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Rapid characterization of biochar for energy and ecological purpose utilization is fundamental. In this work, visible and near-
infrared (vis-NIR) spectroscopy was used to measure ash, volatile matter, fixed carbon contents, and calorific value of three
types of biochar produced from pine wood, cedar wood, and cotton stalk, respectively. The vis-NIR spectroscopy was also
used to discriminate biochar feedstock types and pyrolysis temperature. Prediction result shows that partial least squares (PLS)
regression calibrating the spectra to the values of biochar properties achieved very good or excellent performance with coefficient of
determination (R2) of 0.86∼0.91 and residual prediction deviation (RPD) of 2.58∼3.32 for ash, volatile matter, and fixed carbon,
and good prediction with R2 of 0.81 and RPD of 2.30 for calorific value. Linear discrimination analysis (LDA) of the principal
components (PCs) produced from PCA of wavelength matrix shows that three types of biochar can be successfully discriminated
with 95.2% accuracy. The classification of biochar with different pyrolysis temperatures can be conducted with 69% accuracy
for all three types and 100% accuracy for single type of cotton stalk. This experiment suggests that the vis-NIR spectroscopy is
promising as an alternative of traditionally quantitative and qualitative analysis of biochar properties.

1. Introduction

Biochar is the product of thermal degradation of organic
materials in the absence of air (pyrolysis). Except for being
an excellent material for energy purpose utilization, biochar
has also been described as a possible means to improve soil
fertility as well as other ecosystem services and sequester
carbon (C) to mitigate climate change [1, 2]. Conversion of
agricultural wastes into biochars not only can save natural
resources but also protect environment. Biochar quality is
mainly influenced by its feedstock type as well as pyrolysis
conditions. However, it is very cost- and time-consuming
to determinate biochar properties, for example, to measure
calorific value, by using conventionally physic-chemical
means in laboratory. Thus, it is necessary to develop an
alternative for rapid characterization of biochar properties.

Recently, near-infrared reflectance spectroscopy (NIRS)
has received increasing attention because it is characteristic

of rapid measurement, ease to use, and absence of agents.
This technology has been used for the analysis of biomass
feedstock properties. Sanderson et al. [3] used the NIRS
to determine the chemical compositions of several woody
and herbaceous feedstocks, such as ethanol extractives, ash,
and lignin. Labbé et al. [4] found the orthogonal signal
correction- (OSC-) treated kernel PLS method achieved
highest coefficient of correlation and lowest root-mean
square of error (RMSE) for the prediction of ash and
char content of three types of woody biomass (red oak,
yellow poplar, hickory) and three herbaceous biomasses
(switch grass, corn stover, sugarcane bagasse). Allison et al.
[5] measured several key compositional parameters (alkali
index, nitrogen, carbon, and ash contents) in two species of
energy grass (switch grass and reed canary grass) by Fourier
transform infrared spectroscopy. Nkansah et al. [6] used the
NIRS as a process analysis technology tool for the rapid
characterization of physical (bulk density) and chemical
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properties (insoluble and acid-soluble lignin, extractives,
ash) of yellow-poplar. Fagan et al. [7] predicted the moisture,
calorific value, ash, and carbon content of two dedicated
bioenergy crops (Miscanthus and Short Rotational Coppice
Willow). All reports above focused on the measurement of
biomass feedstock properties. To our knowledge, however,
there is no report on using the NIRS to predict biochar
properties.

As known, weak overtones and combinations of the IR
fundamental vibrations due to the stretching and bending
of N–H, O–H, and C–H groups dominate the NIR (780∼
2500 nm) and electronic transitions in the visible (350∼
780 nm) portions of the electromagnetic (EM) spectrum [8].
It might be practicable to use the visible and near-infrared
(vis-NIR) spectroscopy for the characterization of biochar
properties, although using IR range (4000∼400 cm−1) may
produce higher performance than vis-NIR range, as shown
in other reports [9, 10].

