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This paper compares the two preference artificial intelligent (AI) techniques, namely, artificial neural network (ANN) and genetic
algorithm optimized least square support vector machine (GA-LSSVM) approach, to allocate the real power output of individual
generators to system loads. Based on solved load flow results, it first uses modified nodal equation method (MNE) to determine
real power contribution from each generator to loads. Then the results of MNE method and load flow information are utilized
to estimate the power transfer using AI techniques. The 25-bus equivalent system of south Malaysia is utilized as a test system to
illustrate the effectiveness of the AI techniques compared to those of the MNE method. The AI methods provide the results in a
faster and convenient manner with very good accuracy.

1. Introduction

Nowadays, the electric power industry is under deregulation
in response to changes in jurisdiction, technology, market,
and competition. Regardless of market environment, it is
essential to know whether or not, and to what extent, each
power system user contributes to the usage of particular
system components. This information facilitates the restruc-
tured power system to operate economically and efficiently
[1]. Moreover, it brings fair pricing and open access to all
system users. Because of nonlinear nature of power flow, it is
difficult to determine transmission usage accurately. There-
fore, it requires using approximate models, tracing algo-
rithms, or sensitivity indices for usage allocation. Methods
based on the Y-bus or Z-bus system matrices have recently
received great attention since these methods can integrate the
network characteristics and circuit theories into line usage
and loss allocation. The method reported in [2] is based on
Kirchhoff ’s current law (KCL), equivalent linear circuit that
reaches all lines and loads. Based on the stated assumptions,
a recursive procedure was used to construct the equivalent

circuit for each bus. Moreover, superposition theorem was
applied to the bus’s equivalent circuit starting from a
bus whose injected currents were known. Another circuit
concept method was proposed by Chang and Lu [3]. It was
based on the system Y-bus matrix and Z-bus modification.
Starting from the load flow solution, branch current is
determined as a function of generators’ injected current
by using information from the bus impedance matrix.
Similarly, contribution to bus voltages was computed as a
function of each generator current injection by decomposing
the network into different networks. Using the computed
voltages and currents, the power flowing on the transmission
lines were unbundled. It uses approximate formulation to
calculate the unbundled loss components. This algorithm
utilizes the network decomposition concept as proposed by
Zobian and Ilić [4] which determines the use of transmission
network by individual bilateral contracts. Teng [5] proposed
a systematic method, very similar to that presented in [3], to
allocate the power flow and loss for deregulated transmission
systems. Using similar concept, the authors of this paper
introduce a modified nodal equation (MNE) method for
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real and reactive power allocation [6] in which the load
buses powers are represented as a function of the generators’
current and voltage.

The tracing methods [1, 7–10] based on the actual power
flows in the network and the proportional sharing principles
were effectively used in transmission usage allocation. The
methods reported in [1, 9] are based on tracing the current
and complex power from individual power sources to system
loads. Based on solved load flow, the method converts power
injections and line flows into real and imaginary current
injections and current flows. This method has a clear physical
meaning and its results are unique. Bialek [7] proposed a
novel power tracing method. However, this method requires
inverting a large matrix. Wu [8] proposed a graph theory to
calculate the contribution factor of individual generators to
line flows and loads and the extraction factor of individual
loads from line flows and generators, which is theoretically
efficient. This method cannot handle loop flows and losses
must be removed initially. Paper [11] was based on the
concept of generator “domains,” “common,” and “links.”
The disadvantage of this method is that the share of each
generator in each “common” (i.e., the set of buses supplied
from the same set of generators) is assumed to be same.
Furthermore, the “commons” concept can lead to problems
since the topology of a “common” could radically change
even in the case of slight change in power flows.

