
International Scholarly Research Network
ISRN Physical Chemistry
Volume 2012, Article ID 745616, 12 pages
doi:10.5402/2012/745616

Research Article

Approximate Analytical Solution of Nonlinear Reaction’s
Diffusion Equation at Conducting Polymer Ultramicroelectrodes

Anitha Shanmugarajan,1 Subbiah Alwarappan,2 and Rajendran Lakshmanan1

1 Department of Mathematics, The Madura College, Madurai-625011, India
2 Nanomaterials Research and Education Center, University of South Florida, Tampa, FL, USA

Correspondence should be addressed to Rajendran Lakshmanan, raj sms@rediffmail.com

Received 14 November 2011; Accepted 22 December 2011

Academic Editors: R. Gómez and H. Luo
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A theoretical model of reaction/diffusion within conducting polymer microelectrodes is discussed. The model is based on the
steady-state diffusion equation containing a nonlinear term related to the Michaelis-Menten kinetic of the enzymatic reaction. An
analytical expression pertaining to the concentration of substrate and current is obtained using homotopy perturbation method
for all values of diffusion and the saturation parameter. The substrate concentration profile and current response can be used in
a large range of concentrations including the non-linear contributions. These approximate analytical results were found to be in
good agreement with the previously reported limiting case results.

1. Introduction

The advantages of the ultramicroelectrodes (UMEs) include
steady-state current, rapid response time, minimal iR drop,
lower detection limits, and sensitive analysis in a highly re-
sistive medium [1–4]. Furthermore, due to their diminished
surface area or radii of the electrodes, they are often em-
ployed as probes to monitor various chemical events occur-
ring inside the living cell [5–8]. Ultramicroelectrodes pos-
sess many advantages for studying electrochemical kinetics
and in electroanalytical applications, imaging, and surface
modification [9]. Microelectrodes modified with a polymer
film find potential application in various sensing applications
[10–12]. The working principle of polymer-modified ultra-
microelectrodes occurs in the following manner: initially, the
redox analyte interacts with the immobilized active receptor
sites present in the polymer matrix, then at the underlying
electrode surface. Briefly, we can say that the redox reaction
is mediated by the polymeric layer. Further, due to the
electroactive property of the polymer, charge can percolate
through the polymer chain and thereby reaches the elec-
trode/interface to give rise to a redox current and is di-
rectly proportional to the concentration of the analyte.
The electron transfer occurs between the substrate and the

catalytic receptor site and as a result the kinetics of the
substrate/product transformation will be governed by the
properties of the mediating electroactive polymer film.

Recent advancements in ultramicroelectrodes modified
with conducting polymers were reported elsewhere [13–
18]. Further, the analytical applications of various polymer-
modified sensors and the reaction/diffusion at the conduct-
ing polymer electrode (where the chemical reaction term
is described by Michaelis-Menten kinetics) were reviewed
extensively by various groups [19–23]. Recently, Lyons et
al. [24] evaluated the analytical solutions corresponding to
the steady-state substrate concentration profile and current
observed at a conducting polymer microelectrode when the
substrate concentration is low. For higher values of the
substrate concentration, a kinetic rate law based on the
Michaelis-Menten equation is more appropriate. Recently,
Anitha et al. [25] derived the analytical expression for non-
steady-state concentrations of substrate and mediator at a
polymer modified ultramicroelectrodes using reduction of
order method. However, to the best of our knowledge, there
were no analytical results available till date that corresponds
to the steady-state substrate concentration and current for all
possible values of diffusion parameter γ and the saturation
parameter α. However, in general, analytical solutions of
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Figure 1: Schematic representations of the geometry adopted by the polymer-coated microelectrode and the expected diffusion profile
adopted by the analytes.

Table 1: Approximate expressions of concentration of substrate and current under the boundary conditions (2a) and (2b).

Conditions Concentrations and currents Figures

For very small values of α u = sinh(√γρ)

ρ sinh(√γ)
(5)

Figures
2(a)–2(c)

ψ = √γ coth(√γ)− 1 (6) Figure 4(a)

For large values of α and all
value of γ

u = 1 +
γ(12α2 − 6α− γ)

36α3
(ρ2 − 1) +

γ2

120α3
(ρ4 − 1) (8) Figure 3

ψ = γ(30α2 − 15α− γ)
45α3

(9)
Figures 4(b)

and 4(c)

For small and medium
values of α and all values of γ

u = sinh(√γρ)

ρ sinh(√γ)
− αγ sinh(√γρ)

ρsinh3(√γ)
+

αγ

sinh2(√γ)
(10) Figure 2

ψ = √γ coth(√γ)−1+αγ cosech2(√γ)(√γ coth(√γ)−1) (11)
Figures 4(a)

and 4(c)

Table 2: Approximate expressions of concentration of substrate, and current under the boundary conditions (12a)–(12c).