This study aims to explore the potential of using vis-NIR
spectrum from 350 to 1100 nm to determinate componential
contents, that is, ash, volatile matter, and fixed-carbon
contents and calorific value of three selected types of biochar
produced from cedar wood, pine wood, and cotton stalk
under different pyrolysis temperatures. We also investigated
the feasibility of the vis-NIR spectroscopy to discriminate
biochar feedstock types and pyrolysis temperatures.

2. Material and Methods

2.1. Sample Preparation. Pine and cedar wood chips were
collected from a local timber production factory. Cotton
stalk was gathered from a local farmland. The biomass wastes
were left outdoors for air-drying one month. The dried
materials were broken by machine and further ground to
pass through a 40 mesh screen. Biochar was produced via the
pyrolysis of the raw biomass at various temperatures under
oxygen-limited conditions, which allowed the materials to
be charred rather than combusted. Briefly, the biomass
was placed in a ceramic pot covered with a fitting lid,
and underwent pyrolysis in a muffle furnace with peak
temperatures of 300, 350, 400, 450, 500, 550, and 600◦C
for 2 h. For each temperature, four biochar samples were
prepared for cedar and pine wood and 8 samples for cotton
stalk. A total of 112 samples were used with 28, 28, and
56 samples for cedar wood, pine wood, and cotton stalk
biomass, respectively.

From each sample, 4∼5 g was used for laboratory
measurement of ash, volatile matter contents (wt.%), and
calorific value (MJ/kg). The ash and volatile matter contents
were measured according to the criteria of NY/T1881.4-2010
(China) and the calorific value according to the standard of
GB/T 213-2003 (China). Fixed carbon content was calculated
by 1 – ash (wt.%) – volatile matter (wt.%). All measurements
were conducted on the dry base.

2.2. Spectrum Measurement. A subsample of about 5 g was
loaded into a static ring cup and measured with a Maya 2000
spectrophotometer (Ocean Optics, USA) equipped with an

optic fiber for light transmission. The light source was a
halogen bulb of 3000 K. The spectrophotometer provided
spectra with wavelengths from 200 to 1150 nm. Due to the
noise at both ends, only the range from 350 to 1100 nm was
remained for further investigation. All spectra were recorded
in diffuse reflectance mode. Before sample spectral scanning,
ten reference scans were taken on a ceramic standard
supplied with the spectrophotometer. Twenty photometric
scans were conducted and averaged for each sample.

2.3. Spectral Data Processing. The spectra were treated with
the Unscrambler X10.1 (CAMO, Oslo, Norway). Spectral
homogeneity of samples was tested before model calibration.
A principal components analysis (PCA) of wavelength matrix
was carried out for the residual X-variance calculation on
all samples. The Hotelling T2 ellipse based on the first and
second principal components (PC1 and PC2) was used to
find sample outliers. No samples were found outside the
Hotelling T2 ellipse. The spectra were then randomly divided
into two separate sets for calibration (50%) and prediction
(50%).

Several spectral preprocessing algorithms, such as
Savitzky-Golay smoothing, multiplicative scatter correction
(MSC), standard normal variate (SNV), the 1st and 2nd de-
trendings, and the 1st and 2nd derivatives, were investigated
but were not useful for improving prediction performance.
The only beneficial spectrum transformation was baseline
offset correction (BOC), conducted by f (λ) = r(λ) −
min r(X), where r(λ) is the reflectance at a wavelength of
λ and X demotes all wavelength variables. The value of
the lowest point in a spectrum is subtracted from all the
variables. Using BOC can eliminate light-path difference
caused by rough sample surface.

The BOC-transformed spectra in the calibration set were
subjected to a partial least squares (PLS) regression to build
a calibration model for each biochar property. All PLS
models were conducted with leave-one-out cross-validation
and the number of factors (NFs) used in the PLS models
was determined by minimizing the predicted residual error
sum of squares (PRESS). The performance of PLS models
was evaluated for the prediction set.

