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A maximum principle is proved for certain problems of optimal control of diffusions where hard
end constraints occur. The results apply to several dimensional problems, where some of the state
equations involve Brownian motions, but not the equations corresponding to states being hard
restricted at the terminal time.

1. Introduction

Various types of maximum principles have been proved for problems of control of diffusions
in case of no or soft terminal state restrictions; see for example, Kushner [1], Haussmann
[2], Peng [3], and Yong and Zhou [4]. Maximum principles for problem with hard terminal
restrictions are proved for certain types of continuous time piecewise deterministic problems
in Seierstad [5, 6]. Singular controls are sometimes introduced in various problems with
certain types of hard restrictions, but below we merely consider problems where the controls
appearing may be said to be absolutely continuous with respect to Lebesgue measure. The
restriction to such controls makes it harder to operate with hard terminal state restrictions; in
fact we can only work with such restrictions on states governed by differential equations not
containing a Brownian motion. Brownian motion will only appear in differential equations of
states unconstrained at the terminal time. So the problem we consider is a problem of control
of diffusions where hard terminal restrictions are placed on states not governed by differential
equations containing a Brownian motion; these states, however, can be influenced by other
states directly influenced by Brownian motions. Below, a maximum principle is stated and
proved for such problems. To the authors knowledge, maximum principles have not been
stated for such problems before. Because the states are stochastic, the state space is infinite
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dimensional; so to obtain a maximum principle, one must impose a condition amounting to
demand sufficient variability of the first order variations in the problem.

2. The Control Problem and the Statement of the Necessary Condition

Let T > 0 and let x( be a given point in the Euclidean space X := R", let o be a projection
from X into Y := R™, m* < n*, such that rx = (x1,..., X)) (x = (x1,...,%x,)) and let U
be a Borel subset of a Euclidean space. Furnish the interval | := [0, T] with the Lebesgue
measure. Let (Q, D, Dy, P) be a filtered probability space, (i.e., for t € [0,T], the ®,’s are sub-
o-algebras of the given o-algebra @ of subsets of Q, @, C @, if s < t, and P is a probability
measure on @), and assume that (€2, @, P) is complete, that @y contains all the P-null sets in
@ and that @y is right continuous. Let Ly(J x Q,R") be the set of Lebesgue x ®-measurable
functions z(t, w) for which E f] z(t,w)zdt < oo. Related to (Q, ®, @y, P), let B; be a vector the

n' components of which (denoted B!) are independent one-dimensional Brownian motions
all adapted to {®;},, such that B(t) — B(s) is independent of @, for all 5,t, 0 < s < t, and is
normally distributed with mean 0 and covariances (t — s)I, with I being the identity matrix.
In applications where the B]’s are the entities that can be observed, it is natural to take {®;},
as the natural filtration generated by the B]’s. There are given functions f (t, x, u) and o (t,x),
j=1,...,7, from ] x X xU into X (Ej independent of u). The following conditions are called
the basic assumptions.

(A1) The functions f(t,x,u) and & (t, x) have continuous derivatives fx and & with
respect to x € X. ‘

(A;) The functions f and ¢’ have one-sided limits with respect to ¢, and f and f, are,
separately, continuous in x and in u.

) Write G for the n* x n'-matrix whose columns are G’; let G be the matrix with entries
Eﬂq, and write >, i ol dBf = 0dB;. Also, write 1¢ for the indicator function of the set C. Let U’
be a set of functions u(t, w) taking values in U, such that u(-, -), for each t, when restricted to
[0,t] x Q, is Lebesgue x ®;-measurable (i.e., progressively measurable), and such that when
ui(-,-)el,i=1,...,i* i* arbitrary, and {C;};, i = 1,...,i*, is a measurable partition of J, then
Zi=1 1c,(H)ui(t, w) belongs to U’ (so-called switching closedness). We will also assume that
U' is 5-closed, which means that if u,(-,-) € U’ and u(t, w) is progressively measurable and
takes values in U and meas {t : u(t,w) is not equal to u,(t,w) a.s.} converges to zero when
n — oo, then u(-,-) belongs to U'. Let | - |, be the Ly-norm on L,(L2, @, RK).

The following assumptions are called the global assumptions.
(By) o fy is uniformly continuous in x, uniformly in ¢, u.
(B,) For some constant M, for all u(-,-) € U’,

essup|f(t,0,u(t,w)|, <M,  sup|[d'(t,0)| <M, 1)
t Jit

(Bs3) A constant M* exists such that for all (¢, x,u) € ] x X x U,

|fx(trxru)| < M+/

aL(t, x)| < M*. 2.2)
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(The symbol | -| is used for the Euclidean norm in any Euclidean space R¥, including R!, and,
applied to matrices, it is the linear operator norm.)
(B4) One has

75 =0. (2.3)

Let u(-,-) € U'. The strong (unique) solution, continuous in ¢, of the equation

t t

f(s,x(s,w),u(s,w))dt + J o(s,x(s,w))dB; (2.4)
0

x(t, w) = xp +J

0

is denoted x*(")(t,w) = x*(t,w) and is called a system solution.
Let a € X (a fixed, # 0) such that ora = 0; let (-, -) denote scalar product, and consider
the problem

u('/') .
Jmax ,E<x (T,-), a>, (2.5)
subject to
ax")(T,w) = § a.s., where7isfixedinY. (2.6)

Let u*(-,-) € U’ be an optimal control in the problem and write x* ) (-,-) = x*(-,-). Let
C(t, s, w) be the resolvent of the equation

t t .
90 = 40+ [ futs, ¥ (50,00 s na(s i+ 3 [ Ths v @B, @)
]

(so C(s,s,w) = I, with I being the identity map).

In the subsequent necessary conditions, the following local linear controllability
condition (2.10) is needed. Let LgrOg( Jx€,Y) be the set of progressively measurable functions
in L,(J xQ,Y), and for a € (0, 0], let

B* = {Z(., ) € LY¥(J x Q,Y) : essup|z(t, )|, < tx}, (2.8)
t
T
B, = {f z(s,)ds : z(-,-) € B”‘}, (2.9)
0

and let co denote convex hull. There exists a number a > 0 and a progressively measurable
function Z(t,w) : ] x Q — Y, with essup,|(t, -)|, < o0, and a number ¢ € [0, T) such that

leri[2(,°) + B*] C coflenar [f (-, x" (), 4( )

(2.10)
—fx*C),ut ()] s al, ) el').
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Theorem 2.1. Assume that u*(-,-) is optimal in problems (2.5) and (2.6), that assumptions A and B
hold (the basic and global assumptions), and that (2.10) is satisfied. Then there exists a number Ag > 0
and a linear functional v on B, bounded on By, such that, for all u(-,-) e U’,

T
<f0 aC(T, t,)[f(t, x*(t, ), u(t,-)) —f(t,x*(t,-),u*(t,-))]dt,v>

T (2.11)
+1—:<J‘0 C(T,t,) [f(t,x*(t,), u(t,-)) —f(t,x*(t,~),u*(t,-))]dt,A0a>

<O0.

Finally, (Ag,v) #0.

Remark 2.2. 1f (2.10) holds for Z(-,-) = 0, then A # 0 and v is a continuous linear functional on
Ly(Q,@,Y).

Remark 2.3. Let v, == ¢ — (¢, v) + AoE(p,a) and let C(T,¢t,-)* be the transposed of
C(T,t,-). Note that for t < T, C(T, t, )" vs|1,(@, ) is continuous in | - |,-norm and hence can be
represented by an L,-function p~(t,-) € Lo(Q, @, R™) (p~(t, w) progressively measurable and
continuous in t). Provided U’ has the property that if u, ' € U’ and C C Q is @;-measurable
then (ulc +u'(1-1¢)) 1y +ulpos € U', we have that, for any u(-) € U', fora.e. tin (0,T), a.s.

(f(t,x*(t,w), u(t,w)) - f(t, x"(t,w),u*(t,w)),p~(t,w)) <0 (2.12)

(a consequence of (2.11)).
When v is continuous on L, (€, ®,Y), then

tlln%rf(t, w); = Noaj, j>m’, (2.13)

(the limit being an L,-limit), in fact, whent — T, p~(t,-) — 0.(-) in Ly, where 7, (w) is the
L,-function representing v,.

Assume that @; is the natural filtration generated by B;. Then the progressively
measurable function p~(t,w) satisfies the following condition: on [0,T), there exist R™ -
valued, progressively measurable functions p(t,w), g/ (t,w), j = 1,...,7/, p(t,w) continuous
in t, such that E jé p(t,)*dt < oo, E fé g/ (t,-)?dt < oo for all t < T, such that

dp(t,w) = —p(t,w) fx(t, x*(t, w), u*(t, w))dt

- S5kt x"(t,w)q (hat + g (HdB] @14)
/ i

and such that, for all t < T, p~(t,w) = p(t,w)P-a.s. In this case, if v is continuous on
L,(Q,®,Y), then the following additional properties hold: E fOT p(t,)?dt < oo, E fOT gl (t,-)?dt <
oo, the Ly-limit lim;_,7p(t, -) exists and equals 0,(-), and Pr[(Ag, lim;_,rp(t, w)) #0] > 0.
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3. Proof of Theorem 2.1

The proof consists of three lemmas and the five proof steps A-E and relies on an “abstract”
maximum principle, Corollary I in the appendix.
Let X' :=R"" and let J' := [0,T'], T' € (0,1].

Lemma 3.1. Let g € L,(J' xQ, X') be progressively measurable. For any € > 0 there exists a function
b(t,w) = Zﬁ-:o g(sj, W), 1,) (1) € Lo(J' x Q,X), with t; < sj < tj, g(sj,) € Lo(Q, D, X)),
such that j] lg(t,w) - b(t,w)|,dt < e.

