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Indoor navigation is challenging due to unavailability of satellites-based signals indoors. Inertial Navigation Systems (INSs) may be
used as standalone navigation indoors. However, INS suffers from growing drifts without bounds due to error accumulation. On
the other side, the IEEE 802.11 WLAN (WiFi) is widely adopted which prompted many researchers to use it to provide positioning
indoors using fingerprinting. However, due to WiFi signal noise and multipath errors indoors, WiFi positioning is scattered and
noisy. To benefit from both WiFi and inertial systems, in this paper, two major techniques are applied. First, a low-cost Reduced
Inertial Sensors System (RISS) is integrated with WiFi to smooth the noisy scattered WiFi positioning and reduce RISS drifts.
Second, a fast feature reduction technique is applied to fingerprinting to identify the WiFi access points with highest discrepancy
power to be used for positioning. The RISS/WiFi system is implemented using a fast version of Mixture Particle Filter for state
estimation as nonlinear non-Gaussian filtering algorithm. Real experiments showed that drifts of RISS are greatly reduced and
the scattered noisy WiFi positioning is significantly smoothed. The proposed system provides smooth indoor positioning of 1 m
accuracy 70% of the time outperforming each system individually.

1. Introduction

Inertial Navigation Systems (INSs) [1, 2] are self-contained
inertial-sensors-based navigation systems that can work
independently without any kind of help from an external
navigation source. INS solutions utilize inertial sensors to
provide navigation information continuously with time at
high rates. Although INS provides good short-term accuracy
without any external help, small sensors errors accumulate
due to mathematical integration resulting in large drifting
that grows without bounds. Additionally, if low-cost MEMS-
grade [3] inertial sensors are considered, errors exhibit
complex stochastic characteristics which are hard to model
using linear estimator such as Kalman Filter because of
the high inherent nonlinearity and randomness. In [4], a
Reduced Inertial Sensors System (RISS) suitable for wheeled
vehicles navigation was introduced. The aim was to reduce
sensors cost and to simplify navigation equations reducing
sources of errors. For this reasons, this paper utilizes an RISS
system that provides navigation information for wheeled

vehicles using only single vertically aligned gyroscope, and
the vehicle speed sensor (odometer) (see Figure 1). This
configuration is suitable for wheeled vehicles such as robots
in which the motion is mainly in 2D assuming flat ground.

Although RISS utilizes the vehicle odometer which is
more accurate than MEMS-based inertial sensors, the drifts
in the gyroscope still cause the overall system accuracy
to deteriorate over short periods of time. For the above
reasons, INS and RISS systems are usually integrated with
other navigation systems that have complementary errors
characteristics such as Global Positioning Systems [1, 5].
However, for indoor areas, GPS and other satellite-based
positioning systems do not work due to signal blockage.
Thus, other wireless infrastructures that provide strong
coverage indoors are to be utilized.

The IEEE 802.11 WLAN (WiFi) [6] is a freely available
wireless infrastructure that provides strong coverage indoors.
According to WiFi-Alliance [7], Wi-Fi is used by over
700 million people and there are about 800 million new
Wi-Fi devices every year. This freely available wireless



FiGure 1: 2D RISS platform.

infrastructure prompted many researchers to develop WiFi-
based positioning systems for indoor environments [8, 9].
Mainly, three approaches for WiFi-based positioning exist
[10, 11]. Time-based, Angle-based, and Signal-Strength-
based approaches. Time of arrival (ToA) and Time Difference
of Arrival (TDoA) are two common Time-based wireless
positioning approaches [10]. In Time-based wireless posi-
tioning systems, distance estimation between the user device
and at least three reference locations is sufficient to provide
3D positioning information using Trilateration technique.
In Angle-based wireless positioning systems, Triangulation
[10, 11] is used to provide 3D positioning information.

One of the drawbacks of both Time-based and Angle-
based methods is the need for additional hardware to be set
up on top of the existing WiFi network. Moreover, a special
time synchronization system is required to correct for clock
drifts like the case in GPS [1, 5]. For the Angle-based posi-
tioning methods, high-cost directional antennas arrays are
required. Another drawback of both Time-based and Angle-
based approaches is the need for a direct line of sight (LOS)
between transmitters and receivers. Thus, these two methods
are not suitable for indoor environments due to lack of LOS
in most scenarios because of dense multipath resulting from
wireless signal reflection and refraction on different surfaces
indoors. Thus, in this paper, an optimized Signal Strength-
based WiFi Fingerprint positioning algorithm is developed.

