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The procedure of determining the initial values of the attitude angles (pitch, roll, and heading) is known as the alignment. Also, it
is essential to align an inertial system before the start of navigation. Unless the inertial system is not aligned with the vehicle,
the information provided by MEMS (microelectromechanical system) sensors is not useful for navigating the vehicle. At the
moment MEMS gyroscopes have poor characteristics and it’s necessary to develop specific algorithms in order to obtain the attitude
information of the object. Most of the standard algorithms for the attitude estimation are not suitable when using MEMS inertial
sensors. The wavelet technique, the Kalman filter, and the quaternion are not new in navigation data processing. But the joint use
of those techniques for MEMS sensor data processing can give some new results. In this paper the performance of a developed
algorithm for the attitude estimation using MEMS IMU (inertial measurement unit) is tested. The obtained results are compared
with the attitude output of another commercial GPS/IMU device by Xsens. The impact of MEMS sensor measurement noises on
an alignment process is analysed. Some recommendations for the Kalman filter algorithm tuning to decrease standard deviation
of the attitude estimation are given.

1. Introduction

Navigation can be defined as the process of determining the
position, orientation, and velocity of an object. A GPS-based
navigation is quick and drift free and is readily available
most of the time. However, as the GPS requires direct line of
sight signals from at least four GPS satellites, the navigation
can be frequently interrupted in the land based applications.
The GPS signal gets lost due to various factors such as
the blockage by buildings, trees, and other natural and
nonnatural obstructions. This affects both the amplitude and
phase of the received satellite signals and causes the receiver
to lose lock on the blocked satellite, meaning that it needs
both to reacquire the signal and to resolve the ambiguities
in the phase measurements. Both these processes take time,
and if there are several satellites affected, the receiver cannot
provide a position solution for a significant period of time.
Also it is worth mentioning that the data rate for the GPS can
be too low for the particular application. In such situations
when the GPS signals are not available, a relative navigation
can be performed using the inertial sensors (accelerometers
and gyroscopes) and magnetometers.

The strapdown inertial navigation system (SINS) has
been widely used in numerous fields such as the positioning
and navigation of ships, aeroplanes, vehicles, and missiles. To
initialize the navigation Kalman filter (KF), all three attitude
angles including the roll, pitch, and heading (azimuth) are
required. The initial misalignment is one of the major error
sources of the SINS. So, it is crucial to have an accurate initial
alignment in order to implement the integrated navigation
system. The tactical and navigation grade sensors are limited
to commercial and military applications and very expensive,
but, with the introduction of the compact, low-power, and
cost-efficient MEMS sensors, it is possible to have portable
integrated INS/GPS navigation modules. For low-cost INS,
the initial alignment is still a challenging issue because of the
high noises from the low-cost inertial sensors. The SINS must
be preferably aligned before positioning and navigation.
The aim of the initial alignment of the SINS is to get a
coordinate transformation matrix from the body frame to
the navigation frame and conduct the misalignment angles
to zero or as small as possible. In many applications, it is
essential to achieve an accurate alignment of the SINS within
a very short period of time.
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Accordingly, a number of filtering algorithms have been
developed for integrating the output of the gyros and the
accelerometers, to estimate the attitude. Previous studies of
the attitude calculation methods, using the inertial sensors
only, have been researched for use in the robotics [1],
aircrafts [2], and human motion tracking [3]. The initial
alignments of the high precision INS and low-cost INS
should be treated using different methods, because the noise
levels of the inertial sensors are quite different for these two
types of systems.

The low-cost IMUs usually use gyroscopes with noise
levels larger than the Earth’s rotation rate, and, hence,
they cannot be aligned in the static mode. In this case,
the external heading measurements using, for instance, the
magnetic compass, are usually used to provide the alignment
information [4]. Another possibility is to transfer the
obtained attitudes of another, statically aligned, better quality
IMU through the master-slave initialization process [5]. In
addition, the dynamic alignment can be performed through
the velocity matching techniques by using the velocity
updates from an aiding system such as the Differential Global
Positioning System (DGPS) or the Doppler radar [6–8].