Proof. Using Dunford and Schwartz [7, II1.11.16 Lemma] vyields that g(t,-) €
Ly(J', Ly (Q,®,X")) a.e. For each ¢ > 0 there exists a function

j
a(t,w) = Zaj(w)l[tj,tm)(t), ty=0, t]'*+1 =T, t]' < t]'+1, (3.1)
=0

- a(t,w) piecewise constant in t -, a;(-) € L2(€, @, X'), such that
[ 1g-att )l < 62)
]/

Thus, there exists an open set A C J', such that meas(A) < ¢, and A D A = {t :
lg(t,-) —a(t,-)|, > €} (note that meas(Ay) < &', otherwise the inequality involving €2 is
contradicted). Let B = CA, and let s; := minB N [tj,tj.1) if j € T := {j : BN [tj,tjx1) #0}.
ForjeT,

la;() - g(s;, )|, < € (33)
soforjel,t € BNt tj1), we have
8t = 8(sj.)|, < |8(t,) = a; ()], + |a;(-) = & (s, )|, < 2. (3.4)
Define
b(t,") = jezrg(sj/ Wisj t)- (3.5)

Ift € Band t < T', then for some j, t € [tj,t:1),s0 for this j, j € T, t € [sj,t;.1) and (3.4)
yields

lg(t,-) = b(t,)], =1g(t-) - g(sj,-)|, < 2¢. (3.6)

Let £ > 0 be arbitrarily given. Assume now that ¢ is so small that

meas(C) <& = f |g],dt < % (3.7)
c
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(meas(C) = Lebesgue measure of C) and
! 2 €
3¢’ +26° < 5 (3.8)
Then, using successively, (3.6), (3.2), (3.3), (3.2), (3.7), and (3.8) yields
[ 1ttt lude = [ 10t =it lude+ [ g0t bl
J B
<2+ f |g(t,-) —a(t,-)|,dt + f la(t,-) = b(t,-)|,dt
A A

<2 +e%+ Zla]'(’) - g(s]-, ) |21[5j/tj+1)(t)dt

A jer
(3.9)
[ SlaOlte Odts [ Saie) 1.0
Ajer A jgr
<2 +€?+¢€+ f la(t,)],dt < 3¢’ + €% + J‘ la(t,) - g(t,-)|,dt
A A
+f |g(t,)|,dt <3¢+ &% + €%+ £<e
A 2
]

Lemma 3.2. Let g € Ly(J' x Q,X') be progressively measurable and let k € (0,1). Then for each
€ > 0 there exists a set C C J' such that for all s

s s
‘kf g(t, w)dt — f g(t,w)lc(h)dt| <e (3.10)
0 0 2
and such that meas(C) = kT’ (C measurable).
Proof. Apply Lemma 3.1 to obtain
c k.
f |g(t, w) — h(t,w)|,dt < 1 for h(t,w) = Zak(w)l[tk/tkﬂ)(t), (3.11)
J k=0

where ai(w) € Ly(Q, Dy, X'), ti < tka1,to = 0, tr1 = T'. Evidently, we can assume of the t;'s
that they satisfy the additional property

sl
[ lglas

t

2
2<Z‘ (3.12)




ISRN Applied Mathematics 7

Define
k.
$(tw) = 311 (1 it - (3.13)
k=1
Now,
7981

798} _
h(t, w)$(t, w)dt = I (@)1, o (DAt = Kar(@) (tr - t)
t t
‘ ‘ (3.14)

~ ties1 — 7981
k| a@dat=k|  ne wat

tx tx
Hence, for any given k*,

tk* trs1

h(t,w)p(twydt= S | ht,w)p(t, w)dt
0

k<k* ¥ tk

[tk ~ [tk*
= Zkf h(t,w)dt = kf h(t,w)dt.
0

k<k*

(3.15)

Moreover, by (3.15) and (3.11),

tiex biex

g(t, w)P(t, w)dt ~k g(t, w)dt
0 0

2

ts

Jdk* h(t, w)(t, w)dt - EI h(t, w)dt
0 0

<

? (3.16)

+ tw(g(haﬁ-—h(hu0)¢(haodt
0

2

L2k _¢
4 2
2

+k J‘tk* (h(t,w) - g(t,w))dt
0

Finally, for any given t, if k* = k is the largest k such that ¢, <t, then, by (3.12), as.,

€ - t
<7 k| g(s,w)ds

tiex

<
2

. (3.17)

rg@wW@m%
fs

NN

2

The conclusion of Lemma 3.2 then follows from (3.16) and (3.17) and the fact that
foT P(s)ds = 3 k(tg —tx) = kT'. O
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Lemma 3.3. Let z(t,w) € B®, and let z(t, w) be continuous in t, and assume that [sup,|z(t, w)||, <
oo. Let u(t,w) € U'. When 6 | 0, then

sup |7{fa(t, x*(t,w) + 0z(t,w), u(t,w)) — 7 fr(t, x*(t, w), u(t, w)) } [z(t, w)]|,
6<[0,6] (3.18)

— Quniformlyin t.

Proof. Let an error function e(d) be a nonnegative function on [0, co) such that e(d) | e(0) =0
when d | 0. By uniform continuity of & f, in x, uniformly in t, u, there exists an increasing
error function e(d) such that |f;]_ (t,x+z,u) —f,ic}_ (t,x,u)| <e(|z]) forall z € X, i < m*. Suppose,
by contradiction, that some ¢ > 0 exists, such that, for each k = 1,2, ..., there exist 8, t, such
that

| (o7 f (br, %™ (b, w) + Ok z(tie, w), ulty, w)) — 7 fr (b, x* (t), u(t, w))) [z(te, w)]|, > €, (3.19)
and 0 < 1/k. Then

Gk (w) = | (7 f (b, x* (b, w) + Oz (i, w), ulty, w)) — 7 fro (b, x* (t), u(te, w))) [z (t, w)]|

< n*?e(Bk|z(tr, w)|)|z(t, w)| < n*ze<9k sup|z(t, w)|)sup|z(t,w)|.
t t
(3.20)

Now, sup,|z(t, w)| < o a.s. by the L-assumption on z(-,-) in the Lemma. So {x(w) converges
a.s. to zero. Moreover, by (2.2), [(k(w)| < 2M*O|z(ty, w)| < 2M*sup,|z(t, w)|, the last
function being an L,-function. By dominated convergence, |k (-)|, — 0 when k — oo, and a
contradiction of (3.19) is obtained. O

(A) Growth Properties

Without loss of generality, from now on, letxg =0, T = 1. Let o= x — xj, theith component
of x € X. For x(-,-) € Lo(J x Q,R"), let
(suplct, 1)
t

(where of course [|x(-,-)|l, < |lx(-,-)|[3). For any u(-,-), #/'(-,) € U', let q“/'“(t, w) be the solution
of

(3.21)

(o = essuplx(t, ), llx(C)llz =
t 2

t o .
q' " (t,w) = I fals, x"(s,w),u(s,w))q" ds + > j Gl(s, x"(s,w))q""dB
0 ~Jo
! (3.22)

+ ft (f (s, x"(s,w), u'(s,w)) = f(s,x"(s,w),u(s,w)))ds.
0
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(By general existence results and (2.1) and (2.2), q”/'”, as well as x*, see (2.1), do exist, with
both being unique (strong) solutions.)

By (2.1) féf(s,O,u(s,a)))zds < M? and > fé&j(s,O)zds < n'M2. By (A3) in the
appendix, (a consequence of Gronwall’s inequality), and (2.2), with Z(t,w) = 0, h =
ft,x,u(t,w)), on = 0, ¥y = x*(t,w), a(t,w) = —f(s,O u(s,w)), a*(t,w) = —o(t,0), and
p*(t,w) = B(t,w) = 0, we have that for some constant D independent of u,

(-, )5 < D(1+n )M =: D. (3.23)

Define X = (x(tbw) € L(J x X) : |x(,)l, < D}. Note that by (22),
If(s,x(s,w),u(s,w))|, <|f(s,0,u(s,w))|, + M*|x(s, w)|,. Then, when x(,-) belong to X, by
(2.1) and (3.23), we get the following inequality: for all s,

| f (s, x(s,w), u(s,w))|, < D:= M+ M*D (3.24)

(D independent of u and x(-,-) € X). For two ®-measurable functions ¢(w) and ¢(w), let
$(-) # ¢ (-) mean that Pr[w : ¢(w) #¢(w)] > 0. Define H¥* = {(t,w) : u'(t,w) #u(t,w)} and
define Hy, = {t : u'(t,) #u(t,)}. Thenas. 1, , > 1.

Let u”,u € U'. Using (2.4), (2.2), and (A.3) in the appendix, (with Z = x*, 7 = X,
B=B=0h=fltxwtw), o =5 G0 =% =0, a = f(sxsw),ulsw) -
f(s,x"(s,w),u"(s,w)), and a* = 0), for some constant D independent of 1" and u, we get

(=

1
= DL |1Hu//,,, (f(3,x"(3,w),u"(3,w)) - f(3,x"(3,w),u(3,w))) |2d§ (3.25)

w0 )|

1
<2DD f 1, dt.
0

(the last inequality by (3.24).)
Letu', u e U, k € (0,1]. As explained below, we have

« 1
qu',u(.,.))t < DUO |f (£, x(t, ), 1t (t,w0)) = ft, x"(t,w), u(t,w))|dt

2 (3.26)
1
< ZDDI 1n, ,dt,

sup|q”*(s,-) - kq""(s,- ) < Dsup I (f(5,x"(3,w),u"(3,w))

s<t s<t

—(1-k)f(3,x"(3,w), u(3,w)) — kf (3 x*(5,w),u'(3,w)))ds
(3.27)
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(D independent of 1", 1/, u, k.) The inequalities (3.27) and (3.26) follow from (A.2) and (A.3),

respectively, in the appendix, (together with (2.2) and (3.22)), for p* = =0, 2 = gv " —kq“ M,
7 =0, fl(t, x,w) = fr(t, x*(t, w), u*(t,w))[x], O'i(t, X, w) = Ei(t, x*(t,w))[x], a* =0, and

a(t,w) = f(t,x*(t,w),u"(t,w)) — ft, x"(t,w), u(t, w))

(3.28)
—k[f(t,x"(t,w),u' (t,w)) — f(t,x"(t,w), u(t, w))]
(and, for (3.26) for u" = u, k =1).
Similarly, for #, ", u', u € U,
sup|q™(s,) = (kg"*(s,) + (1= K)g" " (5,) |,
s<t
<Dsup| | [f(5,x"(5,w), (3, w)) (3:29)
s<t 0
—{kf(3,x"(3,w),u'(3w)) +(1-k)f(5x"(3 w),u"(3w))}]ds.
Define
S(u,u') ::I 1n,, (t)dt. (3.30)
J
Define also
1 1 .
L’Z= <1—§,1—2ij], l=0,1,..., (331)
o*(u,u) = sup 2! f 1m, , (b)dt. (3.32)
i L
We need to prove that
sup2’ f ax" (t,) — wx"(t,-)dt| — 0 when ¥’ — u in o*-metric. (3.33)
i I 9

This follows from (3.24), (3.25), (2.2), and (3.32), because, in a shorthand notation,

2i

J‘I,- {.71'f<t, x*, u’) — o f(t,x",u) }dt

2

<2

J‘ |]Z'f<t, x”/,u'> —af(t,x"u") |dt
I

2

421

J‘.{Jl'f(t, x*u') — o f (b, x",u) b dt

i

2
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< 2ij M |[x* - x* 2dt+2-2’f)f 1h, At
I; I
M| x — x"
< 5 2 4+ Do* (', u).

