-polyanion complexation at the film/solution
interface, should be proportional to the film thickness. This
leads naturally to a film thickness increasing exponentially
with the number of deposition steps.

Of course when the film thickness becomes important
and when the contact time between the film and the
solution is not increased accordingly, there is not enough
time for the polycations close to the film/substrate interface
to diffuse towards the film/solution interface where inter-
polyelectrolyte complexation and film growth occur. Hence
at a certain level of film growth, only a constant part of
the film should be affected by diffusion of free chains out
of the film, leading again to a linear growth as shown in
Figure 4. Note that the slope of the linear regime corresponds
to the value of the derivative of the film thickness versus the
number of deposited “layer pairs” at the end of the expo-
nential regime. The notion of “layer pair” is relative here,
since the exponentially growing films are totally intermixed
in opposition to their linearly growing counterparts in which
some stratification and memory of the deposition process
remains, as already noted previously. We hence prefer to
speak about films produced in a “step-by-step” (SBS) manner
to avoid the confusion the term “LBL films” could bring in
the reader’s mind.

More details about the mechanism of exponential film
growth can be found in [44].

Even if the mechanism described above seems reasonable
and is partially confirmed by means of CLSM experiments
for films made with fluorescently labelled polyelectrolytes,
some other explanations have been proposed in the literature
[45]. In addition, the model based on the diffusion of chains
through the whole film thickness relies on the fact that
the films are homogeneous in the direction perpendicular
to their average plane. There is plenty of experimental
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evidence that both the linearly as well as the exponentially
growing films [46] have at least a 3-zone structure: the
films have different properties at the film/substrate and
film/solution interfaces than in their central zone. It is hence
possible that the transition from the exponential to the linear
growth regime (cf. Figure 4) may be associated to some
internal rearrangement of the film leading to a progressive
modification of the internal film structure with time. Some
increase in the film elasticity (as probed by means of colloidal
probe Atomic Force Microscopy) has indeed been found as a
function of the storage time for (PLL-HA),, films [47].

The polydispersity of the employed polyelectrolytes also
plays an important role in the occurrence of exponential
growth [48]: the higher the polydispersity of the polyelec-
trolyte the higher the tendency for exponential growth.

The major difference in structure between the linearly
and exponentially growing films is depicted in Scheme 3.

The adsorption-desorption regime, in which each
adsorbed polyelectrolyte is desorbed upon contact with the
solution containing the oppositely charged polyelectrolyte,
can be viewed as a situation where the polycation-polyanion
complexes do not adhere to the substrate.

The difference in growth regime allows also a change in
the properties of the obtained films.

The fundamental interactions allowing the deposition of
films produced in an SBS manner will be described. Focus
will be given on PEM films made from oppositely charged
polyelectrolytes because it is for this kind of films that
most of the mechanistic investigations have been performed.
This will allow to understand the fundamental differences
between the three known growth regimes of PEM films.

3. Interactions and Driving Forces
Allowing for the Deposition of Films
in a Step-by-Step Manner

It is natural to think that the driving forces leading to
PEM films is the electrostatic interaction between oppositely
charged chains. However, electrostatic interactions between
oppositely charged polyelectrolytes in solution as well as
between a solubilised polyelectrolyte and an oppositely
charged polyelectrolyte already adsorbed are of very peculiar
nature [51]. Indeed there is not only an enthalpic contri-
bution due to the interactions between point charges on
the oppositely polyelectrolyte chains, but also an entropic
contribution due to chain dehydration, conformational
changes, and release of counter ions. This last contribution
comes from the fact that the charges on the polyelectrolyte
chain are surrounded by counter ions from the aqueous
solution. These small ions have to be removed from the close
vicinity of the polymer chain during the complexation or
adsorption process which induces an increase in their degrees
of freedom and hence in the entropy of the system. Usually
the balance between enthalpic and entropic contributions
changes with the salt concentration of the solution [52, 53].
At low salt concentration, enthalpic contributions dominate,
whereas entropic contributions become predominant for an
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two different states of the film deposition sequence: after the deposition of the polycation (left column) and during the adsorption of the
polyanion (right column). This scheme is inspired by the theory developed in [44].

intermediate salt concentration. At higher salt concentra-
tions, the screening of the electrostatic forces is so high
that the formation of polyelectrolyte complexes and PEM
films is totally hindered. The salt concentration at which
the transition from an enthalpy-driven complexation to
an entropy-driven one is dependent on the nature of the
polyelectrolytes. Of course temperature plays a huge role in
such processes where enthalpy-entropy compensation plays
a role. It has been found that SBS films deposited from PAH
and PSS (as in Figure 1) which display a linear growth at
ambient temperature and in the presence of 1.0 M NaCl turn
to exponential growth when the temperature is raised above
80°C [54]. Similarly at ambient temperature, the growth
of the PEI-(PSS-PAH), films turns to exponential when
the concentration of the supporting electrolyte, NaCl, is
increased [55]. These findings show that the nature of the
film growth regime does not only depend on the nature of the
used polyelectrolytes, but also on the interactions between
them. Those can be modulated by external parameters
like the temperature, the salt concentration as well as the
addition of a cosolvent. This discussion shows that the nature
of the growth regime of PEM films can be adjusted by
playing on external parameters for a given combination of
polyelectrolytes.