Fingerprint-based wireless positioning systems [10-13]
depend on the fact that signal strength attenuates with
signal propagation. Signal propagation in free space can be
easily modelled using logarithmic relationships that relate
signal strength received by a receiver to distance between
transmitter and receiver. However, inside buildings and in
indoor areas, signal propagation suffers from multipath, and,
hence, simple mathematical formulas cannot be used to
model signal strength/distance relationship. As a solution
to this problem, exhaustive signal strength survey is used
to accurately model signal strength measurements from
multiple wireless access points to a specific location or
position (not distance). This approach has the advantage
of accurate modeling of multipath. Additionally, it does
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not require the wireless access points to be located in
known locations as long as they are fixed. Furthermore,
an interesting advantage of fingerprint-based positioning
methods is that they do not require time synchronization.

According to many research results [12—14], although
the fingerprint positioning method requires time-consuming
offline wireless survey, it is the most accurate wireless
positioning method in indoors. The explanation is that
radiomap accurately models the hard signal strength patterns
in indoor areas. Thus, in this paper, an optimized WiFi
fingerprint-based positioning system is utilized. The WiFi
fingerprint-based positioning system introduced here utilizes
a novel approach based on Fast Orthogonal Search (FOS)
[15] to automatically and quickly select the best arrangement
of WiFi access points to obtain the best positioning accuracy.
Although this approach achieves meter-level accuracy, the
solution is not smooth enough and contains many outliers
due to signal strength noises (see Figures 7, 8, and 9) which
prompted many researchers to explore the possibility of
integration between different navigation systems [16, 17].

The possibility of integrating WiFi-based positioning
systems with INS has been recently explored by researchers
[16, 17]. Kalman Filter [3, 16] is usually the preferred
integration technique. However, KF has limitations such
as system dynamic models linearity and the assumption
of Gaussian states distribution which is not suitable for
low-cost MEMS-based inertial sensors and the noisy WiFi-
based positioning indoors. The limitations of KF were very
clear in [16] in which WiFi positioning was integrated
with INS providing an accuracy of 5m which doesn’t
fulfill the accuracy requirements of indoor location-based
services (LBSs). In Atia et al. [18], the authors proposed
a particle-filtering-based 2D WiFi/INS solution in which
WiFi positioning is integrated with vertical gyroscope and
two accelerometers. In this paper, the authors introduce a
new configuration that integrates RISS and optimized WiFi
system. The basic advance in this work is as follows. (1) A
new RISS system is used. (2) The WiFi fingerprint technique
is optimized by a novel feature reduction algorithm to
identify the best few WiFi Access Points for positioning. (3)
The area of experiments is bigger and more complex and
challenging.

2. RISS Navigation System

In RISS systems for wheeled vehicles such as robots, the
motion is mainly in 2D assuming flat ground. The gyroscope
is attached with the z (vertical) axis and measures the
rotation rate around z axis as shown in Figure 1. Motion
equations are implemented in a local navigation frame which
is usually taken as east, north, and up (vertical) rectangular
frame. In 2D, we are concerned only with azimuth (heading),
north, and east velocity and position components. The
azimuth angle A of the vehicle is calculated using the
following equation:

A= J(wz —wising — %Etfl;f)dt,
N
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FIGURE 2: RISS system block diagram.

where w, is the gyroscope reading, w¢ the earth rotation
rate (15°/hr), V. is the velocity in east direction, ¢ is the
latitude, Ry is the normal radius of curvature of earth, and
h is the altitude. Once the heading angle A of the platform
is calculated, it can be used along with the vehicle odometer
Vo4 to calculate east and north velocities as follows:

Ve = VoqsinA,
(2)
Vy = Vod cosA.
Position (latitude ¢ and longitude 1) are given by
Vi
¢ a J Ry + hdt’
(3)

Ve

= e

where Ry, is the meridian radius of curvature of the earth at
current position.