Conditions Concentrations and currents Figures

For very small values of α
u = sinh(√γρ)

ρ
{

sinh[√γ] +
1
v

(√γ cosh[√γ]− sinh[√γ])
}

(17)
Figures 5 and

6

ψ =
√
γ cosh[√γ]− sinh[√γ]

sinh[√γ] +
1
v

(√γ cosh[√γ]− sinh[√γ])
(18) Figure 8

For large values of α (α ≥ 1)
and all values of γ

u = 1 +
γ(12α2v − 6αv − γv − 2γ)

36α3v

(
ρ2 − 1− 2

v

)

+
γ2

120α3

(
ρ4 − 1− 4

v

) (20) Figure 7

ψ = γ(30α2v − 15αv − γv − 5γ)
45α3v

(21) Figure 9

For small and medium
values of α and all values of γ

u = sinh(√γρ)

ρ
{

sinh[√γ] +
1
v

(√γ cosh[√γ]− sinh[√γ])
}

− αγ sinh(√γρ)

ρ
{

sinh[√γ] +
1
v

(√γ cosh[√γ]− sinh[√γ])
}3

+
αγ{

sinh[√γ] +
1
v

(√γ cosh[√γ]− sinh[√γ])
}2

(22)
Figures 5 and

6

ψ =
√
γ cosh[√γ]− sinh[√γ]

sinh[√γ] +
1
v

(√γ cosh[√γ]− sinh[√γ])

− αγ(√γ cosh[√γ]− sinh[√γ])(
sinh[√γ] +

1
v

(√γ cosh[√γ]− sinh[√γ])
)3

(23) Figure 8
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Figure 2: Plot of normalized substrate concentration “u”at a microelectrode modified with a polymer film as a function of “ρ”. The
concentrations were computed for various values of the reaction diffusion parameter “γ” when (a) α = 0.001, (b) α = 0.01, (c) α = 0.1, and
(d) α = 1. (solid line) (10); (dotted line) (5). Solid lines are compared with points. In this figure (i) γ = 0.1, (ii) γ = 1, (iii) γ = 10, and
(iv) γ = 100.

nonlinear differential equations are more interesting and
useful numerical solutions, as they are used in various kinds
of data analysis. Therefore, herein, we employ analytical
method to evaluate the steady-state substrate concentration
and current for all possible values of diffusion and saturation
parameter.

2. Mathematical Formulation of the Boundary
Value Problem and Analysis

2.1. Assumptions. The conducting polymer film will adopt
a hemispherical geometry upon electrodepositing them on
to a microelectrode support (Figure 1). If such a geometry
is assumed then the substrate will exhibit spherical diffusion
both in solution immediately adjacent to the polymer film
and within the polymer film itself. We assume that the
substrate exhibits Michaelis-Menten kinetics when it reacts

at a site within the polymer film. The substrate exhibits first-
order kinetics approximation when the substrate concentra-
tion is low. For higher values of the substrate concentration
a kinetic rate law based on the Michaelis-Menten equation
is more appropriate. We also assume that the partition
coefficient for the substrate is unity.

2.2. Neglecting Substrate Concentration Polarization in Solu-
tion. Initially, the substrate diffusion in solution, the trans-
port, and kinetic processes within the polymer film were
all neglected. On the other hand, the reaction/diffusion
equation under steady-state condition corresponding to the
normalized substrate concentration within the polymer film
can be expressed as [24]

d2u

dρ2
+

2
ρ

du

dρ
− γu

1 + αu
= 0. (1)
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Figure 3: Plot of normalized substrate concentration “u” at a microelectrode modified with a polymer film as a function of “ρ”. The
concentrations were computed using (8) for various values of the reaction diffusion parameter “γ” when (a) α = 10 for (i) γ = 0.1, (ii)
γ = 1, (iii) γ = 10, (iv) γ = 20, and (v) γ = 30, (b) α = 50 for (i) γ = 0.1, (ii) γ = 1, (iii) γ = 10, (iv) γ = 50, and (v) γ = 100, and (c) when
α = 100 for (i) γ = 0.1, (ii) γ = 1, (iii) γ = 50, (iv) γ = 100, and (v) γ = 200.