This paper proposes the attitude estimation of the low-
cost IMU using the linear Kalman filter (standard and
modified) in the stationary and dynamic mode. The linear
accelerations and angular rates are measured by MEMS IMU.
The gyro and accelerometer data is denoised by wavelet
algorithm. Next, the Kalman filter algorithm was used to
estimate the pitch and roll. The magnetometer data was
used for estimation of the heading. Finally, the test results
are presented to show the performance of the proposed
algorithm for attitude estimation of the low-cost IMU in
the stationary mode and attitude estimation of the moving
vehicle.

2. Alignment

Here we are discussing the practical aspects of alignment
mainly regarding the vehicle navigation. For land vehicles,
it can be assumed that the direction of travel is identical
to the direction of the b-frame x-axis and the roll angle
is near to zero. There are two types of alignment that are
required before the navigation parameters can be estimated
for the portable navigation module in a vehicle. The first
alignment is the alignment of the IMU axes with respect to
the vehicle axes (i.e., making the b-frame coincide with the
v-frame), which is referred to as the relative alignment. Once
the relative alignment is achieved, the next step is to align the
b-frame with the l-frame, which is referred to as the absolute
alignment [6, 8].

In a broad sense, the initial absolute alignment of
the SINS can be divided into two categories, that is, the
stationary based and the moving based alignment. The
moving based alignment is used mainly when the good
quality GPS signals are available. Here we are discussing
the stationary based alignment using the inertial sensor
signals only. The requirements of the initial alignment of
the SINS are high accuracy and short time. An accurate

alignment is crucial; however, this is based on the alignment
over a long period of time. A compromise of accuracy and
time consumption of the initial alignment should be made.
During the process of absolute alignment the pitch, roll, and
heading are estimated. The misaligned portable navigation
system (PNS) with respect to the vehicle frame is shown in
Figure 1. If the relative alignment is not done properly, the
navigation solution will be erroneous. The relative alignment
means alignment of the b-frame with respect to the v-
frame. For the vehicle frame, the axes are generally defined
as x (direction of travel), z (direction of gravity), and y—
completing the orthogonal set. In case of misalignment,
the x-axis accelerometer will not measure the true vehicle
acceleration in the travel direction. This is due to an
additional accelerometer error—not correctly compensated
gravity, which is caused by the IMU misalignment. Also
the initial attitude angles of the vehicle will be incorrectly
estimated if the relative misalignment is not taken into
account. And this, in its turn, will cause additional velocity
and position drift.

The orientation accuracy of the PNS in this case will
totally depend on the user and it is quite easy to assume that
even a careful user cannot align the system properly at every
use. An easy way to solve this problem is the introduction of
a holder inside the vehicle that is aligned with the vehicle and
provides the user an easy way to align the system at every use
[6].

Inertial sensors do not need external sources for the
initial attitude measurement. It can align itself by using
the measurements of the local gravity and earth rate. The
gyroscope compassing method is used for estimation of the
heading [8]. However, the MEMS sensors have significantly
high drift rates and noise characteristics, and, therefore, the
gyroscope outputs cannot be used to estimate the azimuth or
heading of the vehicle. The main reason is that the gyroscope
compassing uses the rotation rate of the Earth. The Earth rate
is about 15 deg/h, so the noise levels of the low cost gyros are
near or higher than the Earth rate. This means that the Earth
rate cannot be monitored with the MEMS gyroscopes for
the moment. The heading is important in the initialization
of the navigation algorithm. Magnetometers are used for
the heading estimation. When the vehicle is moving the
heading or the azimuth of a vehicle can be determined by
incorporating the north and east velocity components from
the GPS receiver.

The gravity is a relatively large quantity; even the low-cost
accelerometers can measure it properly. So, for the MEMS
sensors, the strong gravity signals from accelerometers can
be measured and these measurements are used for estimation
of the roll and pitch of the inertial system with respect to the
l-frame.

