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A microscopic framework to determine multipole ordering in f -electron systems is provided on the basis of the standard quantum
field theory. For the construction of the framework, a seven-orbital Hubbard Hamiltonian with strong spin-orbit coupling
is adopted as a prototype model. A type of multipole and ordering vector is determined from the divergence of multipole
susceptibility, which is evaluated in a random phase approximation. As an example of the application of the present framework, a
multipole phase diagram on a three-dimensional simple cubic lattice is discussed for the case of n = 2, where n denotes the average
f -electron number per site. Finally, future problems concerning multipole ordering and fluctuations are briefly discussed.

1. Introduction

Recently, complex magnetism in rare-earth and actinide
compounds has attracted much attention in the research
field of condensed matter physics [1–3]. Since in general,
spin-orbit coupling between electrons in 4 f and 5 f orbitals
is strong, spin and orbital degrees of freedom are tightly
coupled in f -electron materials. Thus, when we attempt
to discuss magnetic ordering in f -electron systems, it is
necessary to consider the ordering of spin-orbital complex
degrees of freedom, that is, multipole. In fact, ordering of
higher-rank multipole has been actively investigated both
from experimental and theoretical sides in the research field
of strongly correlated f -electron systems [2, 3]. Moreover,
due to recent remarkable developments in experimental
techniques and measurements, nowadays it has been possible
to detect directly and/or indirectly the multipole ordering.
Note, however, that only spin degree of freedom often
remains, when orbital degeneracy is lifted, for instance, due
to the effect of crystal structure with low symmetry. In
order to promote the research of multipole phenomena, f -
electron compounds crystallizing in the cubic structure with
high symmetry are quite important. For instance, octupole
ordering has been discussed in the phase IV of Ce0.7La0.3B6

[4] and NpO2 [3, 5–8] with cubic structure. As for NpO2,
recently, a possibility of dotriacontapole ordering has been
also pointed out [9, 10].

Here we emphasize that the study of multipole phe-
nomena has been activated due to the focusing research of
filled skutterudite compounds LnT4X12 with lanthanide Ln,
transition metal atom T, and pnictogen X [11]. Since these
compounds crystallize in the cubic structure of Th point
group, they have provided us an ideal stage for the research
of multipole physics. Furthermore, many isostructural mate-
rials with different kinds of rare-earth and actinide ions have
been successfully synthesized, leading to the development of
systematic research on multipole ordering. In fact, recent
experiments in close cooperation with phenomenological
theory have revealed that multipole ordering frequently
appears in filled skutterudites. For instance, a rich phase
diagram of PrOs4Sb12 with field-induced quadrupole order
has been unveiled experimentally and theoretically [12–
14]. Furthermore, antiferro-Γ1-type higher multipole order
[2] has been discussed for PrRu4P12 [15, 16] and PrFe4P12

[17–19].
Now we turn our attention to theoretical research on

multipole order. Thus far, theory of multipole ordering has
been developed mainly from a phenomenological viewpoint
on the basis of an LS coupling scheme for multi- f -electron
state. It is true that several experimental results have been
explained by those theoretical studies, but we believe that
it is also important to promote microscopic approach for
understanding of multipole phenomena in parallel with
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phenomenological research. Based on this belief, the present
author has developed a microscopic theory for multipole-
related phenomena with the use of a j- j coupling scheme
[1, 20–22]. In particular, octupole ordering in NpO2 has
been clarified by the evaluation of multipole interaction with
the use of the standard perturbation method in terms of
electron hopping [6–8, 23]. We have also discussed possible
multipole states of filled skutterudites by analyzing multipole
susceptibility of a multiorbital Anderson model based on the
j- j coupling scheme [24–29].