In (1), normalized substrate concentration u = s/s∞, where
s denotes the substrate concentration within the polymer
film and s∞denotes the bulk concentration of substrate. The
saturation parameter α = s∞/KM , where KM denotes the
Michaelis constant. The reaction/diffusion parameter γ is
given by γ = kccΣa2/KMDS, where kc represents the reaction
rate constant, a denotes the radius of the microelectrode.
cΣ denotes the total catalyst concentration in the film, and
DS is the diffusion coefficient of the substrate within the
polymer film. The normalized distance parameter ρ is given
by r/a (where r represents the radial variable). The boundary
conditions pertaining to the normalized form are

ρ = 0,
du

dρ
= 0, (2a)

ρ = 1, u = 1. (2b)

The boundary condition (2a) states that the substrate is
electroinactive at the disk. The normalized current density is
defined as

ψ = ia

nFADSs∞
=
(
du

dρ

)
ρ=1

. (3)

2.3. Unsaturated (First-Order) Catalytic Kinetics. We initially
consider the situation where the substrate concentration in
the film is less than the Michaelis constant KM . This situation
will pertain when the product αu� 1. Hence (1) reduces to

d2u

dρ2
+

2
ρ

du

dρ
− γu = 0. (4)
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Figure 4: Plot of normalized current “ψ” versus the reaction/diffusion parameter “γ” at a microelectrode modified using a conducting
polymer film. (a) (i) α = 0.1, 1, the current was calculated using (6) and (11) for all small and medium values of α. (b) (i) α = 5, (ii) α = 10,
(iii) α = 100, the current was calculated using (9) for all large values of “α”. (c) (i) α = 0.01, 0.1, 1 (ii) α = 10, (iii) α = 50, and, (iv) α = 100,
the current was calculated using (9) and (11) (solid line) (11); (dotted line) (6). Solid lines are compared with points.

By solving (4), we can obtain the expression for the normal-
ized substrate concentration as follows:

u
(
ρ, γ
) = sinh

(√
γρ
)

ρ sinh
(√

γ
) . (5)

Also the expression of the normalized steady-state current
density is given below

ψ
(
γ
) = √γ coth

(√
γ
)
− 1. (6)

2.4. For Large Values of the Saturation Parameter α and All
Values of the Reaction/Diffusion Parameter γ. We now con-
sider the limiting situation where the substrate concentration

in the film is very much greater than the Michaelis constant
KM . In this case αu� 1 and (1) reduces to

d2u

dρ2
+

2
ρ

du

dρ
− γ

α
+

γ

α2u
= 0. (7)

We obtain the approximate expression of normalized con-
centration of substrate as

u
(
ρ, γ,α

) = 1 +
γ
(
12α2 − 6α− γ)

36α3

(
ρ2 − 1

)
+

γ2

120α3

(
ρ4 − 1

)
.

(8)

Using (3), we obtain the expression of the normalized current
density as

ψ
(
γ,α
) = γ

(
30α2 − 15α− γ)

45α3
. (9)
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Figure 5: Plot of normalized substrate concentration “u” at a microelectrode modified with a conducting polymer film as a function of
“ρ”. The concentrations were computed for various values of Biot number “v” when (a) α = 0.001, γ = 0.1, (b) α = 0.01, γ = 0.1, and (c)
α = 0.1, γ = 0.1. (solid line) (22); (dotted line) (17). Solid lines are compared with points. In this figure (i) v = 0.1, (ii) v = 0.5, (iii) v = 1,
(iv) v = 5, (v) v = 10, (vi) v = 50.

The above approximation will be valid for all values of dif-
fusion parameter γ and large values of the saturation pa-
rameter α.

2.5. For Small and Medium Values of the Saturation Parameter
α and All Values of the Reaction/Diffusion Parameter γ.
In recent days, homotopy perturbation method is often
employed to solve several analytical problems. In addition,
several groups demonstrated the efficiency and suitability
of the HPM for solving nonlinear equations and other
electrochemical problems [26–29]. He [30] used HPM to
solve the Lighthill equation, the Duffing equation [31], and
the Blasius equation [32]. This method has also been used
to solve nonlinear boundary value problems [33], integral
equation [34–36], Klein-Gordon and Sine-Gordon equations
[37], Emden-Flower-type equations [38], and several other

problems [39–41]. Using homotopy perturbation method
(refer to Appendix A), the approximate solution of (1) is

u
(
ρ, γ,α

) = sinh
(√

γρ
)

ρ sinh
(√

γ
) − αγ sinh

(√
γρ
)

ρ sinh3
(√

γ
) +

αγ

sinh2
(√

γ
) .
(10)

The normalized concentration of the substrate satisfies the
boundary conditions (2a) and (2b). The expression of the
normalized current density becomes

ψ
(
γ,α
) = √γ coth

(√
γ
)
− 1

+ αγ cosech2
(√
γ
)⌊√

γ coth
(√
γ
)
− 1
⌋
.