(3.34)

(B) Properties of the “Linear” Perturbations g**

Let ¢” > 0 be arbitrarily given, let k be any number in (0,1], and let ", u € U'. Let us first
prove the following consequence of Lemma 3.2. (We drop writing - for w.) For all s,

j 1, ([ (6 % (8), e () - F (&, x*(8), u(t))]
’ . (3.35)
= k[f(tx"(),u" (1) - f(£,x"(t),u(t)]} < %

where ux on I,, m = 0,1,2,..., is defined by ux = u"lcm + u(l — 1cm), with the sets C™
being as follows. They are obtained by replacing J' by I,,, (hence [0,s] by I,, n [0, s]), and
€ by €"k/ 2™+l in (3.10), that is, in Lemma 3.2, and denoting the corresponding subset C by
C™ C I, with g in Lemma 3.2 being equal to f(f, x*(t), u"(t)) — f(t,x*(t), u(t)). Here, meas
(C™) = kmeas(I,;) = k/2™, so &(ux, u) < o*(uy, u) < k.

Let ' € U'. Because (3.35) holds for some C™ when u is replaced by ', we get that for
some uy € U, for all s,

fo 11,,,{ [F (6, (1), e (8)) — F(E, %" (1), u(D))]

(3.36)

s
0

—f [kf(t,x"(t),u"(t)) + (1= k) f(t, x"(t),u' (t)) = f(£ x"(F), u(t))] }dt X

'k

- pm+l :

From (3.35) and (3.27) it follows that, for any ¢,
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g () ka0

< Ds;g) zn;i:ollm{[f(é, x*(8), uk(3)) — £(3, x*(3),u(3))
—k[f (3 x"(3),u"(3)) - f(5,x*(3),u(3))] }ds
2
< D.e”krg)zi+1 =De"k, with o*(ug, u) <k,
(3.37)
and similarly, from (3.36) and (3.29) it follows that
sup|q“* (1) = [kq (1) + (1 - K)g“* (1] |, < De'k. (3.38)
From (3.38) it follows, in a shorthand notation, that
2 J' {yrq”k'” - (kyz-q”"'” +(1- k)yz'q”"”> }dt < %gk + % (3.39)
i 2
To see this, note that
|7 fett g = o it 2, ) kg + (1= Roog ]|
(3.40)
< M*||q = [kq“ "+ (1= k)] |, < M De"K,
(by (2.2) and (3.38)), so
2i'j1 a fr(t, X", u) g " — ot fo(t, X", 1) [kq””'“ +(1- k)q”"“] dt| < w (3.41)
i 2
Note also that org"* = ar f..(t, x*, u)g"* + o f (t, x*, uy) — o f (£, x*, u) and
kg (1= K)mg“ = o fo(t, ) [kg" ™ + (1 - k)|
(3.42)

+ ko f(tx*,u") + (1 —k)of(t,x",u') - f(t,x*,u).

Then (3.39) follows from (3.36) and (3.41).
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Ifu el,i=1,...,i i* arbitrary, and k' € (0,1), 3; k' = 1, then for any &* > 0, it is
easily seen that we can obtain, for some u € U, that

<e (3.43)
2

' L {mﬂ”(t, )- S, }dt

i=1

(For * = 3,by (3.39), we can first obtain a control # such that
2 [ {mg™ ~ > k(K + k*)rg“t}dtl, < €/2, and then by (3.39) we can obtain
a control # such that 2|f {7g"" —[(k' +k*)7g™" + K3rq ] Jdt|, < €/2, hence
2| [ g™ = [ + k) (SE K/ (K + k) ™) + ICrq e ])de|, < /2 + (K + K)e"/2 < €.
Continuing this argument, we get (3.43) for general i*.)

Evidently, we can obtain for any £* > 0, for some # € U’, that both

(3.43) holds and <égn. (3.44)

2

i=1

7', - <Zk"q”‘?“(1,->>

Finally, let the number ¢’ € [0, 1) satisfy 2M*DD(1 - c') < a/4, ¢’ > ¢ (for c and a, see (2.10)),
and let u € U™ := {u € U’ : 0*(u,u*) < a/16M*DD}. We want to prove the inequality
(shorthand notation)

||yrf(., X' a) - f (o x",ut) - [yrfx(-,x”,u)qﬁ'” +af (X", ) —Jrf(-,x”,u*)] “2 < g (3.45)

whenever i equals u on [0, c').

Now, |7 f(t, x*, u)g""|, < M*|g""|, < 2M*DD(1 - ¢') < a/4, see (3.26). Next, for
u € U, ||x*-x*l, < a/8M* when &(u,u*) < o*(u,u*) < a/16M*DD, see (3.25), so
lor f(t, x*, u) — o f(t, x*,u*) = [or f(t, x¥, 1) — o f (¢, x*, u")]|l, <2M7*||x* — x*[|, < a/4.

Using the two inequalities involving a/4, we get (3.45). And from this property and
(2.10) it easily follows that (shorthand notation), for all u € U**,

Lo [2(t, ) + B*2] € cleo{ Ty [orfult, 2, u)g™ + 2 f (1, x", )
(3.46)
—Jrf(t,x”,u*)] 7S U'}

(cl = closure in || - |[,-norm). To see this, apply Lemma 11.1 in Seierstad [8]. (Intuitively this
lemma says that if a ball is contained in the closed convex hull of a set, and the elements of
the set are slightly perturbed then a slightly smaller ball is contained in the closed convex
hull of the set of perturbed elements.)
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(C) Relations between Exact and Linear Perturbations

Let u", u be given elements in U'. Let ¢ > 0 be arbitrarily given. Define ¢ = ¢/ max{K*, K}
where the constants K* and K are specified in the proof below. Let us first prove that for any
r > 0, small enough, for any & € (0, 7], there exists a ' € U’ such that

sup|6*1 <x”/(t, )= x(t,) - g (L, ')> |2 <Kéeb6<e, o*(u',u) <6. (3.47)
t

Write 0,qdB; = 3, j EchdBZ . Define, in a shorthand notation,

g (tw) = 67 (1,2 + 64", u) = f(t, 2% u) - fult, ", w5},

1/2

+ 2
B - [E<f0§1<s>ds> ] , o)
; 2 1/2
&(t) = {E <L 67 {5 (t x" + 64) - 5(t,x) - Tt x“)(squ”'“}]dBt) } .

There exists a &' € (0,£'] such that

&i(t)<é, i=1,2, whené € (0,6], uniformlyint, (3.49)

by Lemmas B and C in the appendix.

In (3.35) letk = 6,&" = ¢ and let ' = us = ux (so (', u) < o*(u',u) < 6). We will
prove (3.47) for this u'.

Let

E(t) = [6‘1{f<t, x* + 6q””'”,u'> - f(t,x",u) - fr(t, x”,u)6q”"'” = f(t,x"u') + f(t,x", u)}],

(3.50)
and let &(t) := [E(fé §3(s)ds)2]1/2. OnCH, ,, &(t) = ¢'(t), while, by (2.2),
P ORI0]
< 1Hu,,u6"1 {f(t, x" + 5q""'“,u'>
(3.51)

-f <t, X"+ 65g", u) - f(t,x*u') + f(t, x”,u)}

S 1Hu/,u2M+ qu”,u
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So, by (3.49), uniformly in ¢,

1/2

&3 (t)

o 2
E<L{§1<s)+§3<s>—§1<s>}ds> ]
: ; 271/2 ; 2
E<f0 gl(s)ds> ] + [E<f0 1Hu,'u{§3(s)_§1(s)}ds> ]

1/2

¢ 2
<e+ [E<J‘ lp,,2M* (g " dS> ] <¢ +4M'DD6 < K¢,
0

1/2

IN

(3.52)
where K := 1 +4M*DD (recall meas(Hy ) < 6, and [|g*'"*||, < 2DD); see (3.26)).
Consider now
1 t 1 ! !
5 xu!_xu_é W' u :J‘ &5 S’xu,ul _ (S’xu’u)_ x(s,x”,u)5 u'u
( 7)) = | o s (s au) - f q
=6f (s, x",u") + 5 (s, x",u) }ds (3.53)
t
+ J‘ 671 [6(5, x”/> —0(s,x") —0x(s, x”)6q””'”]st.
0
By (A.2) in the appendix, Lemma A, for some constants D>0, K > 0,
||5-1 (2 = x" - 54" |2 <D[&a(t) +&(t) + €] <DK €, (3.54)

To see this, in Lemma A let 2 = x*, let h = ft,x,u'), lety=x*+ 6q””'“, leta*=a=0,0, =0,
and let

p= [f(:;, x*,u) — f(s, x" + 6q”"'",u'> + fx(s, x”,u)6q”"'” +6f(s,x",u")-6f(s, x”,u)],

pr=0o(s,x") - 5(5, x"+ 6q””’“) +0.(s,x")6q" ™.
(3.55)
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Note that

t

yt) = r [f(s, x*,u) - f(S, x*+ 6‘1“,,'“/”,)]515 + f [5(51 x*) —5(5, x* + 6q””’”>]st

0 0

+ ft [ Fuls, x*,u)5q" " + 6f (s,x*,u") - 6 £ (s, x“,u)]ds (3.56)
0

t

+ ft O (s, x”)6q”"'”st + f f(s, x" + 6q”"’”, u’> ds + f(: 6<s, x" + 6q””'”>st.

0 0

Hence, we have
t t t t
v= [ pas+ [ prases [ hGs,yas [ o.(s,)am. (3.57)
0 0 0 0

Observe that | fé 67! PrdBs|, < &(t) (see definition subsequent to (3.47)), and that f =
=683 +6f(s,x*,u") - 6f(s,x*,u) — (f(s,x*,u) - f(s,x*,u)),so | fé 6’1[5|2 < &(f) + €, because
u' = us = uy satisfies (3.35) for ¢ = £". Using also (3.49), (3.52) yields (3.54) for K =K+2;
hence, (3.47) for K = DK .

Next, let us prove that for any » > 0 small enough, for any 6 € (0,r], there exists a
u' = us € U’ such that

(3.47) holds, and 2!

L 671 [.m'c”’ —ax" - 6.7rq'“"’”] ds

i

<e. (3.58)
2

When &' € (0, €'] is small enough, then |¢! (t)|, < €, uniformly in t when 6 € (0,6'], by
(3.26) and Lemma 3.3 above (¢! defined subsequent to (3.47), we use that ¢! = 67! {fol [fr(t, x"+
96q””'”, u) — fx(t, x”,u)]6q"”'”d9}). Moreover, by (3.47), [l — x* - 6q“”'”||2 < K€'6, so, by
(2.2),

||.71'f <‘, x" + 6q”"’”, u) - Jrf(-, x¥, u) ”2 < M*K¢'6. (3.59)

Hence, using the definition of ¢! referred to and |7¢!(t)], < €, we get [|&*]|, < € + M*K¢,
where

§4(t) =671 {:n'f (t, x*, u> - f(t,x", u) } — o fr(t, x", u)q”"’”. (3.60)
Let

Et) =671 {Jl‘f <t, x*, u'> —mf(t, X", u) — 7 fo(t, X", u)6q" " - f (t, x*, u) + 7w f (£, X", u) }
(3.61)
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Then ¢(t) = ¢*(t) on CH, . On Hyy,,, by (2.2), (3.25), and (3.26), for all ¢,

|§5 (t) |2 SM+6_1 xu’ — qu”,u

M , < 6M*2DD& (W, u) + M 2DD <4M*DD, (3.62)

as &(u/,u) < 6. Hence, using the inequalities for |¢°|, and [|¢*]|, above and Jensen’s inequality,

2 2
2i |:15<f §5(t)dt> ] <2 [E(I 111.1[;Hu,u§4(t)dt> ]
I; ] '
21" 3.63
+ 21 [E(I 1L.1Hu,ru§5(t)dt> ] (3.68)
J

< (%) [s’ + M*Ee’] +2M*"DDo* (i, u).