3. MTi-G Device

The calibrated data (the rate of turn, acceleration, and the
magnetic field) is expressed in the sensor fixed coordinate
system [9]. All calibrated vector sensor readings are in the
right-handed Cartesian coordinate system. This coordinate
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Figure 1: The misaligned IMU with respect to the vehicle frame.

system is body fixed to the device and is defined as the
sensor co-ordinate system or the body frame. The coordinate
system is aligned to the external housing of the MTi-G. The
aluminium base plate of the MTi-G is carefully aligned with
the output coordinate system.

The MTi-G default local tangent plane of the North-
West-Up is defined in the Figure 2 above; it has X pointing
to the North and it is tangent to an arbitrary reference point.
The third component (Z) is chosen Up which is common
for many applications (according to the ISO/IEC 18026).
The vertical vector Z is perpendicular to the tangent of the
ellipsoid as defined in Figure 2. The alignment of the bottom
plane and the sides of the aluminium base plate of the MTi-G
with respect to the sensor-fixed output coordinate system is
within 0.1 deg.

The orientation output of the MTi-G is the orientation
between the sensor-fixed coordinate system (the body frame)
and the local tangent plane coordinate system, as the
reference coordinate system. The output orientation can
be presented in different parameterizations such as the
quaternion, direction cosine matrix, or the Euler angles (roll,
pitch, and yaw). The Euler angles have more meaningful
attitude expression than the quaternion method or the
direction cosine matrix method and the user recognizes the
attitude of the object directly. According to the definition of
the Euler angles, the coordinate system rotates in the angle
ψ (yaw) on the Z-axis; the coordinate system rotates in the
angle θ (pitch) on the Y-axis. Finally this coordinate system
can rotate in the angle φ (roll) on its X-axis (see Figure 3).

4. Sensor Data Denoising

It is advisable to reduce the noise level of the inertial sensor
signals before using the measurements in the alignment
procedure. The objective is to provide more accurate com-
putation of the initial attitude angles and speed up the
convergence of the Kalman algorithm.

Most of the standard inertial denoising methods such as
the low pass filtering are not efficient enough for reducing
the high noise levels of the MEMS inertial measurement unit
without corrupting some useful information in the sensors’
signal.

In [10] it was demonstrated that the wavelet tool can be
useful for the analysis of the inertial measurements in order
to decrease the noise level.

Since the low frequency fraction (ΔF < 0.5 Hz) of the
inertial measurement reading contains the majority of the
inertial sensor dynamics during the static alignment phase,
these inertial measurement readings can be denoised using
the wavelet multilevel of decomposition to separate the low
and high frequencies.

Consequently, five levels of decomposition will limit
the frequency band to 0.5 Hz. Five levels of decomposition
(LOD) are adequate to reduce the high frequency noise from
the real inertial sensor measurement [10]. Increasing the
level of decomposition results in the undesired features of
the navigation solution since the original features of the
IMU data will be lost after wavelet filtering with too high
LOD. Denoising of the inertial sensor signals by wavelet
decomposition has proven its success in reducing errors of
the estimated attitude angles for the integrated navigation
systems [10]. The analysis of the gyroscope signal is made
in order to demonstrate the effect of the wavelet denoising.
The results are shown in Figure 4. As we can see, there
is a considerable decrease of the noise level. The standard
deviation of the gyroscope signal before the wavelet filtering
was σ1 = 0.0063 rad/s, but, after it, it decreases till σ2 =
0.0011 rad/s. The same effect of the noise reducing can be
demonstrated for the accelerometer signal too.

5. Heading Estimation Algorithm

When the GPS signal is available and the vehicle has a
nonzero velocity, it’s possible to calculate a heading of the
vehicle using the GPS-derived velocity. When the GPS signal
is not available, the magnetometers (which sense the Earth’s
magnetic field strength) can be used for the determination
of the absolute heading with reference to the local magnetic
North. The deviation between the true north and the local
magnetic north is known as the magnetic declination. This
declination can be calculated as a function of latitude,
longitude, and time using a global model such as the World
Magnetic Model (WMM). The global model is typically
accurate to about 0.5 degree. The declination angle according
to the WMM 2010 for latitude 55◦ 52′ 19′′N, longitude 26◦

31′ 4′′E, and attitude 100 m is 7.284◦E. The calculation was
done using a software of the open access from the website of
the British Geological Survey.