Latitude ¢ and longitude A can be then converted to
meters using the following equations:

Prorth = (¢ - ¢0)(RM + h)) (4)
Ppast = (A = A0)(Ry + h) cos ¢. (5)

The RISS configuration is shown in the following block
diagram in Figure 2.

Due to lack of a reference solution to compare results and
calculate errors, an experiment was done on a predefined
trajectory with known waypoints 5 to 7 meters apart. To
calculate the root mean square position error (RMSE),
the solution trajectory is compared with the reference
trajectory at the way-points. Figure3 shows the testing
trajectory inside the sixth floor of Department of Electrical
& Computer Engineering in Queen’s University, Kingston,
Ontario, Canada. Figure 4 shows the results of RISS system
on the testing trajectory shown in Figure 3. The effect of
the gyroscope drifts can be seen clearly in Figure 4 from
the heading errors which causes the trajectory to deviate
from the reference. Also the effect of odometer error is clear
from the graph where we can see stretch in the most right
part of the trajectory. Odometer error is also known from
calculations since the reference distance travelled is 110.5m
while the odometer reading shows a distance travelled of
118.8 m.

FIGUrRe 3: Experiments Trajectory in Computer Engineering
Department Queen’s University. Kingston, ON, Canada.
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FIGURE 4: RISS solution showing effects of gyroscope drifts and
odometer errors.

3. WiFi Fingerprint Positioning System

The basic unit in a WiFi network is the Wireless Access Point
(AP). Each AP periodically sends beacon frames [6]. The
beacon messages contain MAC Address which is a unique
identification set by the manufacturer. When the beacon
frame is received by a WiFi client’s network card, the interface
card reports the received signal strength indicator (RSSI)
in dBm. Figure 5 shows a histogram of 200 RSSI values
measured in the same location with LOS conditions. The
measurements were taken from 10 m distance from Netgear
AP.

In WiFi Fingerprint-based positioning method [12-14],
the signal strength from multiple APs is recorded from many
reference known locations. These radio records are saved in
an offline phase to build a radiomap of the environment.
In online phase, the signal strength measured by the WiFi
client from multiple APs is matched with the signal strength
records of the radiomap to estimate the client position.
Building the radiomap can be automated like the work done
in [19]. Many pattern matching and classification algorithms
can be used for positioning [10, 11]. Since the main focus
in this paper is to show the benefits of integration with
inertial sensors to smooth the positioning output, a k-
nearest neighbour (K-NN) method with weighted averaging
modification is used as an efficient fingerprinting algorithm.
K-NN algorithm selects the k points in the radiomap that
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FIGURE 5: WiFi measurements histogram in a single location.

are nearest to the current client RSSI measurements. Instead
of averaging these points, a weighted average is performed
by giving the highest weight to the nearest reference point.
Thus, given current WiFi RSSI;, the current position P, is
calculated by

P, =wlP1+w2P2+ - - - + wi Py,
exp(~[RSSI - RSSL]?) (6)

) sk exp(—[RSSIC—RSSIjr))

Wi

where RSSI; is the WiFi readings recorded with point P; in
the radio-map database.

In this work, a radiomap was collected using a laptop on a
mobile robot (see Figure 6) in the experiments area shown in
Figure 3. A total of 132 unique MAC addresses were recorded
in this area which is considered as a large number that may
negatively affect the accuracy and speed of the presented
WiFi-positioning system. Online WiFi measurements were
recorded while following the testing prespecified trajectory
using the mobile robot. K-NN-weighted average algorithm
was applied and the solution obtained is shown in Figures 7,
8, and 9. East and North positions are plotted separately to
show the outliers points and the noisy scattered nature of the
WiFi-positioning system. Although the WiFi-positioning is
noisy and scattered, the accuracy is consistent without drifts
over the time without bounds like the case in inertial solution
(see Figure 4). Thus, there is a clear complementary error
behaviour between WiFi-positioning and inertial navigation
which prompts researchers to integrate both systems to
obtain more accurate and smooth results.