Since the meshed and nonlinear nature of power system,
the applications of artificial intelligence (AI) to power system
become a great potential to explore, especially in power
tracing problem. Mustafa et al. [12] incorporated an artificial
neural network (ANN) to reactive power allocation in
deregulated power system. It uses modified nodal equation
[6] results to train ANN. Similarly, research has been carried
out by applying feed forward ANN for energy loss problem
[13]. This method is relatively simple and easy to apply for
loss allocation problem. Optimization technique also has
been explored in solving the power allocation problem [14].
The authors proposed a tracing compliant that minimizes
overall deviation from the postage stamp allocation. Nev-
ertheless, the approach treats the power tracing problem as
a linear constraint optimization problem. In a related work,
a continuous genetic algorithm (GA) for real power tracing
has been proposed in [15]. The problems of this technique
are that it produces multisolution results and requires long
time for computation. Paper [16] proposed a support vector
machine (SVM) to estimate the contribution of individual
generators to loads in power systems. The SVM gives faster
results but the accuracy of the result is not promising.

Basically, support vector machine (SVM) is designed to
solve the classification problem [17]. Then, it is extended
for the case of nonlinear function estimation. Paper [18]
uses SVM for detection of abnormalities and electricity
theft by incorporating the genetic algorithm to SVM. Using
similar concept, the authors of this paper also adopt the
hybridization of GA and least square SVM (LS-SVM) into
reactive power tracing problem [19]. The new reactive power
tracing method is based on manipulation of proportional
sharing method [7] and application of GA to tune the
performance parameters of LS-SVM.

This paper deals mainly with investigation of two dif-
ferent AI techniques for real power transfer allocation and
identifies most appropriate AI technique that can be used
in power tracing by critically comparing the qualitative and
quantitative performance of the two methods.

2. Modified Nodal Equations Method

The derivation, to decompose the load real powers into
components contributed by specific generators, starts with
basic equations of load flow. Applying Kirchhoff ’s current
law to each node of the power network leads to the equations,
which can be written in a matrix form as in (1) [6]

I = YV , (1)

where V is a vector of all node voltages in the system, I is a
vector of all node currents in the system, and Y is the Y-bus
admittance matrix.

The nodal admittance matrix of the typical power system
is large and sparse, therefore it can be partitioned in a
systematic way. Considering a system in which there are G
generator nodes that participate in selling power and remain-
ing L = n−G nodes as loads, then it is possible to rewrite (1)
into its matrix form as shown in (2)

[
IG
IL

]
=
[
YGG YGL

YLG YLL

][
VG

VL

]
. (2)

Solving (2) for IL, the load currents can be presented as
a function of generators’ current and load voltages as shown
in (3)

IL = YLGY
−1
GGIG +

(
YLL − YLGY

−1
GGYGL

)
VL. (3)

Then, the total real power PL of all loads can be expressed
as shown in (4)

PL = Re
{
VLI

∗
L

}
(4)

where (∗) means conjugate, substituting (3) into (4) and
solving for PL the relationship as shown in (5) can be found

PL = Re
{
VL
(
YLGY

−1
GG

)∗
I∗G

+VL
((
YLL − YLGY

−1
GGYGL

)
VL
)∗}

= Re

⎧⎨
⎩VL

nG∑
i=1

ΔI∗IGL + VL
((
YLL − YLGY

−1
GGYGL

)
VL
)∗⎫⎬⎭,

(5)

where

(
YLGY

−1
GG

)∗
I∗G =

nG∑
i=1

ΔI∗IGL (6)

and nG is number of generators.
Now, in order to decompose the load voltage-dependent

term further in (5), into components of generator-dependent
terms, (8) derivations are used. A possible way to deduce load
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node voltages as a function of generator bus voltages is to
apply superposition theorem. However, it requires replacing
all load bus current injections into equivalent admittances
in the circuit. Using a readily available load flow result, the
equivalent shunt admittance YLj of load node j can be calcu-
lated using (7) as

YLj = 1
VLj

(
SLj
VLj

)∗
. (7)