The short-term temporal variations of the Earth’s mag-
netic field can be caused by the magnetic storms [5]. The
heading with reference to the local magnetic north is derived
from the horizontal force of the magnetic field. If the
magnetometer was aligned with the local horizontal the
heading, ψ, would be calculated as [11]

ψ = arctan 2
(
Mlevel

x ,Mlevel
y

)
, (1)

where Mlevel
x , Mlevel

y represent the Earth’s magnetic field along
the x- and y-axes, aligned with the horizontal plane.

Different types of magnetic disturbances distort the
measured magnetic field. The magnetic fields are produced
not only by the earth but also by the man-made objects such
as vehicles, buildings, bridges, and power lines.



4 International Journal of Navigation and Observation

X

XY

Z
Z

Ellipsoid

Local tangent

plane
x

x

y

z z

φ

Equator

a

b
h

φ: latitude

λ

Figure 2: Definition of the default MTi-G local tangent plane [9].
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Figure 3: Definition of the Euler angles.

Hence, the quality of the magnetometer heading strongly
depends on the tilt compensation (if not horizontally
located) and the calibration procedure, including identifying
the possible error sources and removing them from the
measurements.

The traditional autocalibration method [4] is based on
the fact that the locus of the error free magnetometer
measurements is a circle if the sensor moves around the
circle. The impact of various magnetometer errors would
distort the shape of this circle; however, the circular con-
straint eventually can be used to partially estimate the local
variations of the Earth’s magnetic field.

Practical implementation of the auto-calibration does
not require any reference headings, but this method strongly
depends on the position and the effect of ferromagnetic
materials in the proximity of the sensor. If the sensor’s
location is changed or it is placed in a new environment, a
new calibration is needed for identifying and removing the
effects of the new magnetic environment.

The magnetometer calibrated measurements Mx, My for
horizontal components can be represented as follows:

Mx = SxM
level
x + Bx,

My = SyM
level
y + By ,

(2)

where Sx, Sy are two scale factors, Bx, By are two biases
along the horizontal axes of the magnetic field and Mlevel

x ,
Mlevel

y are the levelled magnetic components of the Earth.
The scale factors and biases can be found using the following
equations:

Sx = Max

(
1,
MMax

y −MMin
y

MMax
x −MMin

x

)
,

Sy = Max

(
1,
MMax

x −MMin
x

MMax
y −MMin

y

)
,

Bx =
(
MMax

x −MMin
x

2
−MMax

x

)
Sx,

By =
(
MMax

y −MMin
y

2
−MMax

x

)
Sy ,

(3)

where Sx, Sy are two scale factors, Bx, By are two biases
along the horizontal axes of the magnetic field, MMax

y , MMin
x ,

MMin
y , MMax

x —the maximum and minimum of the measured
magnetic field along the x- and y-axes.

To calibrate the magnetometer using the above equation,
it’s necessary to rotate the levelled magnetometer several
times by 360 degrees and then determine the scale factors as
the ratio of the major and minor axes, changing the circle
to an ellipse, and bias parameters as the offset center of
the ellipse, after it’s possible to calculate the magnetometer
calibrated horizontal components using (2). And the heading
can be estimated using (1).

The above-mentioned auto-calibration approach has
been implemented in MATLAB and applied to the MTi-G
magnetometers’ signals in order to test the implementation
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Figure 5: Performance of the implemented auto-calibration proce-
dure.

of the auto-calibration procedure. The results are shown in
Figure 5. Here the magnetic field strength of the Earth is
defined in the arbitrary units (a.u.), normalized to the Earth’s
field strength.