4. Challenges and Research Objectives

After having a detailed view on the performance of the
MEMS-based RISS system and the WiFi-based positioning
system separately, a summary of the challenges followed by
the research objectives of this work is given. The challenges
in the RISS system side are mainly the gyroscope drifts
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FiGURE 6: Radiomap collection process.

and the odometer errors. The effects of these two sources
of errors are clear in Figure 4. The challenges with the
WiFi-positioning system are mainly due to signal strength
noise and the too large number of MAC addresses in the
constructed radiomap. Based on these challenges, the overall
ultimate objective of this work is to provide a low-cost indoor
RISS/WiFi integrated navigation system that can provide
meter-level accuracy with smooth output in indoor and GPS-
denied environments such as large buildings, hospital, and
airports. To achieve this objective, the following problems are
tackled:

(1) removing the drifts due to gyroscope and odometer
errors in RISS system;

(2) filtering out the outliers and scattered noisy position-
ing of the WiFi system;

(3) reducing the feature dimensionality of the WiFi
radiomap from 132 columns to only 4 columns by
selecting the 4 most significant WiFi access points’
combinations to improve the accuracy and reduce
processing time to meet real-time embedded systems
requirements.

5. Methodology

5.1. Bayesian Filtering. The moving object state xy is defined
as a vector that contains the vehicle 2D position, velocity,
and heading. Instead of dealing with the state as crisp values,
Bayesian filtering [2] considers the state as a probability.
Let p(xx | Zi) be the probability density function (PDF)
of a moving object state conditioned on measurements
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Figure 8: WiFi North position solution.

Zi (sensors measurements and aiding source observations).
Bayesian filtering considers the aiding sources assumes
that the sates are 1st order Markov process [20, 21]. The
estimated p(xx | Zi) represents all the knowledge about
the moving object state x; which is obtained from two
probabilistic models; those are the state transition model
p(xk | Xk—1,uk—1) (system model) and the observation
likelihood p(zk | xk) (observation or measurement model).
In p(xk | Xk—1, ux—1), the uy_ is the input control signal that
stimulates the transition from state x;_; to state xx.

To estimate the navigation states, the new density p(xx |
Zx) is computed recursively at each time step in two
phases [20, 21]: prediction phase and update phase. In the
prediction phase, the transition is performed according to
state transition model (system model). Knowing the PDF
p(Xk—1 | Zg—1) at time step k — 1, the state transition model is
used to predict the current state PDF p(x¢ | Zx—1) as follows:

P(Xk | Zy—y) = JP(Xk | Xk—1, Wp—1) p(Xk—1 | Zi—1)dXp—1.
(7)

In the update phase, the observation likelihood is used to
obtain the posterior PDF p(xi | Z) using Bayes rule:

P(zi | x1) p(Xk | Z—1)
plzi | Zi—1)

>

p(xk | Zy) =
(8)
Pz | Zy—y) = JP(Zk | x1) p(xk | Zie—1)dxXx.
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FIGURE 9: WiFi trajectory solution.

Figure 10 is a simplified explanation for the sequence of
prediction and update to estimate p(xx | Z).

5.2. Particle Filtering (PF). Bayesian Filtering problems
formulation yields integral equations that are analytically
intractable in case of nonlinear non-Gaussian states [22].
Thus, PF was proposed as a Monte-Carlo-based solution for
the Bayesian Filtering problem [20-22]. It is an approximate
solution to Bayesian Filtering that represents PDFs by
sufficient number of samples (particles). At each time
step k, the PDF p(xx | Zx) is approximated by a set of N
random samples or particles Sy = {s;V,...,s;™}. Here
the ith sample has value x:) as the value of the state
and 1, as the value of weight. At k = 0, the sample set
So = {(x0,m®) | i = 1,...,N} is initialized with equal
weights based on any knowledge about the object’s initial
state. An iteration of PF has three important steps: prediction
phase, update phase, and resampling step.

In prediction phase, starting from the set of samples
Sko1 = {xe1Dyme @Y | i = 1,...,N} (where m @ =
1/N) the transition model is applied to each sample s,V =
(xk-17, 1/N) and a new sample si(i) = (x,;(i), 1/N) is drawn
from p(xx | Xe_1®, ug_1). Thus, a new sample set S, is
obtained that approximates the predictive probability density
PXx | Zi—1).