(11)

Equations (10) and (11) represent approximate expressions
of normalized substrate concentration and current density
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Figure 6: Normalized substrate concentration “u” at a microelectrode modified with a conducting polymer film as a function of “ρ”. The
concentrations were computed for various values of the Biot number “v” when (a) α = 0.001, γ = 50, (b) α = 0.01, γ = 50, and (c)
α = 0.1, γ = 50. (solid line) (22); (dotted line) (17). Solid lines are compared with points. In this figure (i) v = 0.1, (ii) v = 0.5, (iii) v = 1,
(iv) v = 5, (v) v = 10, (vi) v = 50.

for all small and medium values of the saturation parameter
α and all values of the diffusion parameter γ.

2.6. Discussion. The kinetic response of a microelectrode
depends on the concentration of substrate. The concen-
tration of substrate depends on the following two factors
γ and α. The diffusion parameter γ represents the ratio of
the characteristic time of the enzymatic reaction to that of
substrate diffusion. This parameter can be varied by chang-
ing either the radius of the microelectrode or the amount
of catalyst in conducting polymer ultramicroelectrodes. This
parameter describes the relative importance of diffusion and
reaction in conducting polymer ultramicroelectrodes. When
γ is small, the kinetics are dominant resistance; the uptake
of substrate in the polymer film is kinetically controlled.
Under these conditions, the substrate concentration profile

across the microelectrode is essentially uniform. The overall
kinetics are determined by the total amount of active catalyst
cΣ. When the diffusion parameter γ is large, diffusion
limitations are the principal determining factor. In both the
unsaturated and saturated situations (small and large values
of α), the current response increases as γ increases. This is to
be expected as the reaction kinetics become more facile.

The approximate expressions of concentration of sub-
strate and current density for various values of α and γ are
reported in Table 1. In the case when the substrate diffusion
in the adjacent solution is neglected, the expression corre-
sponding to the concentration of substrate (5) and current
(6) was provided by Lyons et al. [24] (refer to Table 1).

Figure 2 represents the substrate concentration u for
various values of the reaction diffusion parameter γ and for
α ≤ 1. From Figure 2, it is evident that the normalized
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Figure 7: Plot of Normalized substrate concentration “u” at a microelectrode modified with a polymer film as a function of “ρ”. The
concentrations were computed using (20) for various values of the Biot number “v” when γ = 0.1 and for (a) α = 5, (b) α = 10 and (c)
α = 50. In this figure (i) v = 0.1, (ii) v = 0.5, (iii) v = 1, (iv) v = 5, (v) v = 10, (vi) v = 50.

steady-state substrate concentration u reaches the maximum
value 1, when ρ = 1. Figure 3 indicates the values of substrate
concentrations for large values of α (α ≥ 10) and all values
of γ. From Figure 3, the value of concentration u is inversely
proportional to the value of the reaction diffusion parameter
γ. When γ is small (γ ≤ 1), the substrate concentration
profile across the microelectrode is uniform (refer to Figures
2 and 3).

Figure 4 indicates the normalized steady-state current ψ
for all values of α. From Figure 4(a), it is noticed that our
analytical results (9) and (11) agree with the limiting result of
Lyons et al. [24] work. The normalized steady-state current
for all large values of α is calculated using (9) in Figure 4(b).
A series of normalized current density for all values of α
is plotted in Figure 4(c). From Figures 4(b) and 4(c), it is
evident that the value of the current decreases when α in-
creases as γ or radius of the electrode increases.