SLj is the load apparent power on node j and VLj is the load
bus voltage on node j. After adding these equivalences to the
diagonal entries of Y-bus matrix, (1) can be rewritten as

V = Y ′−1IG, (8)

where Y ′ is the modified Y of (1).
Next, adopting (8) and taking into account each genera-

tor one by one, the load bus voltages contributed by all gener-
ators can be expressed as

VL =
nG∑
i=1

ΔV∗IG
L . (9)

It is now simple mathematical manipulation to obtain
the required relationship as a function of generators-depend-
ent terms. By substituting (9) into (5), the decomposed load
real powers can be expressed as

PL=Re

⎧⎨
⎩VL

nG∑
i=1

ΔI∗IGL +
nG∑
i=1

ΔV∗IG
L

((
YLL − YLGY

−1
GGYGL

)
VL
)∗⎫⎬⎭.
(10)

This equation shows that the real power of each load bus
consists of two terms by individual generators. The first term
relates directly to the generators’ current and the second term
corresponds to their contribution to the load voltages. With
further simplification of (10), the real power contribution
that load j acquires from generator i is as

PLj =
nG∑
i=1

PΔIL
L ji +

nG∑
i=1

PΔVL
L ji , (11)

where PΔIL
L ji is the current-dependent term of generator i to

PLj and PΔVL
L ji is the voltage-dependent term of generator i to

PLj .
Vector PL is used as a target in the training process of the

proposed SVM.

3. AI Methods Used for Real Power Allocation

The following section describes an overview of the existing
artificial intelligence power transfer allocation methods,
namely, ANN method [12], and the GA-LSSVM [19].

3.1. Function Estimation Using Radial Basis Function Artificial
Neural Network (ANN). The radial basis function (RBF)
ANN was first used to design artificial neural network by

Broomhead and Lowe [20]. Radial basis function offers sev-
eral advantages compared to multilayer perceptron (MLP)
ANN. Firstly, it can be trained using fast two stages training
algorithm without the need for time consuming non-linear
optimization techniques. Secondly, the RBFN possesses the
property of best approximation [21]. The network consists
of three layers, namely, an input layer, a hidden layer, and
an output layer. The output of the RBF ANN network
simply sums the weighted basis function without using any
activation function. Assuming a single neuron at the output
layer, the output of the RBF network is calculated using (12)
as

η(x,w) =
S∑

k=1

w1kφk(‖x − ck‖2), (12)

where ‖x − ck‖2 denotes the Euclidean distance between the
input vector x and the center ck, φk(·) is a basis function, w1k

are the weights in the output layer, and S is the number of
neurons (and centers) in the hidden layer.

The output of the neuron in a hidden layer is a non-linear
function of the distance. In this work, the functional form of
Gaussian basis function is defined in (13) as,

φk(‖x − ck‖2) = e−‖x−ck‖
2
2/β

2
. (13)

Note that the Gaussian basis function is most commonly
used where the parameter β controls the width of the RBF
ANN and is commonly referred to as the spread parameter.
In practice, the value of β that is too big or too small will
cause degradation in the performance of the RBFN. The
centers ck are defined points that are assumed to perform
an adequate sampling of the input space. Common practice
is to select a relatively large number of input vectors as the
centers to ensure an adequate input space sampling. RBF
ANN performs two major functions which are training and
testing. Testing is an integral part of the training process since
a desired response to the network must be compared to the
actual output to create an error function.