1/2 1/2

Finally, recalling that o*(«/, u) < 6, for

(1) = 67 o f (1,2, u0) = f (b, 3" u) = 7 fult, 2, u)6q " — w6 f (1,3, u") 476 £ (1, x", ) },
(3.64)

we have that

2
2 [E< &) - 56(f)dt> ]
I;

M 172
<2 [E<I &6 f(t,x",u") =6 f(t,x*,u) — (wf(t,x", u') — 7w f(t,x",u))] dt> ]
I;

1/2

5,
< N7
=2
(3.65)
by (3.35). Hence, using o* (v, u) < 6 < ¢ and (3.63),
21'"[ oydt| <2 f Stydt| + 21'U <§6(t) - §5(t)>dt
I; 2 Ii 2 Ii 2
< <%> [e’ + ME-:'] +2M*DDo* (i, 1) + % (3.66)

= <1 + —N;K + 2M+DD>5’,

so for K* := (1+ MK /2 +2M*DD), (3.58) has been proved.
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(D) Continuity of u — q** at u*

Define 6(t) := g — g“*". Let us first prove that

16(¢,)l, — 0, whenu — u"inoc*-metric. (3.67)

Now,
t ’
6(t) = fo{fx(s, xt,u) gt + f (s, xtu') = f (s, x”,u)}ds

t
0

—f [fx(s, x*,u*)q”/'”* + f(s,x*u") - f(s, x*,u*)]ds

. It{ax(s, xu)qu’,u -0y (S, xM*)qu’,u* }dBS

0

t
0

t
= f [fx(S, x", u)q“,’“ — fx(s, x",u)q“l’“*]ds + Io [fa(s, x",u) = fr(s,x", u*)]q“"”*ds
t . ¢
* fo [fx(s,x",u") = fu(s, x",u")]q" " ds + f . [f (s, x*, ') = f(s,x*,u')]ds

t t

+f [f(s,x*,u*) = f(s,x",u*)]ds +J 1H,,. [f (s, x*,u*) = f(s,x",u)]|ds

0 0

b . . to . .

+ 3 f [G(s, x)q" = Fo(s, x*)q"* | dBL+ 3, f [F(s, %) = Fhls, x")| g dBL.
j 70 i 70

(3.68)

Using Ito’s isometry, Jensen’s inequality, and the algebraic inequality (3%, |ai|)2 SN a2,
then for some number k (only dependent on the number of addends)

t , 2
E|6(t)) < kf M*2E|g“™ - g“* | ds
0

. 2
+k o ds

t
J‘ 1H14,u*2M+2E q
0

2 t i
ds + kEf |{fx(S,x”, u) — fols, x*,u")}g" "
0

t t
+kf 2M*™2E|x" — x*[*ds + k f 1h,,. E|f(s, x*,u*) = f(s,x", u) |2ds
0 0

+ k; JZ M+2E<qu’,u _ qu’,u*>2ds + k;E JZ [{EQ(S, Xt — ai(sl X*)}q”,’”*]zds,
(3.69)
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Hence,
t t
ES(t)* <k(1+ n’)M"ZJ E&(s)%ds +I y(s)ds, (3.70)
0 0

where

qu’ u*

2 P Vi
y(t) = kg, 2M"E FRE|{felt,x,u) = folt,x,u) ) g |

+2kM*2E|x" - x*[* + klp, . E[f(t, x*, u*) - f(t, x*,u)] 3.71)

+ kZE[{&i(t,xu) —afc(t,x*)}q”’f“*]z.
j

Now, [|x*(-,-) —=x* (-,")|]l, — 0 when u — u* in §-metric, see (3.25). Hence, by the Basic
assumption A;, when u — u* in §-metric, then for each t, it is easily seen, using Lebesgue’s
dominated convergence theorem (and, if necessary, Remark M in the appendix), that the
terms in curly brackets converge to zero in L, by the bound M* on f, and o; see (3.25) and
(2.2). Since E|g“*’|, < 2DD, then, for each t, the product of the two terms in curly brackets
with g“*" converge to zero in L; when u — u*. Hence, the expectation of the two products
converge to zero when u — u* in §-metric. Since y(-) is bounded, by (3.24), (3.25), and

(3.26), then fé y(s)ds — 0 when u — u* in §-metric (by dominated convergence again). By
Gronwall’s inequality, for some constant D,

t 1
ES(H)? < DJ‘ y(s)ds < Df y(s)ds. (3.72)
0 0

So (3.67) holds.
Next, we want to prove that 6; satisfies

sup 2i|6i(')|2 — 0 when u — u" in o*-metric, (3.73)
i

where

5i(w) = L |77 Folt, (8, o), (t, ) g+ o f (8, 5 ') = f (8, 5, )| it
‘ (3.74)
_ J [m-fx(t, x* (W), u (t,w)) g™ + af (t,x*,u') —of(t,x*, u*)] dt.
L
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Now, in a shorthand notation,
bilw) = f [”f"(t’xu' Wq"" — 7 fult, xu'”)qu,'u*]d”J‘ (o ft, ) = o ot X, ') g dit
I I

+ j {70 fot, x¥, u") — o fo (8, X", u™) }q”"u*dt + I [ f(t,x"u') - f(t,x*,u)]dt
I; I;

+f [ f(t, x*,u*) —Jrf(t,x”,u*)]dt+f 1H, . [ f (t, x", u*) — o f (£, x*, w)] dt.

I, i
(3.75)
From this we get that
6il, < f M| = g | e + f Lot 2M* | )| at
I; I;
+fﬂfﬂamwumuwn»—xﬂ@ﬂ@¢u%pnmwmuq dt
’ 2 (3.76)

v L IM () = (- ) ot

+J‘ 1Huu*
I.

i

flt,x"(t, ), u () = f(E x"(E ), ult,)|,dt.

For some increasing nonnegative error function e(-) < 2M*, the third integrand is smaller
than e(sup,|x"(t, w) - x*(t,w)l)supt|q""“* (t,w)|; see By and By in the global assumptions. We
then get that

u'u u' u*

a9 -9

u' u*
q"

+ M*
2

. M+
i15. < ( 22—
2161, < (%)
e(sup
t

+ M*||x (L, ) — x*(8, Ny + ZiDj 1Hu,u* dt.
I;

Tflm”
2 I; ’

f”@ﬂ)kf{um (3.77)
2

+

x4(t) -3 ()] ) (sup

BMWAﬂwHOW%uU-+0JM“WvO—q”wCrwz—*ObyﬁbﬂlmﬁﬂvaJ—xW»NB-*0
(see (3.25)). Then the term e(sup,|x*(t,w) — x* (t,w)|) — 0 in P-measure and then also in
Ly-norm (by the bound 2M™), so e(sup,|x*(t, w) — x* (t, w)l)supt|q”"”* (t,w)| — 0in Ly-norm,
and then also in Ly-norm, as the term is bounded by the L,-function 2M +supt|q”"”* (t, w)], (see
(3.26)). Thus 2!6; — 0, uniformly in i; that is, (3.73) holds.
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(E) Final Proof Steps

For z(:) € Ly(Q,Y), define IT;(z(-)) := E[z(:) | ®1-1/2] and I1;(z(:)) = E[z(:) | ®1_1,21] —
E[z(:) | ®1-1/21], i > 1. Define

2l2()] = sup 2[iz()], forz() € La(Q,Y),

(3.78)

2)2(., )| := sup sz |2(t,)ldt|  forz(,) € B=,
i I;

2

for B* see (2.8). Furthermore, let L* be the subset of L,(Q, Y) consisting of all element z(-) €
L>(Q,Y) such that |z(-)| := sup; 2iIT;z ()|, < oo, and such that z(-) = limk_ o <<k Hiz(r) =
limg - E[z(-) | @1_1/¢], (limit in |- |,-norm). It is easily seen that elements of the type
i ; y(t,w)dt, y(t,w) progressively measurable, |ly(-,-)|l, < oo, precisely make up the set L2.

To see this, using Jensen’s inequality three times (and for any a(t) > 0, that essupt(zx(t))l/ 2=
(essuptlx(t))l/ 2 note that for any interval J',

o\ 172 5 qT\ 172
<E [E UJ y(t,)dt | ‘D1—1/2k:|:| > < (E [E [(L y(t/')dt> | @1-1/2¢ ] >

= <E [meas(]') L (y(t, ~))2dt]>l/2 = (meas(J"))""* <E U} y(t, ')zdt: >1/2 (3.79)

1/2

1/2
< (meas(J'))"? <L esstupE|y(t, .)|2dt> =meas(J') <esstupE|y(t, .)|2>

= meas(J') [y ()|

27

so, in particular, [ITy f] y(if,-)(:lif|2 < lly(-,-)ll,- This yields also, for j > 1, that

=15 >, | vt )at

2 0<i<oo ¥ Ii

1 Ly(t,~)dt

> I L y(t,-)dt

j-l1<i<oo

2 2

IN

+

Z E[L y(t,-)dt | ‘1’1—1/2/'1]
j-l<i<oo i

) EU vt dt | cblw]
j-l<iceo LI )

2

<20 3 (5 )lveolls =2 (55 ) Iyl

j-1<i<on

(3.80)
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S0 5| j] y(t,w)dt] < 4[ly(-,-)|l, < oo. Moreover, similarly,

f y(tw)dt— > n,-f y(t,w)dt
J J )

1<j<k

= U y(t, w)dt - E[I y(t, w)dt | cD‘l_l/zk:|
J J 2 (3.81)

1-1/2% 1
I y(t, w)dt - f y(t,w)dt — E I:f y(t, w)dt | (Dl_l/zk]
J

0 1-1/2k
2
< (3¢ ) I

2

27

S0 f] y(t, w)dtis an Ly-limit of 3, TT; j] y(t,w)dt. Hence, f} y(t,w)dt € L?. Finally, if z(w) €

L?, then z(w) = f] y(t, w)dt = limg _, o 3-1/2“ y(t, w)dt, for
Y(t, L(J) = ZZZmHmz(w)1[1_1/2m,1_1/2m+1) (t), (382)
m>1

where ||y (-, )|, £2-2|z()|, y(-,-) is progressively measurable.