6. Kalman Filter Algorithm for Roll and
Pitch Estimation

6.1. Process Model. In this paper quaternions were used as
state variables for the Kalman filter. The equations for the
linear Kalman filter algorithm used here can be found in
[11]. Quaternion implementation of the attitude update

is computationally efficient [5]. There’s no trigonometric
function during the quaternion based attitude updating.

Quaternion is hypercomplex numbers with four compo-
nents:

q =
(
q1 q2 q3 q4

)
, (4)

where q4 represents the magnitude of rotation, and other
three components represent the axis about which that
rotation takes place.

The differential equations for the process model have the
following form [12]:

⎛
⎜⎜⎜⎝

q̇1

q̇2

q̇3

q̇4

⎞
⎟⎟⎟⎠ =

1
2

⎛
⎜⎜⎜⎝

0 ωz −ωy ωx
−ωz 0 ωx ωy

ωy −ωx 0 ωz
−ωx −ωy −ωz 0

⎞
⎟⎟⎟⎠ ·

⎛
⎜⎜⎜⎝

q1

q2

q3

q4

⎞
⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎝

η1

η2

η3

η4

⎞
⎟⎟⎟⎠, (5)

where ωx, ωy , ωzare the output signal of gyroscopes and η1,
η2, η3, η4 are zero mean Gaussian noise with the correspond-
ing PSD σ2

P,1, σ2
P,2, σ2

P,3, σ2
P,4. Allan variance method can be

used in order to make coarse estimation of σ2
P . Also sensor

noise specification given by the manufacturer can be used
for σ2

P estimation. Then system noise matrix for the Kalman
filter can be determined taking into account σ2

P value. And
the elements of this matrix can be precised in order to achieve
better performance of the filter. For example, elements of the
system noise matrix can be adjusted to minimize standard
deviation of state vector values. Usually it’s preferable to
increase values of the noise matrix elements in order to take
into account other unmodelled noise of the system.

The defined system model (5) is linear and can be used
in the linear Kalman algorithm (LKF).

6.2. Measurement Model. The pitch and roll angles calculated
using the accelerometer data do not diverge with time
because they are not calculated via integration, but rely on
the earth’s gravity measured on each axis. Also, the low cost
accelerometers have better characteristics (noise level, and
stability) comparing with the low cost gyroscopes. The pitch
and roll [5] may be determined using

θ = arctan

⎛
⎜⎜⎝

−ax√(
ay
)2

+ (az)
2

⎞
⎟⎟⎠,

φ = arctan 2
(
−ay , az

)
,

(6)

where ax, ay , az are accelerometer signal and arctan 2 is the
four-quadrant arctangent function.

Transforming the pitch, yaw, and roll angles to quater-
nion, we get the measurement vector z for updating a step
of the Kalman filter. The value of yaw angle for the Kalman
filter update step is calculated based on magnetometer data.

The measurement equation for the LKF has the following
form:

ẑ = H · q + u, (7)
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where His the measurement matrix, uis vector of the zero
mean Gaussian measurement noises and q = [q1 q2 q3 q4]T

is the state vector.
The defined measurement model is linear and can be

directly used in the linear Kalman algorithm.
At any time of the LKF algorithm processing attitude

angles can be calculated using [5]

φ = arctan 2
(
2
(
q2q3 − q1q4

)
,
(
q2

4 − q2
1 − q2

2 + q2
3

))
,

θ = − arcsin
(
2
(
q1q3 + q2q4

))
,

ψ = arctan 2
(
2
(
q1q2 − q3q4

)
,
(
q2

4 + q2
1 − q2

2 − q2
3

))
,

(8)

where q = [q1 q2 q3 q4] is the quaternion.

7. Experimental Results

Experiments have been carried out with the MTi-G man-
ufactured by Xsens Technologies. MTi-G is an integrated
GPS and Inertial Measurement Unit (IMU) with the nav-
igation and attitude and heading reference system (AHRS)
processor. The MTi-G is based on the MEMS inertial sensors
and the GPS receiver and also includes a 3D magnetometer
and a static pressure sensor. In this work accelerometer, the
gyroscope and magnetometer signals from the MTi-G will
be processed by the algorithms described in the previous
sections. The sensor data postprocessing algorithms were
implemented using the MATLAB software.