3. Problem Resolution including Substrate
Concentration Polarization in Solution

Here, we include the substrate diffusion in the solution
adjacent to the polymer film. In this case transport and
kinetics are described by (1), but the boundary conditions
are given by [24]

du

dρ
= 0 at ρ = 0, (12a)

u = u1 at ρ = 1, (12b)

du

dρ
= v(1− u1) at ρ = 1, (12c)
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Figure 8: Normalized current “ψ” versus the reaction/diffusion parameter “γ” at a microelectrode modified using a conducting polymer
film. The current was calculated for various values of the Biot number “v” when (a) α = 0.001, (b) α = 0.01, and (c) α = 0.1. (solid line)
(23); (dotted line) (18). Solid lines are compared with points. In this figure (i) v = 0.1, (ii) v = 0.5, (iii) v = 1, (iv) v = 5, (v) v = 10, (vi)
v = 50, and (vii) v = 100.

where the Biot number v has been introduced

v = k′D
kD

, (13)

where k′D represents the diffusional rate constant of the
substrate in solution and kD is the value that represents the
transport of substrate within polymer film. The diffusional
rate constant kD to a microelectrode is given by

kD = 4DS

πa
. (14)

Using (13), we obtain

v = 4
π

(
D′S
DS

)
. (15)

3.1. Unsaturated (First-Order) Catalytic Kinetics. Initially, we
considered a situation where the substrate concentration in
the film is less than the Michaelis constant KM . This situation
will pertain when the product αu� 1. Hence (1) reduces to

d2u

dρ2
+

2
ρ

du

dρ
− γu = 0. (16)

By solving (16) using the boundary condition (12a)–
(12c), we can obtain the analytical expression of normalized
concentration of substrate as follows:

u
(
ρ, γ, v

) = sinh
(√

γρ
)

ρ
{

sinh
(√

γ
)

+
1
v

[√
γ cosh

(√
γ
)
− sinh

(√
γ
)]} .

(17)
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Figure 9: Normalized current “ψ” versus the reaction/diffusion
parameter “γ” at a microelectrode modified using a conducting
polymer film. The current was calculated using (21) for various
values of the Biot number “v” when α = 10. In this figure (i) v = 0.5,
(ii) v = 1, (iii) v = 5, (iv) v = 10, and (v) v = 100.

Also the expression of the normalized current density is
shown below

ψ
(
γ, v
) =

√
γ cosh

⌊√
γ
⌋
− sinh

⌊√
γ
⌋

sinh
(√

γ
)

+
1
v

[√
γ cosh

(√
γ
)
− sinh

(√
γ
)] .

(18)

The above analytical expression of substrate concentration
and current is identical to Lyons et al. [24] work.

3.2. For Large Values of the Saturation Parameter α and All
Values of the Reaction/Diffusion Parameter γ. We now con-
sider the limiting situation where the substrate concentration
in the film is very much greater than the Michaelis constant
KM . In this case αu� 1 and (1) reduces to

d2u

dρ2
+

2
ρ

du

dρ
− γ

α
+

γ

α2u
= 0. (19)

By solving (19), we obtain the approximate expression of the
normalized concentration of substrate as

u
(
ρ, γ,α, v

) = 1 +
γ
(
12α2v − 6αv − γv − 2γ

)
36α3v

(
ρ2 − 1− 2

v

)

+
γ2

120α3

(
ρ4 − 1− 4

v

)
.

(20)

Also we can obtain the expression of the normalized current
density as

ψ
(
γ,α, v

) = γ
(
30α2v − 15αv − γv − 5γ

)
45α3v

. (21)

The above approximation will be valid for all values of dif-
fusion parameter γ and large values of saturation parameter
α.

3.3. For Small and Medium Values of the Saturation Parameter
α and All Values of the Reaction/Diffusion Parameter γ. Using
this homotopy perturbation method, we can obtain the
solution of (1)

u
(
ρ, γ,α, v

)

=
sinh

(√
γρ
)

ρ
{

sinh
(√

γ
)

+
1
v

[√
γ cosh

(√
γ
)
− sinh

(√
γ
)]}

−
αγ sinh

(√
γρ
)

ρ
{

sinh
(√

γ
)

+
1
v

[√
γ cosh

(√
γ
)
− sinh

(√
γ
)]}3

+
αγ{

sinh
(√

γ
)

+
1
v

[√
γ cosh

(√
γ
)
− sinh

(√
γ
)]}2 .

(22)

The above equation satisfies the boundary conditions (12a)–
(12c). The expression of the normalized current density
becomes

ψ
(
γ,α, v

) =
√
γ cosh

⌊√
γ
⌋
− sinh

⌊√
γ
⌋

sinh
(√

γ
)

+
1
v

[√
γ cosh

(√
γ
)
− sinh

(√
γ
)]

−
αγ
(√

γ cosh
⌊√

γ
⌋
− sinh

⌊√
γ
⌋)

{
sinh

(√
γ
)

+
1
v

[√
γ cosh

(√
γ
)
−sinh

(√
γ
)]}3 .