Recent research shows that there is a strong relationship
between interpolyelectrolyte interactions in solution, leading

or not to phase separation, and the possibility or not to
obtain PEM films using a step-by-step deposition strategy
[50, 56]. If one considers the intensity of the scattered
light from a polycation-polyanion mixture in conditions
where the amount of anionic sites matches the amount
of cationic ones, that is, in conditions optimal for phase
separation, as a function of the salt concentration, it appears
that the obtained curve is almost homothetic to the PEM
thickness evolution with the same polyelectrolytes. Indeed
two different curve shapes have been observed: either a
monotonous increase or the occurrence of a maximum
(Figure 5).

In the case where the intensity of scattered light and
the film thickness increase with the salt concentration in
a monotonous manner, the film growth is pretty slow and
mostly linear with the number of deposition steps. On the
other hand, in the case where the intensity of scattered
light and the thickness versus salt concentration display a
maximum, the growth regime turns from linear at low salt
concentration to exponential in the region of the maximum.
At very low salt concentration the growth behavior of the film
looks often zig-zag like, typical of an adsorption-desorption
process [50].

Hence the outcome of PEM film deposition as well as a
qualitative prediction of the growth regime can be predicted
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blue, respectively. The deposition of the (PAH-PSS), and (PAH-PGA), films has been investigated by means of optical waveguide lightmode

spectroscopy and quartz crystal microbalance, respectively [49].

on the basis of interpolyelectrolyte phase diagrams. This is
very helpful to help to speed up the design of SBS films in
advance, that is, before their deposition.

4. Selected Properties of Films Produced in
a SBS Manner

The linearly and exponentially growing films display rather
clear cut different properties which make them interesting
for a broad range of possible applications.

Usually the linearly growing films display “internal
charge compensation,” this means that, with exception to
the film/substrate and film/solution interface, the amount
of charges provided by the polycation exactly matches the
amount of charges provided by the polyanion, meaning that
the bulk of the film does not need to incorporate counter
ions to ensure its electrical neutrality [57]. These films are
nevertheless hydrated [58, 59] and display some porosity at
the nanometer scale. This porosity has been quantified by
means of NMR cryoporometry in the case of (PAH-PSS),
films [60]. In quite good agreement with the cryoporometry
experiments, the same films display some permeability for
ions having an ionic radius of the order of one nanome-
ter [61]. (PSS-PAH), [62] and (PDADMAC-PSS), films
(where PDADMAC stands for poly(diallyldimethyl ami-
nomethane)) become however impermeable to multivalent

ions like hexacyanoferrate when the number of “layer pairs”
is typically higher than 5.

Usually the linearly growing films behave like elastic
solids, with an elastic modulus progressively decreasing when
the salt concentration of the solution in contact with the
film increases [63, 64]. At the same time, the ion doping
[65] of the film increases and the stratification of the layers
progressively disappears [66], making such films close to
those obtained during an exponential growth regime.

In opposition to linearly growing films, exponentially
growing ones are highly hydrated (up to 80-90% of water
in volume fraction) [67]. They are extrinsically charge-
compensated which allows them to behave as ion exchange
membranes [68, 69]. From a mechanical point of view they
are close to liquids as has been shown by piezo-rheometry
[70].

A global view of the film properties depending on the
growth regime is represented in Scheme 4.

The properties of PEM films can hence be changed which
allows a great versatility in their applications as will be shown
in the next paragraph.

5. Selected Applications of Films
Produced in a SBS Manner

In the field of materials science, PEM films have been used
to develop electronic devices like diodes (films incorporation
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concentration as that used for the phase diagrams). Two different combinations of oppositely charged polyelectrolytes are represented:
poly(L-lysine hydrobromide)/poly(sodium 4-styrene sulfonate) (PLL/PSS) and poly(diallyldimethyl ammonium chloride)/poly(sodium 4-

styrene sulfonate) (PDADMAC/PSS) adapted from [50].

clays during the layering process) [71], as anticorrosion
coatings [72], as antireflective [73] (with self cleaning
applications) and superhydrophobic coatings [74]. Recently,
PEM films incorporating clays or other nanoparticles have
been described as excellent fire retardants on the surface of
polymer films [75]. More and more PEM films are used as
membranes separating the anode and the cathode in fuel cells
[76].

PEM films can also be used as sensing matrixes atop
an electrochemical [77] or optical transducers. Enzymes can
be encapsulated in such films and remain active for longer
time durations than in solution [78]. Many bioapplications
of PEM films are reported and have been reviewed [79,
80]. Of particular interest is the finding that a change in
the mechanical properties allows to fine tune not only the
cellular adhesion [81], but also the level of nuclear expression
of the adherent cells [82].

6. Conclusions and Perspectives

Films produced in a step-by-step manner can be deposited
on a plethora of different substrates in an robotized manner
using either alternated dipcoating, spray deposition or spin
coating. The fact that different kinds of polymers, interacting
either through electrostatic interactions, hydrogen bonding,
or other kinds of weak or covalent interactions, offers a very
versatile surface functionalization method. One fascinating
aspect of films made from polyelectrolytes, PEM films, is
the very easy deposition method which strongly contrasts
with the complexity of the underlying mechanisms. There
remain many fundamental investigations to be performed to
better understand the relationship between the structure of
the monomer units, the molecular mass and its distribution,
as well as the external parameters (nature of the substrate,
nature of the used electrolyte [38, 83]) on the deposition
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ScHEME 4: Influence of the growth regime and of the structure of PEM films on their properties.

kinetics and the dynamic responsiveness of the films to exter-
nal stimulus. Exchange processes between polyelectrolytes in
the films and in the solution may also occur [84-86] with the
consequence of a pronounced change in film composition
and morphology.

Even more important, for future large scale applications,

is to reach homogeneity of PEM films on large scale sub-
strates (typically in the square meter range).
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