7.1. Pitch and Roll Estimation for Stationary Object. To
test the proposed attitude calculation method, the attitude
result is compared with the attitude output of the MTi-
G. The attitude output from the MTi-G and the proposed
method with the calibrated data from the MTi-G use the
same data; thus the attitude result comparison means only
the comparison of differences in the attitude calculation
algorithm. The GPS signal for the MTi-G was unavailable
during the tests. Experiments for attitude estimation were
conducted through simulating the certain value of pitch and
roll angles of the MTi-G using a tilt table. The accelerometer
and gyroscope signals were denoised using the wavelet
filtering prior to its processing with the LKF.

In order to demonstrate the effect of the signal denoising
using the wavelet filtering for attitude angle estimation (e.g.,
for the pitch), the inertial sensor signals were processed
with and without their initial denoising. The result of such
experiment is shown in Figure 6 for the case when the
MTi-G was perfectly levelled (with ±0.1◦ precision) relative
to the local horizontal. The standard deviation of pitch
estimation using the LKF and without the wavelet filtering
of accelerometer signals was σ1 = 0.0746◦, but with denoising
(prior to the data processing by the LKF) decreases till σ2 =
0.0105◦.

As the pitch and roll estimation for a stationary object is
based on the sensed accelerometer signals, it is worth men-
tioning that any sensor error such as bias drift, for example,
due to the temperature variations will result in the estimation
mistake of attitude angles. It’s impossible to differentiate
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Figure 7: Pitch estimation, when the IMU is aligned with the local
horizontal.

the accelerometer bias due to the misalignment or sensor
measurement error. In order to minimize the negative effect
from random (stochastic) part of the accelerometer bias, it
is recommended to switch on the low cost IMU some time
before (5–15 min depending on the IMU technology) the
real navigation. The internal characteristics of the low-cost
accelerometer will stabilize during this time.

During the first test the tilt table was aligned in order
to obtain the pitch θ = 0◦ and roll φ = 0◦ with a precision
±0.1◦. The results of the tilt angle estimation are shown in
Figures 7 and 8. The mean value and standard deviation of
the estimated pitch and roll are given in Table 1.

Then the tilt table was adjusted in order to obtain the roll
φ = 39.5◦ with a precision±0.5◦, but pitch was kept the same
(θ = 0◦). The roll estimation for this test is shown in Figure 9.

Then the tilt table was adjusted in order to obtain the
pitch θ = 39.5◦ with a precision ±0.5◦ ; the roll value was
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Table 1: The statistical characteristics of the estimated pitch and
roll.

Statistical
characteristics,
degree (◦)

Pitch estimation by Roll estimation by

MTi-G
Proposed
algorithm

MTi-G
Proposed
algorithm

Mean value −0.4699 −0.3142 0.3433 0.4896

Standard deviation 0.1270 0.0168 0.1949 0.0150

Table 2: The statistical characteristics of the estimated pitch and
roll.

Statistical
characteristics,
degree (◦)

Pitch estimation by Roll estimation by

MTi-G
Proposed
algorithm

MTi-G
Proposed
algorithm

Mean value 39.7758 39.4934 39.3042 39.6591

Standard deviation 0.1336 0.0307 0.3483 0.0318

Table 3: The statistical characteristics of the estimated heading.

Statistical characteristics, degree (◦)
Heading estimation by

MTi-G Proposed algorithm

Mean value 119.0114 118.5133

Standard deviation 0.8005 0.4083

Table 4: The statistical characteristics of the estimated pitch and
roll (R = 0.01 · I).

Statistical
characteristics,
degree (◦)

Pitch estimation by Roll estimation by

KF
Modified

KF
KF

Modified
KF

Mean value 0.2648 0.2646 0.4512 0.4510

Standard deviation 0.0096 0.0040 0.0128 0.0055

zero (φ = 0◦). The pitch estimation is shown in Figure 10.
The statistical characteristics of the pitch and roll for the last
two tests are provided in Table 2.
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Figure 9: Roll estimation, when the IMU misaligned by φ =39.5◦.