Let © be the linear map from B® into L,(,Y) defined by z(.,-) — _[; z(t, w)dt. In
(3.80) we have just proved that © has norm < 4 for the norms || - ||, and | - |, (or for || - ||, —=2|+|,
as we will express it). We also have that the norm on © is < 8 for the norms 2| - | — ;| - |, as we
will see. Let z(+,-) € B® and define z; = IL- z(t,w). Then, by Jensen’s inequality,

Hlizi(.) < imlzi('”z < i(E[Hl(zi(.))zbl/z _ i(E[(Zi(-))Zbl/z
i=0 i=0 i=0 '

i=0

? (3.83)

<22z, ),
2
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while for j > 1,

> zi()| = |1 ) z()
i=0 2 i1 )

= Z {Elzi(-) | ®121/2] — E[zi() | @1-1/21] }

i=j-1

2 (3.84)
< Sz +HzOh) <2y f 2(,)
i=j-1 s 1|V I 5
=, 22z, )] 1
< S BV g () 22,0,
SR (2w

S0 sup; 2|11 z(t,)dt|, < 8-2|z(-, ).
Now, for z € ,B(0,a(1 - c')/4) C L?, (;B(-,-) aball in 5| - |-norm), we have

1 oo
1 .
z= I Y(s,)ds,  y(s,w)=2(1-c)" > 2Thizl_(-c/21-1-c) /201 € B2 (3.85)
¢ i-0

Hence, by (3.46), for u € U*,

1 o
j 2dt + 2B<O,M>
CI 4

) (3.86)
C CICO{I [Jrfx(t, x*, u) g™ + o f(t, x", ) - 7w f(t, x”,u*)]dt uE€ u’}

(cl = closure in 5| - |; note that y"(-,-) — fcl, Y"(s,-)ds is continuous in || - ||, =] - |, as shown

above). Observe, finally, that when u € U’ satisfies o*(u, u*) < a(1 - ¢')/64D, then, using
|©] < 8 (for 2| - | —2| - |) and (3.24) yields

L Loy (o f (£, x", u) — o0 f (8, x*, u™) ) dt

2

< 8sup 2i (3.87)

[ e st -7t )

i

2

. 1-¢
S 16DSup 21 I 1[c’,l]1Hu,u* dt S SDG* (u, u*) S a( 8 C ) .
i Ii
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Hence, using (3.86) and the last string of inequalities and a simple argument (or Lemma 11.1
in Seierstad [8] again), we get

1 o 1 N
f Zds+,B <0, %) C ClCO{f []fo(t, x*, u)g"" +or f(t, x", u) - f(t, x”,u)]dt:ﬁ el

1
c clco{f [Jz' Folt, x" ) g+ f (1, X", @) - f (£, X%, u)]dt:ﬁ € u’}
0

= clco{yrqﬁ'“(l) ‘€ LI'},
(3.88)

(cl = closure in 5| - |) for u € U’, 0*(u,u*) < p* := min{a(l - ¢’)/64D,a/16 M* DD} (the last
fraction defined in connection with (3.45)).

To obtain the conclusion in Theorem 2.1, we will now apply Corollary I in the
appendix, and for this end, we make the following identifications: Y = [y = u,
K.=K. =1,A=U,7 = 0*,thenorm|‘|onl?equalt02|-|, a=v,a" =u,a=u,
at =o', H@) = 70", 77 = 704", H(d) = E[a-©x*], and §7F = E[a - ©4**]. By
|©] < 8 for 2| - |—,| - | and (3.58), it follows that the property (A.20) is satisfied, and by
|©| < 8 and (3.44) it follows that (A.21) is satisfied, both (A.20) and (A.21) in the manner
required in Corollary I. Moreover, for Z* := fcl, 2(t,)dt, ,B(2*,a(1 - ¢')/8) C clcomrgq*(1,-),
by (3.88) for u € cl B(u*, u*). By (3.33) and (3.25), H and H are continuous, and by (3.73),
(3.67), a — §% is continuous at @* = u*. The required boundedness of §7* is satisfied
because of (3.26). The space (U’,&) is complete by well-known arguments; see Lemma
5.1 in Seierstad [8] and Lemma 1, page 202 in Clarke [9]. Moreover, if u, is a Cauchy
sequence in o*, then it is a Cauchy sequence in &. Let u be its §-limit. Then, for all i,
limy, .2 [} 1p,,,,,,dt = 27 [, 1p,, dt. Now, for any ¢ > 0, for m, n > some N, for all ,
i+l IL- 1n,, ,, dt < e, and so also 27*! jI,- 1n, ,dt < e. Thus the space (U’, 0*) is complete. Hence
all conditions in Corollary I are satisfied. Thus, for some Ay > 0, some nonzero continuous
linear functional v on L?, (Ao, v) #0, for all u € U', AgE[a - g¢** (1,-)] + (g (1,-),v) < 0.
Because g% (1,-) = f; C(t,)[f(t, x*(t,-),ult,-)) — f(t,x*(t,-),u*(t,-))]dt, the conclusion in
Theorem 2.1 follows.

Proof of Remark 2.2. Note that (2.10) implies ,B(0, a(1~-c')/8) C clco{rg¥* (1)}. See (3.88). If
Ao = 0, the maximum condition (2.11) implies (clco{arg"* (1)}, v) < 0 and hence (,B(0, a(1-
c')/8),v) <0 = v = 0, a contradiction. Observe that on L?|-|, < o - | (for v € L2, |v|, =
| 35 o, < 392, (1/29)21TLv], < olv]). If we show for a 5| - |-dense subset Q of ,B(0, a(1 -
c')/8) that (g,v) < klgl, for g € Q for some k independent of g, then (+g,v) < k|+q],
for g € »B(0,a(1 - ¢')/8), implying | - |,-continuity on L2. The maximum condition implies
(gt * (1), Eag"' " (1)}, (v, Ap)) < 0; hence, for any ¢ € »B(0,a(1 - ¢')/8) Nnarcogd* (1),
there exists a ¢ € cog"* (1) such that ¢ = x¢ and (g, v) + AgE(g,a) < 0,50 (p,v) =
(g, v) < —NoE(g, a) < Aolall|, < Aolal2DD, by (3.26). O

Proofs of Remark 2.3 and the following remark can be found in the appendix.

Remark 3.4 (exact attainability). In Theorem 2.1, drop the assumption that u* is optimal (and
the optimization problem). Then, for each z(t,w) € int(clco{mrg"* : u € U'}), z(-,-) €
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szmg(] xQ,Y), ||z(-, )|l < oo, (cl and int = interior both corresponding to || - ||,), for all ¥ > 0,

for some number y € (0, r] and some control u € U', wrx*(T,w) =y +y jOT z(t,w)dt a.s.

Example

Let t € [0,1] = J, let dX] = —u?dt, let dX? = u + X}, let dX} = 0dB,, let ¢ be a nonzero
constant, let u € R, let X) = 0, leti = 1,2,3, and let us maximize EX] subject to X7 = 1, a.s.
This trivial problem was solved in Seierstad [10] using the HJB equation. Let {®;}, be the
natural filtration generated by B and let U” = {v(-,-) € LY*¥(J x Q,R) : |lv(-, )|, < 1}. Let us
merely show that the solution presented in Seierstad [10], namely u* =1 — X;‘3, (X;’=3 =0By),
satisfies the necessary conditions for U’ = U" + u*. (So X;? is deterministic and equals t.)
Evidently, the conditions in Remark 2.2 are satisfied, so A¢ can be put equal to 1, and v is
| - |,-continuous.

The 3 x 3-matrix C; satisfies dC; = DC; where the 3 x 3-matrix D consists of the
partial derivatives of the drift terms in the three-state equation above, the only nonzero
element in D being the element Dy; = 1. Hence, Cii(t,s) = 1,i = 1,2,3, C;; = 0, i#],
except for Cps(t, s) which equals t — s. Now, v, = (1,v,0), so the maximum condition (2.11)
reduces to (jg(u —u¥)dt,v) - j’;(u2 —u?)dt <0, u = u(,-) € U. Writing p~ = (p,p5,P5),
p; = 1, the time-pointwise version (2.12) of this condition becomes p; (t,w)[u(t,w) —
u*(t,w)] - (u(t,w)® — u*(t,w)*) < 0, which evidently requires that 2u*(t,w) = p,(t,w).
Now, for u* = 1 — X:‘3, p,(tw) =2~ 2Xf3, v = lim;_qp, (Lw) = 2 - 2XI3. This p, does
satisfy p, (t,w) = (E[(1,v,0)C(1,t) |D]), = E[v | ®;] = 2 - 2X;‘3. Moreover, p; (t,w) :=
(E[(1,»,00C(1,t) | D¢]); = (E[(A-t)v |D]); = (1 - t)p;(t,w). (Concerning (2.14), it is
evidently satisfied by g1 = 0, g2 = —20, 43 = —(1-t)20,dp1 =dp; =0,p1 =p; =1,dp> = dp; =
—-20dBy, p2 = p, =2-20B;, dps = dp; = —p, (t, w) + (1 -t)dp; (t,w) = —p2(t,w) — (1 -t)20dB;).

Appendix

The appendix includes a number of well-known results, included for the convenience of the
reader. The first one concerns a result on comparison of solutions.

Lemma A. Assume that h(s, x,w) (an n-vector) and o, (s, x, w), (an nxn' matrix, with columns o,

j=1,...,1)are Lipschitz continuous in x € R" with rank K and progressively measurable in (s, w).
Assume that six progressively measurable functions Z(t,w), a(t,w), a*(t,w), y(t,w), p(t,w), and
P (t,w) exist (a*, B* n x n'-matrices), satisfying

t t
Z(t,w) = Zp + f a(s,w)ds + f fl(s,i(s,w),w)ds
0 0

t t
+ f a*(s,w)dBs + f 04(8,2(s,w), w)dBs,
‘ ’ (A1)

t t
y(t,w) =10+ J‘o B(s,w)ds + Io h(s, (s, w),w)ds

¢ t
+ J‘ B*(s,w)dBs +I 0.(s, (s, w), w)dBs,
0 0
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where Z, 7o € Ly(€2, Do, R™). (Assume that the eight integrands belong to Ly (] x L2)-spaces). Then,
for some constant D,

+sup

S
f ads
0 2 s<t

) 1/2 ¢
das + Z Ef
Ji 0

f pds
0 2

5 1/2
ds ,

sup|£(s) - ¥(s)|, < D [I% —Zo|, +sup
s<t s<t

5

(A.2)

.
aj

Fi

(applied to matrices, the index j indicates columns), and for some constant D*,

(soplzc - 5001
s<t 2
. S S
<D* | |90 — Zo|, + <sup f ad3 > <sup f pds

s<t 1J0 ’ s<t 10
Eo 1/2 b 1/2

+> <Ef d§> + Z<EJ d§>
j 0 j 0
¢ 1/2 ¢ 1/2
SD['?0—20|2+ <EJ‘ |d|2d§> + <EJ |ﬂ|2d§>
0 0
Eo 1/2 fo 1/2
+> <EI d§> +Z<EI d§> ,
i 0 j 0

]

+

)

2

*
aj

Fi

*

aj

Fi

(A.3)

with D and D* being only dependent on K.