PLS model performance was evaluated by the root mean
squared error of calibration (RMSEC), cross-validation
(RMSECV), and prediction (RMSEP) as follows:

RMSE =

√
√
√
√

∑(

Xm − Xp

)2

N
,

(1)

where Xm is the reference value, Xp is the PLS-predicted
value, and N is the number of samples used for calibration
or prediction. PLS models were also evaluated by the residual
predictive deviation (RPD), which is the ratio of standard
deviation of reference values of the prediction set to the
RMSEP. The criteria adopted for RPD classification [8] was
that an RPD value below 1.5 indicates very poor model
predictions and that such a value could not be useful;
an RPD value between 1.5 and 2.0 indicates a possibility
of distinguishing between large and small values, while a
value between 2.0 and 2.5 makes approximate quantitative
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Table 1: Average value and standard deviation of ash, volatile matter (VM), fixed carbon (Fc) contents, and calorific value (CV) of three
types of raw biomass and charred materials under different pyrolysis temperatures.

Feedstock Material Raw Pyrolysis temperature

type property biomass (control) 300◦C 350◦C 400◦C 450◦C 500◦C 550◦C 600◦C

Cedar wood

Ash (wt.%) 0.3± 0.1 1.5± 0.3 1.6± 0.1 1.6± 0.1 1.8± 0.1 1.8± 0.1 2.0± 0.3 2.1± 0.1

VM (wt.%) 82.4± 0.1 37.5± 0.7 34.8± 0.3 32.6± 0.7 29.3± 0.5 25.8± 0.6 21.5± 0.5 18.4± 0.4

Fc (wt.%) 17.3± 0.1 61.1± 0.9 63.7± 0.3 65.8± 0.7 69.0± 0.4 72.4± 0.6 76.5± 0.4 79.5± 0.4

CV (MJ/kg) 20.5± 0.1 25.1± 0.1 25.8± 0.1 25.5± 0.1 27.1± 0.1 27.9± 0.1 28.9± 0.1 29.5± 0.1

Pine wood

Ash (wt.%) 0.2± 0.1 2.5± 0.1 1.7± 0.1 2.0± 0.1 2.6± 0.1 3.1± 0.1 4.1± 0.1 4.7± 0.3

VM (wt.%) 84.4± 0.2 37.3± 0.4 32.5± 0.4 30.5± 0.3 27.0± 0.5 23.1± 0.2 19.9± 0.2 17.2± 0.7

Fc (wt.%) 15.4± 0.2 60.2± 0.5 65.8± 0.5 67.5± 0.3 70.4± 0.6 73.8± 0.2 76.0± 0.2 78.1± 0.9

CV (MJ/kg) 19.2± 0.1 25.6± 0.1 25.9± 0.1 26.5± 0.1 27.6± 0.1 28.6± 0.1 28.7± 0.1 28.8± 0.1

Cotton stalk

Ash (wt.%) 5.4± 0.1 6.0± 0.1 7.6± 0.1 8.3± 0.2 9.5± 0.2 9.2± 0.2 11.1± 0.1 10.1± 0.1

VM (wt.%) 74.4± 0.1 32.2± 0.3 29.9± 0.3 24.6± 0.3 23.7± 0.3 20.8± 0.6 18.2± 0.7 15.6± 1.2

Fc (wt.%) 20.2± 0.1 61.8± 0.4 62.5± 0.4 67.1± 0.1 66.9± 0.1 70.0± 0.4 70.7± 0.6 74.2± 1.4

CV (MJ/kg) 18.8± 0.1 25.7± 0.1 25.2± 0.1 26.9± 0.1 25.3± 0.1 26.4± 0.1 26.9± 0.1 27.6± 0.1

Table 2: Intercorrelation coefficients among ash, volatile matter
(VM), fixed carbon (Fc) contents, and calorific value (CV) of
biochar samples.

Ash (wt.%) VM (wt.%) Fc (wt.%) CV (MJ/kg)

Ash (wt.%) 1 −0.52 0.03 −0.14

VM (wt.%) −0.52 1 −0.87 −0.73

Fc (wt.%) 0.03 −0.87 1 0.94

CV (MJ/kg) −0.14 −0.73 0.94 1

predictions possible. For RPD values between 2.5 and 3.0 and
above 3.0, the prediction is classified as good and excellent,
respectively. We also evaluated the model performance by
means of the coefficient of determination (R2) for prediction.
In fact, R2 indicates the percentage of the variance in the
Y variable that is accounted for by the X variable [11]. An
R2 between 0.50 and 0.65 indicates that more than 50% of
the variance in Y is accounted for by variable X, so that
discrimination between high and low concentrations may be
made. An R2 between 0.66 and 0.81 indicates approximate
quantitative prediction, whereas an R2 between 0.82 and 0.90
reveals good prediction. Calibration models having an R2

above 0.91 are considered to be excellent. Generally, a good
model prediction would have large values ofR2 and RPD, and
small values of RMSEC, RMSECV, and RMSEP.