In the update phase, the observations Z; are taken into
account and each of the samples in S}, is weighted according
to its Euclidean distance from the observations according
to the formula: w; = Ae’(”Hx"_Z"”), where w; is the new
sample weight, H is a design matrix that maps the state
Xr to observables, A is a weighting factor, and Zy is the
observations.

Then all weights are normalized. The weighted sample set
Sk approximates the posterior PDF p(xx | Zx). In resampling
step, the sample set Sy = {(xx?, ") | i = 1,...,N} (where
m) = 1/N) is obtained by randomly selecting from the
weighted set S = {()N:,({'),ﬁil)) | i = 1,...,N} such that
each sample is selected number of times proportional to its
weight. Thus, the obtained S still approximates the required

P(xx | Z).
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5.3. Mixture Particle Filtering. If sensors worked without
aiding source (measurement model), errors may be too large
such that the sample set Sy = {si(V,...,s5t™} that was
predicted by the system model will be very apart from the
observations. This means that the PDFs p(xx | Xx—1,uk—1)
and p(zx | xx) will not overlap and they are very apart
from each other. Then, all the weights (which depend on
the Euclidean distance) will be too small or tend to zero.
Thus, the new PDF p(x; | Zi) will not be accurate and
very large number of particles will be required to cover
this gap between the predicted states and the aiding source
observation. To overcome this problem mixture PF was
introduced [23]. In mixture PF, the idea is to add to the
sample set Sy = {(x,m?) | i = 1,...,N} some samples
from the aiding observations (WiFi observations in this
case). This assures better coverage of the state space with
a much smaller number of samples than traditional PE In
[24], the importance weights of these new samples were
calculated according to the probability that they came from
the previous sample set and the latest system model output.
The new samples weights are calculated using the formula
w; = Be~ %% \vhere x; is the mean of the predicted
samples. The weights of the new sample set are normalized
and the resampling step is implemented normally.

5.4. Fast Mixture Particle Filtering. The mixture PF is further
optimized for real-time operation using the fast median-
cut clustering algorithm developed by Atia et al. (2010)
[25] applied to INS/GPS integration. In this paper, we
extended the usage of the optimization to WiFi/RISS case
since the weighting of those samples includes a large
number of complex mathematical operations. The proposed
optimization is to use a fast clustering algorithm (which
is a modified fast version of median cut clustering [25])
to reduce the number of required calculations. Only the
representative samples in the predicted sample set are used.
This optimization step reduces the computation complexity
needed in Mixture PF by 80%. In the work done in
Atia et al. [25], Mixture PF iteration takes 0.0978 secs
on Arm-Cortex A8 600 MHz CPU on WinCE Operating
System.

5.5. Adaptive Mixture Particle Filter. In the weighting steps
of Mixture PF, the weighting formulas w; = Ae~{/H*~%ID
and w; = Be~ (H%=Zl) depend on Euclidean distance
between observations zx (WiFi positions in our case) and
Hxy (the predicted positions calculated by RISS in our
case) and the weighting factors A and B. In this work,
an adaptive mechanism is utilized by changing A and B
dynamically at run-time according to conditions of motion
as follows: in the early beginning of the navigation mission
and shortly in motion after each stop during the trajectory,
the RISS solution is more accurate due to the good short-
term accuracy of RISS. Therefore, the weighting factor
A is set larger than B giving more confidence to RISS
output (the prediction). After a period of few seconds of
continuous motion, more confidence is gradually given to
the WiFi solution by increasing B and decreasing A gradually
which, in turn, prevents the large RISS drifts. This adaptive
mechanism maximizes the benefits from the good short-
term RISS accuracy and the general consistent long-term
accuracy of WiFi-positioning solution. This dynamic change
of weighting factors of RISS output and WiFi output is
illustrated in Figure 11.
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5.6. Formulating WiFi/RISS Navigation System into Particle
Filtering Problem

5.6.1. Initialization. For WiFi/RISS integration, the algo-
rithm is initialized with samples from a Gaussian density
with mean equivalent to the WiFi-positioning solution in
static state because WiFi in this case is accurate [10, 11, 14].
This approximates the prior PDF p(xx—1 | Zk-1).