Proof of (A.3). We will use a shorthand notation. Using the algebraic inequality (Zj]\:]1 |a]-|)2 <
N3 a}z., then for some positive constant k,
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() = [y - 2(t)|* =

t t . t
y0—20+J h(s,y)ds+ZJ‘ ai(s,y)dB£+f pds
0 7 Jo 0

2

t t o . t . t .
_J ads—f h(s,i)ds—Zf oi(s,z)ng—Zf a;ng+j p;dB]
0 0 j 0 j 0 0

2
< k|y0—20|2 +k

t
j ads
0

ﬂ <f1(s,y) - (s, 2)>ds f;{oi(s,yf) - 01(5,2)}dB£

[

2
+kz
j

2 2
+k +k .

2 t 12 t )
+kZU a;dB] +kZ“ p;dBl
j 170 j 170

(A.4)

The Burkholder-Davis-Gundy inequality yields, for a “universal” constant K, that

. . .2 ~ . . 2
Esup_,| f;(a{(]}) - ol(2)dBl| < Kj(; Elol() — ol(2)| ds. Similar inequalities hold for the
other terms involving B/. Hence (using also Jensen’s inequality) we get

@(t) = E<supgb(s)> < kE|p0 - 20|2 +kEsup s r <f1(§, 7) - h(s, 2)>2d§

s<t s<t 0
2 s 2 s 2
+ kEZsup + kEsup (J adé) + kEsup<I ﬁdé)
j s<t s<t 0 s<t 0

s N2 s N2
+kEZsup<J‘ a;dB]g) +kEZsup<J‘0 ﬁ}“dBé)

i s<t 0 Ji s<t

r (01(5,37) ~ ol 2))ng§

0

t
< kE|ij0 - 20| + kf E|h(§,y) - h(é,2)|2d§
0

. . 2
ol(s,) - ol(s,2)| ds

t

+ kKZ J‘ E
j 70

s 2 s 2 - t

+ kEsup<f adé) + kEsup(J‘ ﬂdé) + kKZEI

0 j 0

s<t 0 s<t

X 2
a; ds

Fi

t
0

"+ kIZZEf
i

t t
< kE|ij0 - 20| + kf ER?|y - 2|°ds + kIZn'J‘ ER?|y - 2|°ds
0 0

s 2 s 2 t
f ads > +kE<sup J pds > +kKZEJ
0 s<t 10 j 0

2
p:| ds

*2 v
a; ds

+kE <sup

s<t

t
0

+kIZZEJ
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t t
< kE|vo - 2o|* + ksz @ (3)ds + kKKZn'j @ (3)ds
0 0

S 2 s 2 t
f ads| ) +kE( sup J pds +kf€ZEJ
0 s<t 0 j 0

~ t 2
+ kKZEI ds.
i 0

2
ds

+kE <sup

s<t

*
aj

Fi

(A.5)

Note that, by Gronwall’s inequality, for any functions w(t), v(t), if 0 < w(t) < ov(t) +
fé Kw(s)ds, and v(t) is increasing, then w(t) < v(t)(1+eXt). Hence, for K2 := k(1+ekK*(1+Kn)),

2 2

> +E <sup >
s<t

2

ds] .

Using the fact that the square root of a sum of positive numbers is less than or equal
the sum of square roots of the numbers, we get

<sgy|y(s) - z(s)|>

S
f ads
0

2 - t
d§+KZEI
j 0

[

s<t

w(t) < K? [Eh?o — %)+ E<sup
(A.6)

t
+IZZEI
[ 0

*
.
]

Fi

<K | |0 - o], + <sup J‘ ads >
2 s<t 0 2
s ot
(supfﬂdé) +Z<KJ‘E
s<t 0 2 i 0

+; <12 f; E 2ds> 1/1 .

*
o
]

+

) 1/2
ds

Fi

(A7)

Note that sup,_,| [; ads| < sup,, [, lalds < fé |a|ds, and that |fé |a|dg|, < fé lal,ds. Using
this for the term containing a, and a similar argument for the term containing f, then (A.3)
follows. O
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Proof of (A.2). Using Ito’s isometry,

t \ 2 t
E<f0a;dB£,> =1—jf0 <a}‘>2ds, (A.8)

. . 2 P . ye
Then, again using (Zﬁl lajl) < N Z; a]z. and Jensen’s inequality, for some positive constant
k,

s 2
y(t) := supE¢(s) < kE|¥o - Z|* + ksupEs f (h(@) - h(2) ds
s<t s<t 0
s . . 12 s 2 s 2
+k D supE I <0'i () - 0,{(2)>dBé + ksupE(j adé) + ksupE(f ﬁdé)
joosst 0 s<t 0 s<t 0

s A 2 s NG
+stupE<J. a?dBé) +stupE<I ﬂ;dBi)
0 0

j s<t j s<t

< kE|ij0 - Zo|” + ksup
s<t

sE|h(y) —h(z)|2d§
0

O (J/) 0*(z)| ds + ksupE(Is adé)z + ksupE<Jj ﬂdé)z

s<t 0 s<t

+ stupJ

i s<t

supEI | | das+ stupEJ‘

j s<t s<t

t t
< kE|vo - 2o|* + kf ER?|y - z|ds + kn’f ER?|y - 2|ds
0 0

s 2 s 2 t 2
+ ksupE(J‘ adé) + ksupE (J ﬁdé) + kZE a p;| ds
s<t 0 s<t 0 j 0
. t . t
< kE|0 - 20|2 + kKZI y(3)ds + kKZn’f y(3)ds
0 0
s 2 s 2 t 2
+ k<supE f ads > +ksupE <I ﬁd§> +kZE a p;| ds.
s<t 0 s<t 0 j 0

(A.9)
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Thus, for K** = k(1+ ekkz(“”')),
s 2
supE|y(t) - 2(1?)|2 <K*|E|yo - 20|2 + supE(f adé)
s<t s<t 0
(A.10)

2
ds|,

s 2 t 2 t
+supE (I ﬁdé) + EZ f zx;‘ ds+ EZ J‘ ,6;‘
s<t 0 i 0 j 0

so (A.2) follows. O

Simple results on Gateaux derivatives appear in the next two lemmas.

Lemma B. For each t, x(t,w) — fé o(s,x(s,w))dBs(x(-,-) € LgrOg(] x €, X)) has, in the norm
| - |5, a bounded linear Gateaux derivative, which in “direction” z(-,-), (z(-,-) € Lgrog(] x Q, X)),
equals fé 0x(s,x(s,w))z(s, w)dBs. The derivative is uniform in t; see the first inequality below.

Proof. By Ito’s isometry,

2
EUt 5o (s, x(s,w) + 6z(s,w)) — 5(s,x(s,w)) — Gx(s, x(s,w))6z(s,w)]dBs
0

; P (A.11)
= EJ‘ {671 [E(S,X(S,(U) + 6Z(Slw)) —E(S,X(S,a)))] _Ex(slx(s/w))z(slw)} ds

0
= p(t) < p(1).

The term in curly brackets converges to zero for each (s,w) and is smaller than the L;(J x
Q, X)-function (2M*)?z(s,w)?. Hence, Lebesgue’s dominated convergence theorem gives
that p*(1) — O when 6 — 0. O

Lemma C. For each t, each u(-,-) € U', x(t, w) — féf(S,x(S,w),u(s,w))ds(x(~,-) e LE8(J x
Q, X)) has, in the norm |-|,, a bounded linear Gdteaux derivative, which in “direction” z(:,-),
(z(-,) € LY8(J x Q, X)), equals fé fx(s,x(s,w), u(s,w))z(t,w)ds. In fact, for each z(-,-), for

¢
) = fo 67 f(s,x(s,w) +6z(s,w), u(s,w)) - f(s,x(s,u),u(s,w))}

~fx(s,x(s,w),u(s,w))z(s,w)ds

7

2 (A.12)

¢
g(t) = EIO|6"1{f(s,x(s,w) +6z(s,w), u(s,w)) — f(s,x(s,u), u(s,w))}

—fx(s,x(s,w),u(s,w))z(s, w) |2ds,
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then 0 < B*(t) < p=(t)"/? < p*(1)"/* = 0 when & — 0.

Proof. Jensen’s inequality yields the inequality f*(t)* < f**(t). The remaining arguments are
as in the preceding proof. O

Below, on product spaces, maximum norms (= maximum of norms) and maximum
metrics are used. In the sequel, the following entities are used:

Y isanormed space, Aisacomplete pseudo-metric space with
pseudo-metric p, and a* is a given elementin A. The function H (a) (A.13)

from A into Y is continuous.

Theorem D (attainability). Let the entities in (A.13) be given. Let positive numbers K, ji, y', u,
u € (0,1) and an element z* in Y be given. Assume that the following properties hold for all a €
clB(a*, pj): forallv € Y with |o — z*| = W, forallv > 0,a (a’,6) € A x (0,r] exists, such that

(1-wopel

|H(a) - H(a) - 69| < Bl

p(d',a) <6K|o]. (A.14)

Then, for all z € c1 B(H (a*), py' i /4K (|2*|+ '), there exists a pair (a, ) € cl B(a*, jiy /2) %
[0, iy /2K (|12*] + p')], such that z + az* = H(a), where y := 4K (|12*| + /) |[H(a*) — z|/pp'p < 1.

Corollary E. Assume that w := inf{|9| : [0 — 2*| = p'} > 0. Then, in (A.14), evidently p(a’, a)
6K || can be replaced by the stronger inequality p(a’, a) < 6Kw.

IN

(On the other hand, when w > 0, then p(a’,a) < 6K|9| = p(a’,a) < 6K'w for K'
(2" + 1)K/ w).

Central ideas in the proof of Theorem D stem from the proof of the multifunction
inverse function theorem Theorem 4, page 431, in Aubin and Ekeland [11].

Proof of Theorem D. The property (A.14) also holds for o in the set B* := {Ao : A > 0,7 €
Y, |0 —-z*| = u'}. To see this, let o' € B* and let r > 0. Then 9’ = Ao for some A > 0, some ¥ such
that |0 — 2*| = 4. Now, for all a € cl B(a*, ji), there exists a pair (a’,6), 0 < 6 < ri, such that
the inequalities in (A.14) hold. From these inequalities, for 6’ := 6/ € (0,r], using 6'0’ = 679,
it follows that |[H(a') — H(a) - 6'0'| < (1 - w)6'yW'|?'|/(|2*| + y') and p(a’, a) < 6'K|?'|. Hence,
(A.14) holds for @' € B*.

Below, write |2*| + ¢/ =: . The following lemma is needed in the proof.