To find potential patterns in the vis-NIR spectra for
discriminating feedstock types and pyrolysis temperatures
of biochars, linear discriminant analysis (LDA) algorithm
was used to investigate the first 10 principal components
(PCs) obtained from the PCA. Potential clusters for different
biochar types were separated with the Mahalanobis distance
[12]. The PC-LDA models were developed for the calibration
set and validated with the prediction set. The PC-LDA
method was also used for discriminating biochar pyrolysis
temperatures based on the combined spectra of all three
biochar types. By comparison, an extra PC-LDA model
was built for the single-type spectra of cotton stalk, as the
number of cedar wood and pine wood biochar samples was

not sufficient to develop an individual model for each of
both types. Parsimonious PC-LDA models were determined
in terms of minimal number of PCs for best prediction
performance.

3. Results and Discussion

3.1. Characteristics of the Samples. The componential con-
tents and calorific values of the raw biomass and charred
materials were shown in Table 1. Generally, the values of
each property changed with pyrolysis temperature. Taking
cedar wood as an example, volatile matter (VM) contents
decreased sharply from 82.4% in raw biomass to 37.5% at
300◦C till to 18.4% at 600◦C. Fixed carbon (Fc) content
increased significantly from 17.3% in raw biomass to 61.1%
at 300◦C till to 79.5% at 600◦C. Ash content also increased
with pyrolysis temperatures. Ash contents at 300◦C (1.5%)
and 600◦C (2.1%) were 5 and 7 times greater than that in
raw biomass (0.3%). Calorific values also increased from
20.5 MJ/kg in raw biomass to 25.1 MJ/kg at 300◦C and
29.5 MJ/kg at 600◦C. These changes of biochar properties
affected by pyrolysis temperatures were consistent with other
reports on woody biomass pyrolysis [13–15]. This obser-
vation indicates that biomass carbonization was accelerated
with pyrolysis temperatures [14, 16]. Generally, the primary
thermal degradation of biomass occurs at a lower pyrolysis
temperature. The pyrolytic volatiles were further cracked
into low molecular weight organics and gases rather than
biochar as the pyrolysis temperature increased [17]. Losses in
hydrogen and oxygen content at high pyrolysis temperature
were attributed to the cleavage and cracking of weak bonds
within the biochar structure [18].

Table 2 presents the intercorrelation among ash, volatile
matter, fixed carbon, and calorific value of all biochar
samples. Obviously, there is a strong correlation between
volatile matter and fixed carbon with correlation coefficient
(r) of −0.87, which indicates that gasification of volatile
matter at high temperature will lead to the increase of
fixed carbon content. The correlation coefficient of 0.94
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Table 3: Statistics of calibration and prediction samples.

Biochar propertya Calibration set Prediction set

Range Mean± s.d.b Range Mean± s.d.

Ash (wt.%) 1.4∼11.2 4.5± 3.3 1.4∼11.1 4.5± 3.3

VM (wt.%) 14.6∼37.5 26.3± 6.7 14.9∼38.0 26.3± 6.6

Fc (wt.%) 60.2∼79.5 69.2± 5.7 59.6∼79.9 69.2± 5.7

CV (MJ/kg) 25.1∼29.5 26.9± 1.4 25.0∼29.6 26.9± 1.4
a
VM: volatile matter content; Fc: fixed carbon content; CV: calorific value.

bs.d.: standard deviation.
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Figure 1: Mean BOC-transformed spectrum for the biochars produced from cedar wood (a), pine wood (b), and cotton stalk (c) affected
by different pyrolysis temperatures.