5.6.2. Prediction. Predictive PDF p(xx | Zx_,) is approxi-
mated by applying RISS mechanization equations in (1)-
(5) on every sample in the prior PDF adding to the sensors
measurements (ux—;) a randomly generated noise with
certain probability distribution p(wk—_1) (system noise).

5.6.3. Update. The posterior PDF p(xx | Zx) is generated
approximated by weighting the samples in the predictive
PDF p(xx | Zk-1) according to the Euclidean distance from
the WiFi K-Nearest fingerprinting output given by (6) and
the standard deviation of measurement noise p(vx_;). In this
implementation, Gaussian distribution for both system and
measurements noises is assumed.

5.7. Automatic Selection of Best WiFi Access Points for
Optimized Positioning. Incorporating too large a number
of WiFi APs may deteriorate the positioning accuracy and
includes unnecessary computation time. The objective of the
presented work is to identify the minimal set of APs in a Wi-
Fi area with the highest positioning discrepancy power to be
used for power patterns matching in a fingerprint-based Wi-
Fi positioning system. Principle Component Analysis (PCA)
may be used to reduce features dimensionality as done in
[26]. However, PCA has two major drawbacks. The first is the
expensive computation of covariance matrix, eigenvectors,
and data transformation computation. Another drawback of
PCA is that the new features are combinations of the original
features. Thus, the physical meaning of original features is
lost.

The canonical form of a radiomap is a table of M rows
by N columns. Fach row contains a known location and
N signal strength measurements (power pattern) from N
APs. Our strategy to reduce the feature dimensionality of the
radiomap without the costly Principle Component Analysis
and without transformations is to treat every data column
as observations Y;[#n] that need to be modeled using a small
subset of the other N — 1 data columns. This can be achieved
using the following model:

C-1
Yiln]l = > ajmPuln] +¢j[n), (9)

m=0

where j = 0,1...N — 1,n = 1,2...M,P,[n] is a set
of size C of basis functions that will be selected from the
other N — 1 columns set, and a;,, are coefficients calculated
by optimization techniques such that the error IIeJZ-[n]II is
minimized. The problem then is reduced to a search in
the space of N columns to find C columns that if they
are used as basis functions in (9) they would achieve the

minimum total mean square error over all data columns
(Z?]:})I(I/M) Zﬁil e?[n]) [27]. Finding such columns set is
equivalent to finding the most informative “true” APs in the
radiomap.

5.7.1. Fast Orthogonal Search (FOS). In Orthogonal Search
techniques [27], Gram-Schmidt procedure is used to replace
the functions P,[n] in (9) by a set of orthogonal basis
functions W, [n] where the model for a specific j in (9) is
represented by the following corresponding model:

C-1
Y(nl = > guWuln] +e[n). (10)

m=0

In orthogonal basis function space, the coefficient g, that
minimizes the mean square error over the observations is

given by [27]

_ Y[n]Wy(n]

W2 [n] (1

m

The overbar in (11) denotes the time average. The mean
square error is given by

_ c-1 2 c-1
e’= {Y[n] - ngWm[n]] =Y2[n] - > Qu (12)
m=0

(Y Wln))’ 03
" Wall

The reduction in mean square error resulting from adding a
term a,, Py [n] is Q. The fast orthogonal search procedure
[27] makes use of the fact that it is not necessary to
create the orthogonal functions Wy, [n] explicitly. Only their
correlations with P, [n], the data Y[n], and with themselves
are required.

5.7.2. FOS Feature Reduction of WiFi Radiomaps. In an M by
N radiomap, the aim is to reduce columns from N columns
to C. Thus, we have N observations set and the model that
needs to be optimized is given by (9). Significance of a
data column is evaluated by adding it to the model and the
total mean square error reduction over all data columns is
calculated using (13). The column with the greatest RMSE
reduction is selected. By eliminating orthogonalization,
number of multiplications is greatly reduced. The complexity
of the cross-correlations between all pairs of data columns
is Ccorr = O(MN?). The complexity of applying FOS mean
square error reduction N times is Cros = O(MN? + N2C).
Due to the fact that C is much smaller than M, the overall
complexity is dominant by O(MN?). By comparing this
complexity with that of PCA, the term N? resulting from the
eigenvectors computations is eliminated and the overhead of
transformation is also eliminated.
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TABLE 1: SPECs of gyroscope of an ADIS16300 IMU.