Lemma F. Let z € clB(H(a*), up'ji/4Kx). Assume that the pair (a1, \1) € clB(a* ji/2) x
[-}1/2K %, 0] minimizes

!

pi

(a,A) — |H(a) + \z" — z| + <m

)max{p(a,al),|)t—1\1|K1<} (A.15)

in cl B(a*, i) x [-ji/Kx,0]. Then |H(a1) + Liz* — z| = 0.
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Proof of Lemma F. By contradiction, assume |z| > 0, z := H(a;) + 12" — z. The vector ¥ :=
z* — W'z/|z| satisfies |0 — 2*| = y', so |z|v = |z|z* — j/'Z belongs to B*. Hence, by the extended
property (A.14), there existan a’ € Aand a 6 < ji/(2Kx|z|), 6 € (0,1/4/'], such that

(1 -p)op| (212" - p'2)|

|H(a') - H(m) - 6(12[2" - 'z)| < K

<(1-p)éplzl.  (Ale)

Moreover, p(a’,a1) < 6K|(|z]z* — w'z)| < ji/2, (use the first inequality for 6), which
implies @' € clB(a* ji). Define \' = Ay - 6|z| € [-}i/Kx,0] (8]|z] £ ji/2Kx). Then, using
(A.16), 64’ <1, and the definition of Z, we get

|H(a') +Nz* —z| = |-z+ H(a1) + H(a') - H(a1) + 12" - 6|2|27|
<|-z+H(a1) +6(|z]z* — p'z) + lz* = 61z|z*| + (1 — p) 64 |Z]
=|-z+H(a1) + Mz" - 6p'z| + (1 - p)64'|Z]

=|z-6pz| + (1- pw)bp'|z] < (1= 64 )|2] + (1 - p)6p'|2] = (1 - pbp') 2],

(A.17)
Using [H(a') + M'Z* — z] < (1 — ubp')|z] and A’ — Ay = -6]Z| yields
#/
|-z+H(a') + Nz *|+<2K >max{p | K}
< (1- pb') |2 + (212‘ )max{6K|(|Z| —i'%)|,6|21Kx}
(A.18)

'z
<(1- #5ﬂ)|z|+## <zl

!

i

= |H(111) + )Lli* — Z| + <2K

> max{p(ai, ar), |\ — \1|Kx},

a contradiction of the optimality of (a1, 1).

Continued Proof of the Theorem. Let z € cl B(H (a*), py'ji/4Kx), let y be as in the conclusion of
the theorem, and let ¢(a, \) := |H (a) + AZ* — z|. Note that ¢(a*,0) := |H(a*) —z| < yup'ji/4Kx.
Let the distance between (a,\) and (a”,1") be (uy'/2Kx) max{p(a,a”),|A — \"|Kx} in the
complete space cl B(a*, i) x [-ji/Kx,0]. By Aubin and Ekeland ([11, Theorem 1, page 255])
(Ekeland’s variational principle), there exists a (a1, A1) € cl B(a*, ji) x [-ji/ Kx, 0] such that

$(ai, 1) < P(a, L) + ( HE )max{p(a, a1),|A - M|Kx} V(a,\) € clB(a", i) x [I;—‘ii,O],

plar )+ <215 )maX{P(aLa*),Ml 0|Kx} < ¢(a*,0) < ZP;(”Y

(A.19)
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which gives p(aj, a*) < jy/2, |M| < py/2Kxk. By Lemma F, | - z + H(a1) + 112 = 0, so
z+az* = H(ay), for a = -\ € [0, iy /2Kx]. O

Below, q“"“ is a sort of Gateaux derivative at a of H ().

Corollary G. Let ji > 0, let Y be a normed space, let A be a complete pseudometric space with metric
o, let a* be a given element in A, and let H(a) : A — Y be continuous. Assume also the existence of
a function g%+ from A x A into Y and positive constants K and K’ such that, for each a € cl B(a*, Ji),
forallr>0,all e >0,all a* € A, there exists a pair (a’,6), a' € clB(a, 12’6), 6 € (0,r] such that

|H(a’) — H(a) - 64" "] < eKs. (A.20)

Assume also that forall a € A,

cog?® c clg™. (A.21)

Assume that a — g% is continuous at a* for any & € A. Assume finally that b is an interior
point in clco qA'“*, and that, for some ¢ > 0, some z* € Y, B(z*,¢) C clco qA'“ for all a €
cl B(a*, ji). Then, for some y > 0 and some a € A, H(a*) + yb = H(a).

Proof. Write Q“ = clco qA'“, and let B(b,a) C Q“* for some a > 0. Then, for some x > 0, —kz* €
B(0,a) C Q“* —b. Define B, = co{z, B(z*,¢) + b}. Evidently, b is an interior point in B; if z =
—xkz*+b. Then b is an interior point in B; even if z = —xz* + b is only an approximate equality;
in fact there exist positive numbers p* and ¢ such that B(b, ¢) C B; forall z € cl B(-xz* +b, p*).
Because —«z* € Q% —b, by (A.21) there exists a @ € A, such that |[b—xz* - ¢%*| < p*/2. By the
continuity assumption on g% in the corollary, for § > 0 small enough, |¢%* — g**'| < p*/2 for
a € B(a*, ). We assume < i, p < K'/2. Evidently, |b—xz* - g%?| < p*. Hence, ¢* € B(-kz* +
b,p*) for all a € B(a*, p). Thus, for a € clB(a*, p), B(b,¢) C B := co{g®®,clB(z*,¢) + b} C
co{q®®, Q%+b} c Q9+[0,1]b, because g+ € 0% and Q“ is convex. Hence, B(0,¢) ¢ Q9—[0,1]b,
a € c1B(a*, p). It follows thatif v € Y, |9| = ¢ = ¢/2, then, for any a € cl B(a*, ), by (A.21),
forsome a® € A,y €[0,1],

=5 at,a _ g
|v - <q yb>| <I (A.22)
By (A.20), for e =g(1/ 4K ), for some a’ € A, and some arbitrarily small 6 € (0,1/2),

|H(a’) - H(a) - 6q° "

<eK6 = (i)ég, o(d,a) <K'. (A.23)
Now, by (A.22),6g% % — 6(% + yb)| < ¢6/4. Then, by (A.23),

|H(a") - H(a) - 6(0 +yb)| < <%>6g = <%)6|z7|. (A.24)
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(@’ € cB(a, 12’6), y € [0,1]). In Theorem D, replace H(a) by H(a) — Ab, a by (a, ), a* by
(a*,0),and Aby Ax[0,1] and let ji = fg, let ' =g, letz* =0,letp=1/2,1et K = K', and let
p((@", "), (a,A)) = max{go(a”, a), K'g|\”—=1]}. Then the conditions in Theorem D are satisfied
when, in (A.14), (a, a’, 6) is replaced by ((a, 1), (a’,1’),6), a’ as just constructed, \' = 6y + A €
[0,1] (6 <1/2, for (a,\) € c1 B((a*,0), ), 0(a,a*) < f,and A < 1/2as ji = fg < K'g/2). Thus,
we get that, for all 8 > 0 small enough, H(a*) + 6b = H(a) — yb for some (a,y) € Ax [0,1], or
H(a*)+ (y+0)b=H(a). O

Remark H. If g¢*%" = 0, then ¥ + 0 > 0 can be taken to be arbitrary small (b can be replaced by
pb for any p € (0,1])

Corollary 1. Let Y be a normed space with norm || - ||, let y* > 0, and let A be a complete pseudometric
space with metric G*. Assume that @* is a gwen element in A, let H(a) = (H(a) H(a)) A —
Y x R =: Y be continuous. Let 5% = (G%%,4%7) € Y xR, @, & € A, wzthq““ = 0 for all a.
Assume that (A 20) and (A.21) are satlsﬁedfor (H, q” A Y, a*a,d,at i, o, K, K’) replaced by
(H,§%%,A,Y,a*,a,d,a" v G*,K,,K.) and also that & — §%7 is continuous at &* for any @ € A.
Assume, for some given § € Y, that H(&*) = MAX e G A:F (3)=7) H (@). Assume also, for some € > 0,

some £* € Y, that B(2*,€) C clco ﬁg'ﬁ foralla € {a e A,5%(a,a) < y*}. Assume, finally, that
M = sup;ep e, SUPze 11G%4| < 0. Then, for some continuous non zero linear functional (ij*,X)

onl?xR,)IanumberZO,wehave(173"“, >+)c . a <O0forall @ € A.

Proof. Define z** = (2*/2,-2M), and €** = min{e/2,2M}. It is easily seen that the following
inclusions hold for all a € B(a*,y*): B(z*,&e") ¢ S = (1/2)[B(£%,¢) x {0}] + (1/2)[{0} x
(-8M,0)] ¢ K% := clco{(c?a/'a, @A y):a e AN,y € [-8M,0]} (if necessary, use the proof
of Lemma 11.2 in Seierstad [8]). Assume by contradiction that (0,¢) belongs to intK? for
some ¢ > 0. Define A = A x [-9M, 0], and for a = (ﬁ a) € A, a = (@,a) € A, letqg?* =
(G74%,§%% +a' —a) and o(a, a') = max{c" (@, a), |« - —alK'/9M)}, and let H(a) = (H (@), H(a) +
a),a= (a,a). Then (A.21) and (A.20) are evidently satisfied (the latter for &’ = 6a* + (1 - 6)a
when a* = (a*,a")). Obviously, B(z**,&*) C clco g for each a € B(a*, }i), i = min{M,y*},
where a* = (a*,0). Hence, by the preceding corollary, for some 7 > 0, 77(0,¢) + H(a*) = H(a)
for some a = (4,a) € A x [-9M,0]. Hence, H(d@) = H(@*) = i, H(@) + a = n¢ + H (@), or
H(@) = H(@*) + n{ — « > H(@*), contradicting optimality. Thus the set L = {(0,¢) : § > 0}
is disjoint from int K%, so the convex set L can be separated from the convex set int K% by a
nonzero continuous linear functional y* = (7*, 1) such that (K%, y*) <0 < (L,y*), (0 € K%),
which implies X > 0. O

Remark J. [a nonzero continuous linear functional on L? vanishing on all L, (Q, @, R), t < T].
Let T = 1, @ be the natural filtration corresponding to some given B;. Choose a v* € L? such
that 27'|1_Ijv*|2 =j/(j +1). Then ,|v*| = 1, so v* belongs to the 5| - |-boundary of the 5| - |-ball
2»B(0,1). Then for some nonzero continuous linear functional y on L2, (cl,B(0, 1), u) < (v*, u).
Let k be any given integer. If ¢ € Lo(®1_1/2,Q),|Pl, < 2%V /(j + 1), then 2/|IT;(x¢)|, <
2/2.270 0 /(j+1) <1/(j +1) for j < k and 2/|IT; ()|, = 0 for j > k, so, 2/[T1;(v* £ §)|, <1 (=
v* £ ¢ € cl ,B(0,1)). Then the inequality involving y yields (+¢, u) <0, that is, y vanishes on
Lr(Q, D, R), t < 1. To show in detail that such a v* exists, let v; = 1a1, — 1gpy,, and let M; =
[Bi-1/2—Bi_1/21 € [0,00)]. Then E[v; | ®y_1201] = P[M; | @1_1/51]-P[CM; | @11 /51] = 0, 50
fOI'j <1, H]"Ui = E[U,’ | @1_1/2]‘] —E[’Ul‘ | (I)l_l/zjfl] =0, and fOI‘j > 1, vai = E[’Ul‘ | @1_12]'] —E[Ul‘ |
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@q_1/p1] =v; —v; = 0. Letting v* = Z;’:l(l/Zi)(i/(i +1))v;, we get 2fH]~v* =1L/ (j+1))vj =
G/G +D))EMm; = Lo, | Pro1y2i] = E[In; = Tomy | @roajpin] = (/G + 1)) (v, — Lon,) =
(j/(j +1))vj, so 2/|[Tjv |2 G/G+W))ojl, =7/ +1).