0 50 100 150 200 250 300 350 400
38

38.5

39

39.5

40

40.5

41

Time (s)

de
g.

Pitch estimation

MTi-G

Proposed method

Figure 10: Pitch estimation, when the IMU misaligned by θ = 39.5◦.

7.2. Heading Estimation for Stationary Object. During this
test the tilt table was aligned in order to make the pitch
and roll equal to zero with a precision ±0.1◦. The heading
estimation for this test is shown in Figure 11. As it was
not possible to obtain a true value of the heading with the
necessary precision by external means, it can be assumed
that the true heading value is approximately an average of
two mean values, obtained by the proposed method (see
Section 5) and the MTi-G output. In such a case the true
heading value is ψ ≈ 118.76◦. The statistical characteristics
of the estimated heading are given in Table 3.

7.3. Minimisation of the Standard Deviation of the Pitch/Roll
Estimation. The functional curves of the standard deviation
of the pitch/roll estimation depending on the system noise
level are shown in Figures 12 and 13.
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The standard deviation of the pitch/roll estimation
has a greater minimal value, when the KF algorithm is
used without signal preprocessing by a wavelet algorithm.
And there is only one optimal value of the system noise
deviation σ that minimizes the standard deviation of the
pitch/roll estimation, when only KF algorithm is used for
data processing.

When wavelet algorithm is used for sensor data prepro-
cessing, the standard deviation of the roll/pitch estimation
decreases insignificantly, when σ > 0.03.

The standard deviation of the pitch/roll estimation is
high, when the system noise value is small (σ < 0.01) in the
KF algorithm.

The functional curve type remains the same for different
values of the measurement noise level, which is defined in the
measurement noise matrix R.

It is possible to decrease the standard deviation of the
pitch/roll estimation for a stationary object even more.
For this purpose, the state transition matrix Φ in the KF
algorithm should be replaced by the corresponding identity
matrix (Φ = I). The system noise level should be decreased
for at least 1000–10000 times comparing to the value
defined according to the MEMS gyroscope specification.
These changes in the algorithm are possible as the MEMS
gyroscope in a stationary mode has no informative output
signal. And it is assumed that such a model is perfectly
suitable for the system description and hence requires very
small level of system noise for setting in the KF algorithm.
The results of the data processing by KF with a modified state
transition matrix (modified KF) are presented in Table 4.
For comparison, in the same table the results of the data
processing by KF without modification of the state transition
matrix are presented as well. The sensor data preprocessing
by a wavelet algorithm (LOD = 5) was applied in both cases.
The standard deviation of the pitch/roll estimation decreases
twofold, when using the modified KF.
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Figure 12: Impact of the system noise value σ for the standard
deviation of the roll estimation (LOD: Level of Decomposition and
KF: Kalman Filter).
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Figure 13: Impact of the system noise value σ for the standard
deviation of the pitch estimation (LOD: Level of Decomposition
and KF: Kalman Filter).

7.4. Attitude Estimation for a Vehicle. In most cases, it is
sufficient to have accelerometer data for pitch and roll
estimation, when a vehicle is in stationary mode. When
the vehicle is moving, it is not possible to obtain a reliable
solution for the vehicle pitch and roll attitude angles
using only accelerometer signals. It is related to the fact
that the accelerometer signal contains the information not
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Figure 14: Relative alignment of IMU (orange unit) inside vehicle.
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Figure 15: V-frame definition.

Figure 16: The trajectory of the vehicle.
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only about the object misalignment but also additional
signal components due to vehicle acceleration. Thus, the
information from the gyroscope signal should be used for
the attitude estimation of a moving vehicle. Taking this into
account, it is necessary to adjust the algorithm (described in
Section 6) in such a way that accelerometer measurements
would be nearly ignored, when the vehicle is accelerating.
This can be implemented by setting the Kalman gain matrix
values to zero in the algorithm, when the vehicle has velocity
change more than certain value during 1 second. This value
of velocity change was determined empirically. This value
was set to 0.15 m/s for the considered algorithm here.