Range +300°/sec
Reference to z-axis accelerometer: 0.1
Misalignment Axis-to-frame (package): +0.5
T=25C
Initial bias +3°/sec = 1o At 25°
In-run bias stability 0.007°/sec At 25°
Random walk 1.9°/ /hr

||

F1GURE 15: The 4 access points selected by FOS feature reduction to
perform best positioning.

6. Experiments and Results

6.1. Experimental Setup. A mobile robot equipped with a
WiFi-enabled Dell Latitude laptop and the RISS system
sensors arrangement was used to perform the experiments.
This mobile robot is shown in Figure 12 and can be operated
by a human operator. The gyroscope used in the experiment
is part of an inertial measurement unit ADIS16300. The
specifications of this gyroscope are shown in Table 1. The
speed was measured using the robot wheels encoders’ circuit.

6.2. WiFi Radiomap Construction. The experiments were
performed in an indoor area that does not have any GPS
access. This indoor area is in Sixth floor in Electrical &
Computer Engineering Department, Queen’s University, in
Kingston, ON, Canada (see Figure 3). The area is 30 m X
30m with flat floors. The radiomap used in this research
was collected using the laptop on the mobile robot seen in
Figure 12. This experiment’s area is shown in Figure 3. The
WiFi signal strength from all visible WiFi access points was
measured in 67 reference locations distributed in this area.
After collecting the signal strength patterns from those 67
points, we got a radiomap of 67 points by a 132 unique
MAC address. This radiomap will be referred to as “the raw
radiomap.”

6.3. Online Trajectory Recording and Noise Filtering. An
online trajectory data set was collected following the
predefined trajectory shown in Figure 3. The robot was
operated to follow this trajectory with different speeds. At
each way- point, the reference location was recorded for
accuracy and error calculations purposes. Software written
in C language was developed and run on the Dell laptop

on a windows XP system to collect online measurements
from WiFi access points and from RISS system (speed
and gyroscope readings). The collected measurements were
processed by the integrated navigation algorithm and all
data (raw measurements and navigation output) were saved
in files for further processing and analysis. All readings
were time-synchronized by the laptop processor clock value.
So, whenever the laptop records a WiFi signal strength or
speed and gyroscope readings, the software calls the function
“GetTickCount ()”to time-tag the measured signals. In order
to filter out the noisy measurements from RISS system,
a downsampling step was performed. Instead of working
on the raw RISS measurements in the high rate (which is
100 Hz), the measurements were down-sampled to 50 Hz.
The effect of this noise-filtering technique is shown in Figures
13 and 14.

6.4. WiFi-Positioning System Results. Using the raw
radiomap as it is without FOS-feature reduction on
the predefined trajectory shown in Figure3, the K-
NN positioning algorithm achieved an RMSE of 3.4m.
Additionally, Figures 7, 8, and 9 show how noisy and
scattered the positioning output of this WiFi configuration
is. To see the effect of optimizing the radiomap using
FOS-based feature reduction algorithm, the algorithm was
applied to reduce the number of unique MAC addresses
from 132 to only 4 best MAC addresses. In this experiment,
the data column corresponding to each WiFi access point
may be selected if it achieves a mean square error reduction
in the model of (9) greater than a threshold. This mean
square error reduction threshold was adjusted such that
after processing the whole 132 data columns we get a total
number of selected WiFi access points of only 4. Those 4 APs
selected by the FOS-feature reduction approach are shown
in Figure 15. Figures 16, 17, and 18 show the WiFi-only FOS-
optimized positioning solution output. The FOS-optimized
solution achieved a better RMSE of 3.01 m with only 4 data
columns of the radiomap (4 MAC addresses). In addition to
achieving slightly better RMSE with fewer WiFi access points
and less processing time, Figures 16 and 17 show that the
scattered noisy solution and outliers are reduced in many
portions of the trajectory.