Proof of Remark 3.4. Let T = 1, and let xo = 0. Corollary G will be applied. Let Y = L?, let
i = p* (for y*, see (3.88)), let A = U, let 0 = 0%, let the norm | - | on Y be equal to 5| - |,
let ' = d,letu* = a*, letu = a, let a* = u", let H(a) = xx"(1), let q“"“ = Jrq”"“(l,-), let
K=K =1,andletb = [, z(t,-)dt. Recall that (3.88) says that 2B(z",¢) C clco g** = clco gt
for z* = f] lie112(s,-)ds, € = (1 = c')a/8. By (3.58), it follows that the property (A.20) is
satisfied, and by (3.43), it follows that (A.21) is satisfied. By (3.33) H is continuous, and
by (3.73), a — g% is continuous at a* = u*. Let B(z(-,,-),€) C clcoarg"* (the ball and
cl corresponding to || - [|,). For any b € ,B(0,&/2), it was shown earlier that there exists a
£e LY (JxQ,Y) such thatb = [, z(t, )dt, |z(, )|, < 2-2[b]| < & 502B(b,£/2) C clco g™ (1)
(cl corresponding to »|-|). Hence all conditions in Corollary G are satisfied and the conclusion
in Remark 3.4 follows. O

Proof of Remark 2.3. Let T = 1, and let xo = 0. Note that if y() € L(Q, D, 1/2k R™), then

[Tey() =0, for k' > k, and hence, |y(-)[, = | 3% [Ty (- )|2 < S My, < 3K 21y - ) <
k-2|y(-)|. On the other hand »|y(-)| = sup,2’ '|IT; y(O)l, < 2k). ly(-)],. Hence, on L (L, ®;_q /2x, R" ),
the norms | - |, and 5| - | are equivalent. Thus, the spaces L, (€, @;,R"), t<1,are subspaces of
L2. Fory = y() € Lo(Q, ®,,R™), define

g7 (t,s,w) = y(w) + Jt fx(8,x7(8,w), u* (3, w))g? (5, w)ds
t ’ (A.25)
+J 0x(8,x"(5,w))qY (8, w)dBs.

s

Then an application of Lemma A in the appendix, similar to the one yielding
(3.27) gives that sup, . q¥(ts,)l, < Dly()|, for some constant D independent
of y(-). Let y(-) € Ly(Q @1/, R") for some k. Then 2131;(-)drq¥(,s,)/dt| <
supi2i|jL_1[5,1](t)yrfx(t,x*(t,w),u*(t,w))qy(t,s,w)alﬂ2 < DM*|y(-)|,. Because [©] < 8 for
2| | =2l |, see (3.84),

L|lrgv s, - 7y ()

J‘ [1[51 (") orq” (t s, )]dt

(A.26)
<8DM'|y()],-

Now, wC(1,s,-)y(-) = mq¥(1,s,-), and for some constant y, |[(z(-), )| < y-2|z(-)| for
2() € I2, 50 |(xC(L,5,)y() - wy(), M| < y2lwg?(1s,) - y()| < 8yDM*|y()l, and
[(rC(1,s,)y(),v)| < 8yDM*|y(-)|, + Y2k+1|y( -)|,. Hence, for any given t < 1, by the |- |,-
continuity of y(-) — (xC(1,t,-)y(-),v) on Ly(Q @;,R™), t < 1, see (A.26), and hence
y(-) = (y(),C(1,t,-)"v.), there exists an Ly(Q, ®;, R™)-function p~ (¢, w) on Q such that for
any Ly(Q, ®;, R™)-function a(w), we have (a(-), C(1,t,-)*v,) = fQ<cx(w),p‘(t,w))dP(w). In
fact, the last equality yields that p~(t,w) = E[C(1,t,-) v, | ®].
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Let u(-,-) be any given element in U’ and let f(t,w) = f(t,x*(t,w), u(t,w)) -
f(t, x*(t,w), u*(t,w)). Moreover, let b € (0,1) be an arbitrarily given Lebesgue point of
t — B(t,): ] — L(Q,D,R"). Then

—0, (A.27)

b+6
‘5-1 [ f C(1,b,w)C(b, t,w)p(t, w)dt - 6C(1, b,w)ﬂ(b/w]
2

b

when 6 — 0. (Here Ly-continuity of z(w) — C(1,b,w)z(w) on Ly(Q, @y, R™) and of t —
C(b, t,w)z(w), uniformly in z(w), |z(-)[, < 1is used.) In fact, b needs only be a Lebesgue

point from the right. Replacing u(-,-) by u(-, )1 pp+s) + " (-, ) (1 = 1 p+s)) in (2.6), we get
b+6
0> <(‘5_1 C(b, t,w)p(t,w)dt, C(1, b,w)*v*> HJ‘ (B(b,w),p”(b,w))dP(w). (A.28)
b Q

(Here Ly-convergence when t | b of C(b,t,w)p(t,w) to p(b,w) and the L,-representation of
C(1,b, w)*v*le(Q,@b/Rx) is used). Now, if b is a right Lebesgue point of t — p(t,-), then bis a
right Lebesgue point of t — B(t,-)1c1py, for any C € @y. So [, (1cp(b, w),p™ (b, w))dP(w) <
0, for any C € ®@;. Hence, for a.e. b < 1, a.s.,, we get 0 > (B(b,w),p”(b,w)). From this the
property (2.12) follows.

Now, let @; be the natural filtration generated by By, and let b € [0, 1). Then, consider
the pair of equations

dp(t,w) = ~p(t, @) fu(t, x* (t, ), u" (£, w))dt

= 0wt x (t,w)q (dt + g (1)dB], (A29)
] ]
pb,w)=p (bw).

By Theorem 2.2, page 349 in Yong and Zhou [4], there is a unique progressively measurable
collection p(t,w), g/ (t,w), p(t,w) continuous in ¢, satisfying these equations, [p(-,-)|, < oo,
|4/ (-, )|, < o0, and (by (2.20) in the proof of this theorem) for all t < b, p(t, w) equals p~ (t, w) P-
a.s. The uniqueness in particular says that if two pairs (p,q), (g = q%,...,4"), and (p,q)
satisfy the pair of equations, then Pr[p(t,w) = p(t,w) forallt € [0,b] = landq(t,w) =
q(t,w)forae.t € [0,b]] = 1. Wecanletb = by — 1 whenk — oo, (b, kK = 1,2,..,,
increasing) and obtain functions pi (f, w), gk (t, ) defined on [0, b ]. For k' < k, by the fact that
Po. (br, w) = p~ (b, w) = py, (br,w) a.s. and uniqueness, we have that (pr (t, w), qr (t, w)) =
(p(t,w), gi(t,w)) on [0, k'] in the sense just stated. Then, evidently, there exists a unique pair
(p(t,w), q(t,w)) on [0,1) satisfying (A.29), with p(t,w) a.s. equal to E[C(1,t,-) v, | @] for
any t € [0,1).

Let 7 = (x1,...,Xp) — (Xmr41,..., %) and let b, k = 1,2,..., be an increasing
sequence with limyby = 1. Assume that v is L, (Q, ®, R")-continuous. For ¢ € L,(€, ®,R"), it
is easily seen, using the appendix, Lemma A, that C(1, b, )¢ = q‘/’(l, by, ) - C(1,1,)p=¢
in Ly, uniformly in ¢, |$|, < 1. Hence, (¢, p™(bx,-)) = (C(1,bk,-)p,v.) — (¢, v.), uniformly
in ¢, |¢p|, < 1, and thus p~(bx,-) — 0«(-) in Ly, where ,(w) is the Lr-function representing
Vy. O
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Remark K. Let us imagine that some of the states x;, i > m* are required to be softly
constrained; that is, Ex;(T) = x; for x; given, i € I* C {m* +1,...,n"}. Then Theorem 2.1
would hold for Aga in (2.11) replaced by Aga + b, with b being some vector in R” for which
b; = 0fori ¢ I*, with (Ao, b, v) #0. To obtain this result, only a slight modification of the proof
is needed (all approximation tools needed are worked out, what is needed is a change in the
separation argument).

Remark L. Assume that ¢ = o(t, x,u). Then, a least when first and second order derivatives
of ¢ and f with respect to x and u exist and are continuous and bounded and U’ is a closed
convex subset of {u € Lgmg (J x Q,RF) ¢ [lu(-,)|l, < oo} for some k*, the following necessary
condition, based on weak variations, holds: for some linear functional v on B,,, bounded on
B; and some number Ag > 0, for all w(-,-) € U’ — u*,

(g™ (T),v) + AE{(q™(T),a) <0, (A.30)
where g% is the solution of
dg¥(t,w) = fx(t, x*(t, w), u* (t,w))q* (t, w)dt + f,(t, x*(t, w), u* (¢, w))w(t, w)dt

+ [Tt x (1), ' (1, 0)) g (1, w) + Tt x* (1, 0), u* (1 ) (t, w) | dB].
7

(A.31)

Moreover, (Ag, v) #0.
We then need the linear controllability condition: for some %(:,-) € B*, for some a > 0,
some c € [0,T),

lie2(, ) + B* € {1y [ fuC x* (), (o N w -, )] s w(, ) e U —u*). (A.32)

A moderate modification of the above proof works in this case. That, however, is another
story.

Remark M. If h(x,w) : X x Q — X' (X, X' Euclidean spaces) is continuous in x and ®-
measurable in w, sup_|h(x,w)| < a(w), a(-) € L2(2,®, R), and x,(w) — x(w) in P-measure,
(x,(w) and x(w) ®-measurable), then h(x,(-),w) — h(x(w),w) in L. This result, which is
a special case of Krasnoselskii’s theorem (see page 20 in Aubin and Ekeland [11]), can be
proved as follows. By contradiction, assume for some ¢ > 0 and for some subsequence 7;
that [h(xn; (w), w) — h(x(w),w)|, > € for all j. A subsequence x,, (w) =: x*(w) converges a.s.
to x(w). Then, by continuity, h(x*(w),w) — h(x(w),w) a.s. and even in L, by Lebesgue is
dominated convergence theorem. A contradiction has been obtained.
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