ISRN Spectroscopy 5

Table 4: Calibration and prediction results of partial least squares (PLS) regression models developed for ash, volatile matter (VM), fixed
carbon (Fc) contents and calorific value (CV) with BOC-transformed spectra of biochar samples.

Biochar property NFsa Calibration Prediction

R2 RMSECb R2 RMSECVc R2 RMSEPd RPDe

Ash (wt.%) 8 0.99 0.3 0.94 0.8 0.91 1.0 3.32

VM (wt.%) 3 0.89 2.2 0.87 2.4 0.86 2.4 2.77

Fc (wt.%) 3 0.90 1.8 0.88 2.0 0.86 2.1 2.70

CV (MJ/kg) 3 0.83 0.56 0.80 0.63 0.81 0.60 2.33
a
Number of factors used in PLS model.

bRoot mean squared error of calibration.
cRoot mean squared error of cross-validation.
dRoot mean squared error of prediction.
eResidual predictive deviation, which is the ratio of standard deviation of reference values of the prediction set to the RMSEP.

between fixed carbon and calorific value may indicate the
contribution of fixed carbon to biochar calorific value.
Biochar properties for the calibration and prediction sets are
statistically summarized in Table 3.

Figure 1 shows the changes of BOC-transformed spectra
with increasing pyrolysis temperatures for each type of
biochar. The spectra showed low reflectance in visible range,
which corresponded to the black color of biochar. However,
the reflectance became strong in the near infrared range.
Pyrolysis reaction can weaken the macromolecular structure
of biomass and produce biochar that is more fragile and
likely to be broken [19]. Increasing pyrolysis temperature
may result in a growing proportion of biochar particles
with smaller size distribution [14], The changes of biochar
compositions and particle sizes may contribute to the
spectrum changes.

3.2. PLS Determination of Biochar Properties. The PLSR
models calibrating the wavelengths to biochar properties
achieved good or excellent performance for calibration and
prediction (Table 4). For example, the PLS model for ash
content produced R2 of 0.94 and RMSECV of 0.8% for
cross-validation, and R2 of 0.91, RMSEP of 1.0%, and
RPD of 3.32 for prediction. The PLS models for volatile
matter and fixed carbon content were both developed with
3 factors and achieved similar performance with R2 of
0.87∼0.88 and RMSECV of 2.0∼2.4% for cross-validation,
and R2 of 0.86, RMSEP of 2.1∼2.4 and RPD of 2.70∼2.77
for prediction. By comparison, the PLS model for biochar
calorific value produced middle-level accuracy with R2 of
0.80 and RMSECV of 0.63 MJ/kg for cross-validation, and
R2 of 0.81, RMSEP of 0.60 MJ/kg and RPD of 2.33 for
prediction.

3.3. Discrimination of Biochar Types and Pyrolysis Temper-
atures. It is difficult to identify biochar types from their
visual darkness. PCA was used to convert the wavelength
matrix into a small number of PCs. Linear discrimination
analysis (LDA) was then conducted for the obtained PCs to
find potential patterns for discriminating different biochar
types. Table 5 showed the discrimination accuracy of the
PC-LDA models with various numbers of PCs in calibra-
tion and prediction. For the calibration set, these models

Table 5: Influence of the number of principal components (PCs)
on the discrimination accuracy of biochar types using principal
components—linear discriminant analysis (PC-LDA) models in
calibration and prediction.

Number of PCs used
in PC-LDA models

Discrimination accuracy of biochar types

Calibration Prediction

6 100% 90.5%

5 100% 88.1%

4 100% 95.2%

3 95.3% 90.5%

2 88% 88.1%

performed perfect with 100% discrimination accuracy with
4 or more PCs, 95.3% with 3 PCs, and 88% with 2 PCs.
For the prediction set, however, the models reached the
best performance of 95.2% accuracy when 4 PCs were
involved, which indicated a LDA model for more than 4 PCs
overfitting and that for less than 4 underfitting. Thus, the
most parsimonious model for discriminating the targeted
biochar types was the LDA for 4 PCs.