The following additional modification of the algo-
rithm was implemented taking in account results from
Section 7.3—to replace state transition matrix Φ by the
corresponding identity matrix (Φ = I), when the vehicle has
velocity change less than 0.15 m/s during 1 second.

The experiment was conducted on the straight good
quality asphalt road. The IMU was fixed rigidly on a board
(Figure 14) inside the vehicle. The IMU is placed on the
board in order for that the IMU x-axis would coincide with
the vehicle longitudinal axis. This can be achieved by a simple
geometrical calculation and defining the corresponding
axes orientation. (Then the y-axis takes correct orientation
automatically). The z-axis of the b-frame was aligned with
the gravity vector orientation. This was implemented by the
verification of the tilt angles of the board. The tilt angles
of the board were verified by an inclinometer in order to
guarantee the minimal difference of the z-axes orientation
for the b and vehicle coordinate frame. This board was fixed
inside the car.

The vehicle coordinate system defines the longitudinal
axis of the vehicle as x, the lateral axis to be y, and the vertical
axis z-points downwards so that it is aligned with the gravity
(Figure 15).

In the beginning of the test, the vehicle was in stationary
mode. Then the vehicle accelerates till certain velocity, after
that the velocity of the vehicle remains nearly the same for
1-2 minutes, and after that the vehicle slowed down, and the
vehicle was again in the stationary mode. The trajectory of
the vehicle moving is shown schematically in Figure 16.

The results of the vehicle attitude estimation are shown
in Figures 17, 18, and 19. The vehicle was stationary for the
first 60 seconds and the last 10 seconds of the experiment.
As expected, the estimation of the pitch and roll based
on accelerometer data (when vehicle is stationary) has less
fluctuations comparing with the attitude estimation, when
the vehicle is moving.

The standard deviation of the pitch/roll estimation
(when the car is stationary) is bigger comparing to the results
shown in Section 7.1. One of the reasons for this is the
additional disturbances of the accelerometer signal caused by
the closing car door, engine switching, and passenger moving
inside the car.

The estimation of the pitch angle (when the car is mov-
ing) has a bit more of fluctuations when comparing to the roll
estimation as the x-accelerometer (measures acceleration of
the vehicle) signal influences the pitch estimation according
to (6).

The roll value was bigger, when the vehicle was stationary
since the vehicle was on the verge (Figure 16), where the
road had greater inclination. The yaw of the vehicle had
significant change in the beginning and in the end of the
movement (Figure 19). This is due to the fact that the car
made a maneuver, moving from the verge to the traffic line.
The initial estimate of the yaw was made using magnetometer
data.

8. Conclusion

The MEMS IMU is capable of estimating the initial attitude
angles (pitch and roll) in the stationary mode without
correction from an external sensor such as the GPS. The
attitude estimation precision (±0.5◦) is sufficient for a
vehicle navigation application. The convergence rate of the
proposed algorithm is very fast: less than 1 second is
necessary to obtain the estimation values of pitch and roll.
The results of the comparison show that the attitude (pitch
and roll) estimations by the proposed algorithm are less noisy
comparing with the MTi-G output. Moreover, the practice
showed that it is necessary to wait for about 1-2 minutes
until the values of pitch and roll from the MTi-G output
stabilize. The heading was estimated using the magnetometer
data. The heading estimation was noisier and less stabile
comparing with the pitch and roll estimation, even taking
into account that the wavelet denoising of the signal was
used.

The estimation of the vehicle attitude is quite noisy,
because the inertial sensors have additional, not enough
reduced measurement errors (mainly sensor biases). It’s
advisable to use specific methods such as stochastic mod-
elling for reducing measurement errors of the inertial sensors
or use an aiding sensor such as the GPS for the estimation
of the measurement errors of the inertial sensors through
fusion with the inertial sensors data. The particle filter [13]
or extended Kalman filter [14] can be used as the data fusion
algorithms.
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