3.2. Function Estimation Using Least Squares Support Vec-
tor Machine (LS-SVM). Support vector machine (SVM) is
known as a powerful methodology for solving problems in
nonlinear classification, function estimation, and density
estimation. Least squares support vector machine (LS-SVM)
is reformulated from standard SVM [22] which lead to
solving linear Karush-Kuhn-Tucker systems. In LS-SVM
function estimation, the standard framework is based on a
primal-dual formulation. Given N data set {xi, yi}Ni=1, the
goal is to estimate a model of the following form:

y(x) = wTϕ(x) + b + ei, (14)

where x ∈ Rn, y ∈ R and ϕ(·) : Rn → Rnh is a mapping to
a high dimensional feature space. Then based on model, the
following optimization problem is formulated [23]:

min
w,b,e

J(w, e) = 1
2
wTw + γ

1
2

N∑
i=1

e2
i (15)

such that yi = wTϕ(xi) + b + ei, i = 1, . . . ,N .
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Figure 1: Single-line diagrams for the 25-bus equivalent practical power system.
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Figure 2: Description of inputs and outputs of the training and simulation data for ANN real power allocation method.

With the application of Mercer’s theorem [22] for the
kernel matrix Ω as Ωi j = K(xi, xj) = ϕ(xi)

Tϕ(xj), i, j =
1, . . . ,N , it is not required to compute explicitly the nonlinear
mapping φ(·) as this is done implicitly through the use of
positive definite kernel functions K [24].

From the following Lagrange function [23]:

ζ
(
w, b, e;β

) = 1
2
wTw + γ

1
2

N∑
i=1

e2
i

−
N∑
i=1

βi
(
wTϕ(xi) + b + ei − yi

)
,

(16)

where βi are Lagrange multipliers. Differentiating (16) with
w, b, ei, and βi, the conditions for optimality can be described
as follow [23]:

dζ

dw
= 0 −→ w =

N∑
i=1

βiϕ(xi),

dζ

db
= 0 −→

N∑
i=1

βi = 0,

dζ

dei
= 0 −→ βi = γei, i = 1, . . . ,N ,

dζ

βi
= 0 −→ yi = wTϕ(xi) + b + ei, i = 1, . . . ,N.

(17)

By elimination of w and ei, the following linear system is
obtained [23]:

[
0
y
| 1T

Ω + γ−1I

][
b

β

]
=
[

0
y

]
, (18)

with y = [y1, . . . , yN ]T , β = [β1, . . . ,βN ]T . The resulting LS-
SVM model in dual space becomes

y(x) =
N∑
i=1

βiK(x, xi) + b. (19)

Usually, the training of the LS-SVM model involves an
optimal selection of kernel parameters and regularization
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Figure 3: Training performance of RBF ANN.

parameter. For this paper, the RBF kernel is used which is
expressed as

K(x, xi) = e−‖x−xi‖
2/2σ2

. (20)

Note that σ2 is a parameter associated with RBF function
which has to be tuned. There is no doubt that the efficient
performance of LS-SVM model involves an optimal selection
of kernel parameter, σ2, and regularization parameter, γ.
Thus by using GA as optimizer, an accurate result can be
gained. The hybridization of GA and LS-SVM gives better
accuracy and good generalization, especially in power trans-
fer allocation problem [19].

4. ANN Model for Real Power Allocation

In this work, 1 RBF ANN with one hidden layer and one
output layer has been chosen. The ANN power transfer
allocation method is elaborated by designing an appropriate
RBF ANN for the practical 25-bus equivalent power system
of south Malaysia region as shown in Figure 1. This system
consists of 12 generators located at buses 14 to 25 respec-
tively. They deliver power to 5 loads, through 37 lines located
at buses 1, 2, 4, 5, and 6, respectively. The input samples
for training are assembled using the daily load curve and
performing load flow analysis for every hour of load demand.
Similarly the target vector for the training is obtained from
the MNE method. Input data (D) for developed ANN
contains variables such as load bus voltage magnitude (V1,
V2, V4 to V6), real power of loads (P1, P2, P4 to P6),
reactive power of loads (Q1, Q2, Q4 to Q6), real power of
generators (P14 to P25), reactive power of generators (Q14
to Q25) and line real power (Pline1 to Pline37) flows, and
the target/output parameter (T) which is the real power
transfer between generators and loads placed at buses 1, 2, 4
to 6. Hence the networks have 60 output neurons. Figure 2
summarizes the description of inputs and outputs of the
training and testing for ANN for real power allocation.
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Figure 4: Regression analysis between the ANN output and the cor-
responding target for real power allocation.