6.5. RISS/WiFi Integrated System. The adaptive fast mixture
PF was applied on the collected WiFi measurements and RISS
sensors measurements. The integrated RISS/WiFi system
output is shown in Figures 19, 20, 21, and 22. Figures 19 and
20 show the North and East position output, respectively.
Since we don’t have an accurate reference solution indoors
(note that GPS is not available indoors), the reference
solution is plotted at the way-points and these way-points
are connected which gives a general shape of the reference
trajectory. The drifts of RISS system output and the WiFi
noisy scattered output are clearly shown in Figures 19,
20, and 22. Figures 19 and 20 show that the integration
between RISS and WiFi systems not only improves the
overall accuracy and reduces RISS drifts, but also smooths
and filters out the noisy scattered output resulting from
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TABLE 2: RMSE and maximum position errors of all systems combinations.

WiFi K-NN positioning

WIiFi/RISS With FOS-reduced map

RISS
. . Using 67 X 4 radio map
Using full 67 x 132 radio optimized and reduced by Adaptive fast mixture PF
map
FOS
RMSE 4.4743 m 3.4m 3.0lm 1.6m
MAX_POS_ERROR 10.1719m 4.2422 m 3.2422m 2.9681 m

East position in meters

m)

East position (

—— Reference
— WiFi

FIGURE 16: East position WiFi solution using FOS-selected 4 access
points.

North position in meters

North position (m)

=20

0 500 1000 1500

Time (s)

—— Reference
— WiFi

Figure 17: North position WiFi solution using FOS-selected 4
access points.

WiFi noisy signal strength effect. Figure 21 shows the 2D
position components confidence intervals. Figure 22 show
the 2D solution from all systems configurations at the
way-points only. The total RMSE achieved by integrating
both RISS and WiFi is 1.6 meters. Comparing to RISS
only accuracy (4.4743 m) and WiFi only accuracy (3.01 m),
the integration between WiFi and RISS systems reduced
the RMSE by approximately 40%. Figure 23 shows the
cumulative error percentage which shows that the integrated
WiFi/RISS navigation system achieves an accuracy of 1 meter
for 70% of the time. Table 2 shows a summary of RMSE and
maximum positioning error for each system configuration
individually and for the integrated system.

WiFi trajectory solution

)
S

North position (m
|
S

-10 -5 0 5 10 15 20 25 30

East position (m)

— WiFi
—— Reference

FiGure 18: WiFi trajectory solution using FOS-selected 4 access
points.

WIiFi/RISS solution: north position

North position (meters)

Time (seconds)

— RISS
— WiFi

—— WiFi-RISS
—— Reference

FIGURE 19: WiFi/RISS integrated system output: north position.

7. Conclusions

In this work, a WiFi-Assisted RISS Navigation system for
indoor positioning was introduced. Two main contributions
were introduced. The first contribution is the proposing of
an adaptive fast mixture particle filtering state estimation
for integrating WiFi fingerprint-based positioning with RISS
navigation system. The aim was to make use of the reliable
short-term accuracy of RISS under the general accurate guid-
ance of the WiFi positioning. Particle Filter was necessary
in this work due to the low-cost MEMS-based RISS sensors
and the noisy indoor WiFi signal strength which introduce
a high nonlinearity and non-Gaussian nature to systems
models. This nonlinearity and non-Gaussian nature of signal
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WIFi/RISS solution: east position

40

East position (meters)

~20 i i
0 500 1000 1500

Time (seconds)

—— WiFi-RISS
—— Reference

— RISS
— WiFi

Ficure 20: WiFi/RISS integrated system output: east position.

Confidence interval for east and north positions in meters
(95% confidence level)

(meters)

Confidence interval

0 200 400 600 800 1000 1200 1400
Time (seconds)

—=— East position
—— North position

Figure 21: Confidence intervals for position components (95%
confidence level).

prevents the usage of Kalman Filter as a systems integration
approach. Comparing the results of this work with those
in [16] in which a Kalman Filter is used, it is obvious that
particle filtering outperforms Kalman Filter in this context.
Additionally, by utilizing particle filtering with adaptive
weighting technique, benefits of integrating both systems
are maximized. The second main contribution of this work
is the automatic fast selection of best WiFi wireless access
points for better fingerprint positioning. Results showed
that integrating both systems removed the large RISS drifts
and smoothed the noisy scattered WiFi-positioning results.
Results showed also the suitability of the system for indoor
accurate positioning where no GPS or any other external
accurate satellite-based positioning system exists.
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