Table 6 shows the result of developing PC-LDA models
to discriminate biochar pyrolysis temperatures. The perfor-
mance of these models changed with the increasing number
of PCs. For the combined types of biochar, the LDA for 4
PCs achieved best discrimination accuracy with 98.4% for
calibration and 69.0% for prediction. For the single type
of cotton stalk, although LDA for 3 PCs obtained 100%
discrimination accuracy for the calibration set, the model
just produced 85.7% accuracy for the prediction set. At least
5 PCs were needed for model prediction with 100% accuracy.

Although we did not exploit the issue of how different
charring temperatures make influences on the molecular
structures of the three targeted types of biochar, several
published reports may lend us some useful knowledge on it.
For examples, Peng et al. [20] revealed by scanning electron
microscopy (SEM) that with increasing temperature, biochar
particles became smaller and retained less original cell struc-
ture. Also, the Fourier transform infrared spectra of biochars
derived from rice straw [20], pitch pine [14], and wood
[15] showed that charring temperature alters the functional
group of biochar, indicating a weaker adsorption intensity
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Table 6: Influence of the number of principal components (PCs) on the discrimination accuracy of pyrolysis temperatures of single type of
cotton stalk and combined types of biochar using principal components—linear discriminant analysis (PC-LDA) models in calibration and
prediction.

Number of PCs used in PC-LDA model
Single type of cotton stalk Combined types

Calibration Prediction Calibration Prediction

6 100% 100% 100% 45.2%

5 100% 100% 100% 52.4%

4 100% 85.7% 98.4% 69.0%

3 100% 85.7% 92.1% 69.0%

2 95.2% 78.6% 90.5% 66.7%

of O, H, and aliphatic C but stronger adsorption intensity
of aromatic C with charring temperature. Uzun et al. [21]
reported that degradation of hemicelluloses and cellulose
takes place at 200∼300◦C and 300∼400◦C, respectively, while
lignin degradation takes place at 200∼700◦C. Kim et al. [14]
found that formation of highly ordered aromatic structure
of biochar begins at 400◦C. As the chemical, physical,
and morphological changes of biochar affected by charring
temperature would result in spectral changes of molecular
vibration, spectroscopic analysis should be a useful tool
for biochar quality monitoring and feedstock identification,
although more efforts must be extended for its practical
application.

4. Conclusions

In the study, vis-NIR reflectance spectra with wavelengths
from 350 to 1100 nm were calibrated to the ash, volatile
matter, and fixed carbon contents and calorific values of three
types of biochar produced from cedar wood, pine wood,
and cotton stalk under various pyrolysis temperatures. The
spectra were also used to discriminate biochar feedstock
types and different pyrolysis temperatures. Conclusions can
be drawn as follows.

(1) Componential contents and calorific value of biochar
can be predicted successfully by PLS models devel-
oped for the vis-NIR spectra. In our case, PLS models
developed for BOC-transformed spectra achieved
very good or excellent prediction accuracy with
R2 of 0.86∼0.91 and RPD of 2.58∼3.32 for ash,
volatile matter, and fixed carbon contents, and good
prediction with R2 of 0.81 and RPD of 2.30 for
calorific value.

(2) It is feasible to discriminate biochar feedstock types
based on a vis-NIR spectrum. In our case, the
LDA model for the principal components (PCs)
obtained from PCA of vis-NIR spectra produced
excellent discrimination accuracy of 95.2% for the
three targeted biochar types. The number of PCs
should be optimized to avoid overfitting and under-
fitting of the PC-LDA model.

(3) It is possible to discriminate biochars produced
under different pyrolysis temperatures by PCA of
vis-NIR spectra. In our case, PC-LDA model pro-
duced 100% discrimination accuracy of cotton stalk

biochars produced under 300∼600◦C at interval
of 50◦C. Although the discrimination of pyrolysis
temperatures for the three biochar types based on
the combined spectra only produced 69% accuracy
in prediction, it may suffer from the small number
of biochar samples. Thus, we suggest that larger
number of biochar samples should be examined if a
robust model for discriminating biochar types and/or
pyrolysis temperatures is to be developed.
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