4.1. Training. After the input and target for training data is
created, it can be made more efficient by scaling the network
inputs and targets so that they always fall within a specified
range. In this case the minimum and maximum value of
input and output vectors is used to scale them in the range
of −1 and +1. The next step is to divide the data (D and T)
up into training. In this case, 100 samples (60%) of data are
used for the training.

The training of the RBF ANN consists of two separate
stages. The first step is to find the centers parameter by using
the k-means clustering algorithm. After a number of trials, k
is taken as 14 and the β as 17. These values give reasonable
accuracy during training. In the second training stage, the
second layer weights in connections between the hidden layer
and the output layer are determined using the least squares
based on minimization of quadratic errors of RBF ANN
network output values over the set of training input-output
vector pairs. The training performance is shown in Figure 3.
From Figure 3, it can also be seen that the training goal is
achieved in 2 epochs with performance equal to 3.13E − 6.
The training time taken by the RBF ANN is 232 msec using
an Intel Core 2 Duo, 2 GHz computer.

4.2. Pretesting and Simulation. After the networks have been
trained, the next step is to simulate the network. The entire
training data is used in pretesting. After simulation, the
obtained result from the trained network is evaluated with
a linear regression analysis. In real power allocation scheme,
the regression analysis for the trained network is shown in
Figure 4. The correlation coefficient, (R), in this case is very
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Figure 6: Regression analysis between the GA-LSSVM output and
the corresponding target for real power allocation.

close to the one which indicates perfect correlation between
the proposed method and the output of the neural network.

5. GA-LSSVM Design for Real Power Allocation

In order to find the optimal value of LS-SVM parameters,
namely regularization parameter, γ and Kernel RBF param-
eter, σ2, the continuous GA is used. The properties of GA to
find the optimal γ and σ2 are set as shown in Table 1.

The GA-LSSVM design for real power allocation is
further elaborated for the same 25 bus system shown in
Figure 1. Here again the same input and target data sets
used in the previous AI power transfer allocation are used to

Table 1: Properties of GA to find the optimal γ and σ2.

Property Type and values

Selection Roulette wheel

Crossover Modified single point arithmetic crossover

Crossover probability 0.9

Mutation probability 0.1

Population 40

Maximum iteration 20

avoid discrimination among all methods considered in this
paper. Input data (D) for developed GA-LSSVM contains
76 variables and target (T) contains 60 output parameters
which is exactly the same as that used in RBF ANN method,
Figure 5 summarize the description of inputs and outputs
of the training and simulation stages for GA-LSSVM for real
power allocation.

5.1. Training. After the input and target of training data have
been created, the next step is to divide the data (D and T)
up into training, validation, and testing subsets. Here again,
100 samples of data are used for the training out of 168 hour
samples collected for training process.

The property of regularization parameter, γ, and Kernel
RBF, σ2 are decided through the hybrid GA-LSSVM model
that has been discussed above. From the testing phase of GA-
LSSVM model, the final value of γ is set to 9923.9 and σ2 is set
to 1347.8. It took 210.52 sec to optimize the γ and σ2 values
using the same computer. These LSSVM parameters yield a
reasonably accurate output of the predictive model that has
been designed. The mean square error (MSE) at pre-testing
stage is 2.238E − 5 which show that the estimation by GA-
LSSVM model and the training data are having the similar
characteristics.

5.2. Pretesting and Simulation. After the hybrid GA-LSSVM
model has been trained, the entire 168 samples of data are
used in pretesting. After simulation, the obtained result from
the trained model is evaluated with the linear regression
analysis as shown in Figure 6. The correlation coefficient, (R),
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Figure 7: Analysis of real power allocation for the 25-bus equivalent system during hour 33.
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Figure 8: Quantitative performance of various AI methods for untrained data, (a) MSE errors in power transfer allocation of individual
generators (b) SSE errors in power transfer allocation of individual generators.

in this case is equal to 1 which indicates a good correlation
between MNE method and GA-LSSVM.