(23)

Equations (22) and (23) represent a new closed form of
approximate expressions of normalized substrate concentra-
tion and current density for small and medium of parameters
α and all values of γ.

3.4. Discussion. In the case when the substrate concentration
is very low, the expression corresponding to the concentra-
tion of substrate (17) and current (18) was provided by Lyons
et al. [24] (refer to Table 2). Figure 5 represents the nor-
malized steady-state substrate concentration u at a polymer-
coated microelectrode. The concentration of substrate was
calculated for all small values of the saturation parameter α.
From Figure 5, it is inferred that the concentration increases
when v increases. Also for any fixed values of v and small
values of α and γ, the concentration is uniform throughout
the film.

The normalized steady-state substrate concentration u is
plotted for all small values of the saturation parameter α in
Figure 6. From Figure 6, it is evident that when the values
of the Biot number v increase, the values corresponding
to the substrate concentration u also increase when γ ≥
50. Our analytical results agree with the limiting result of
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Lyons et al. [24] work. Figure 7 indicates the values of sub-
strate concentrations for large values of α (α ≥ 5) and all
values of the Biot number v. From Figure 7, it is inferred that
u ≈ 1 when v ≥ 50 and γ ≤ 0.1.

Figure 8 represents the normalized current density ψ for
all values of the Biot number v. In addition, from Figure 8,
we noticed that the normalized current density increases as
the Biot number v increases. Normalized current density ψ
versus γ for various values of the Biot number v and for large
values of α is plotted using (21) in Figure 9. From Figure 9,
it is evident that the value of the current increases when the
Biot number v increases.

4. Conclusions

The steady-state amperometric response for a conducting
polymer microelectrode system which exhibits Michaelis-
Menten kinetics has been discussed. We have presented a
mathematical model of reaction and diffusion within a con-
ducting polymer film which is deposited on a support surface
of micrometer dimensions. Approximate analytical solutions
of the nonlinear reaction diffusion equation have been de-
rived. Analytical expressions of substrate concentration with-
in the polymer film are derived for all values of the diffusion
parameter and the saturation parameter using homotopy
perturbation method. The analytical results derived therein
may be used to predict the steady-state sensor response on
experimental values, and the theoretical value of surface con-
centration for which the amperometric response is nonlin-
ear.

Appendix

Solution of (1) Using Homotopy
Perturbation Method

In this appendix, we indicate how (10) in this paper is de-
rived. To find the solution of (1), we first construct a homo-
topy as follows:

(
1− p

)[d2u

dρ2
+

2
ρ

du

dρ
− γu

]

+ p

[
(1 + αu)

(
d2u

dρ2
+

2
ρ

du

dρ

)
− γu

]
= 0.

(A.1)

The approximate solution of (A.1) is given by

u = u0 + pu1 + p2u2 + p3u3 + · · · . (A.2)

Substituting (A.2) into (A.1) and comparing the coefficients
of like powers of p, we get

p0 :
d2u0

dρ2
+

2
ρ

du0

dρ
− γu0 = 0, (A.3)

p1 :
d2u1

dρ2
+

2
ρ

du1

dρ
− γu1 + αu0

d2u0

dρ2
+

2
ρ
αu0

du0

dρ
= 0.

(A.4)

The initial approximations are as follows:

u0
(
ρ = 1

) = 1,

(
du0

dρ

)
ρ=0

= 0, (A.5)

ui
(
ρ = 1

) = 0,

(
dui
dρ

)
ρ=0

= 0, ∀i = 1, 2, 3, . . . .

(A.6)

Upon solving (A.3) and (A.4) and using the boundary con-
ditions (A.5) and (A.6), we get

u0
(
ρ
) = sinh

(√
γρ
)

ρ sinh
(√

γ
) , (A.7)

u1
(
ρ
) = −αγ sinh

(√
γρ
)

ρsinh3
(√

γ
) +

αγ

sinh2
(√

γ
) . (A.8)

u1(ρ) is valid only when α and γ are small. According to the
HPM, we can conclude that

u
(
ρ
) = lim

p→ 1
u
(
ρ
) ≈ u0 + u1. (A.9)

Using (A.7) and (A.8) in (A.9), we obtain the final result as
described in (10). Similarly (22) can also be obtained.
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