6. Results and Analysis

A number of simulations have been carried out to exhibit
the accuracy of the developed AI power transfer allocation
methods with the same 25-bus equivalent system of south
Malaysia. The scenario is a decrement by 5% of the real and
reactive load demand from the nominal trained pattern for 1
week (168 hours). Besides it also assumed that all generators
also decrease their production proportionally according to
this variation in the load demands. This assumption is being
made to ensure that all real power generation of generator
at buses 14 to 25 varies in respond to the varying daily load
pattern of the loads. The allocation of real power to loads
using proposed AI methods on hours 33 out of 168 hours is
presented in Figure 7 along with the result obtained through
MNE method. From Figure 7, it can be noted that the result
obtained by the AI methods output in this paper is well
comparable with the result of MNE method. The difference
of real power between generators in both AI methods and
MNE method is very small during this hour which is less
than or equal to 0.400 kW. The consumer located at bus 4
consumed the highest demand compared to other consumers
in this hour. Consequently, the contribution of real power
due to generators 16, 17, and 19 located at the same bus
provides more real power to load at bus 4 by all AI methods
and MNE method as well. This result also justifies the
physical meaning of MNE method as these generators are the
nearest to load at bus 4.

To further evaluate the quantitative performance, mean
square error (MSE) and sum of square error (SSE) observed
by individual generator allocations and overall MSE and SSE
encountered by each AI method are obtained. Figure 8 shows
the MSE and SSE values introduced by each AI method
they are subjected to untrained data. It can be observed that

MSE and SSE errors for both GA-LSSVM method and ANN
method are comparable. In addition, it can also be noted that
error differences between generator allocations in case ANN
method is minimum which ranges between 1.71E − 05 and
4.86E−06 for MSE error and 0.0147 and 0.0041 for SSE error.

The overall comparison of two AI methods that is used
in power transfer allocation is exhibited in Table 2. It can
be noted that mathematical model type (MNE) takes much
longer time for training compared with multioutput model
types like ANN and SVM. When comparing with overall
MSE and SSE errors encountered during data simulation, the
best performance is provided by ANN method whose MSE
and SSE are found to be 1.19E − 5 and 0.1203, respectively.
All in all, it can be concluded that ANN method is the
best to use for power transfer allocation because it takes
very short training time in model development and provides
more accurate results in less simulation time as shown in
Table 2.

7. Conclusion

This paper has presented two preference AI methods that
can be used to identify the real power transfer between
generators and load. The developed AI method adopts real
power allocation outputs determined by MNE technique
as the trainer during the model development phase. The
robustness of the two AI methods has been demonstrated
on the 25-bus equivalent system of south Malaysia. From the
results, the following conclusions can be attained.

(1) The AI power transfer allocation methods provide
the results in a faster and convenient manner.

(2) Among two AI methods, ANN method provides the
most accurate results while GA-LSSVM method also
gives an acceptable result.

(3) In terms of training, ANN and GA-LSSVM require
comparably small training time.
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Table 2: Qualitative and quantitative comparison of two AI power transfer allocation methods.

Method Model type Training time
(sec)

Simulation time
(msec)

Overall MSE error for new data Overall SSE error for new data

ANN Multioutput 0.2321 21.99 1.19E − 05 0.1203

GA-LSSVM Multioutput 0.2388 23.89 2.05E − 05 0.2064

MNE Mathematical — 360.00 — —

(4) The ANN-based method is the most suitable to be
adapted in true application of real power allocation.

(5) The proposed AI method can resolve some of the
difficult real power pricing and costing issues to
ensure fairness and transparency in the deregulated
environment of power system operation.
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