On the other hand, it is still difficult to understand
intuitively the physical meaning of multipole degree of
freedom due to the mathematically complicated form of
multipole operator defined by using total angular momen-
tum. As mentioned above, multipole is considered to be
spin-orbital complex degree of freedom. In this sense, it
seems to be natural to regard multipole as anisotropic spin-
charge density. This point has been emphasized in the
visualization of multipole order [6–8, 23]. Then, we have
defined multipole as spin-charge density in the form of one-
body operator from the viewpoint of multipole expansion of
electromagnetic potential from charge distribution in elec-
tromagnetism [30, 31]. Due to the definition of multipole in
the form of one-electron spin-charge density operator, it has
been possible to discuss unambiguously multipole state by
evaluating multipole susceptibility even for heavy rare-earth
compounds with large total angular momentum [30].

As for the determination of the multipole state, we have
proposed to use the optimization of multipole susceptibility
on the basis of the standard linear response theory. We have
analyzed an impurity Anderson model including seven f
orbitals with the use of the numerical renormalization group
technique and checked the effectiveness of the microscopic
model on the basis of the j- j coupling scheme for the
description of multipoles. We have also shown the result for
multipole susceptibility of several kinds of filled skutterudite
compounds. With the use of the seven-orbital Anderson
model, we have discussed field-induced multipole phenom-
ena in Sm-based filled skutterudites, [32] multipole Kondo
effect, [33] and multipole state of Yb- and Tm-based filled
skutterudites [34]. We have also discussed possible multipole
state in transuranium systems such as AmO2 [35] and
magnetic behavior of CmO2 [36].

From our previous investigations on the basis of the
multiorbital Anderson model, it has been clarified that the
multipole can be treated as spin-orbital complex degree of
freedom in the one-electron operator form. However, in
order to discuss the ordering of multipole, it is necessary
to consider a periodic system including seven f orbitals per
atomic site with strong spin-orbit coupling. The validity of
the model on the basis of the j- j coupling scheme can be
also checked by such consideration. Namely, for the steady
promotion of multipole physics, it is highly expected to treat
the multipole ordering in a seven-orbital periodic model by
overcoming a heavy task to solve the model including 14
states per atomic site.

In this paper, we define a seven-orbital Hubbard model
with strong spin-orbit coupling and explain a procedure to
define the multipole ordering by the divergence of multipole

susceptibility from a microscopic viewpoint. For the eval-
uation of multipole susceptibility, we introduce a random
phase approximation. In principle, we can treat all the cases
for n = 1 ∼ 13 on the same footing, but here we focus on
the case of n = 2 corresponding to Pr and U compounds.
As a typical example of the present procedure, we show a
phase diagram including quadrupole ordering in a three-
dimensional simple cubic lattice. Finally, we also discuss
some future problems such as superconductivity induced by
multipole fluctuations near the multipole phase.

The organization of this paper is as follows. In Section 2,
we explain each part of the seven-orbital Hubbard model
with strong spin-orbit coupling. For the reference of readers,
we show the list of hopping integrals among f -orbitals along
x, y, and z-axes through σ , π, δ, and φ bonds. In Section 3,
we define the multipole operator as the complex spin-
charge degree of freedom in the one-electron form. Then,
we explain a scheme to determine the multipole ordering
from the multipole susceptibility. Here we use a random
phase approximation for the evaluation of the multipole
susceptibility. In Section 4, we show the results for the case of
n = 2 in a three-dimensional simple cubic lattice. We discuss
the phase diagram of the multipole ordering. In Section 5,
we discuss some future problems and summarize this paper.
Throughout this paper, we use such units as � = kB = 1.

2. Model Hamiltonian

The model Hamiltonian H is split into two parts as

H = Hkin + Hloc, (1)

where Hkin denotes a kinetic term and Hloc is a local part for
potential and interaction. The latter term is further given by

Hloc = Hso + HCEF + HC, (2)

where Hso is a spin-orbit coupling term, HCEF indicates
crystalline electric field (CEF) potential term, and HC

denotes Coulomb interaction term. We explain each term in
the following.

2.1. Local f -Electron Term. Among the three terms of Hloc,
the spin-orbit coupling part is given by

Hso = λ
∑

i,m,σ ,m′,σ ′
ζm,σ ;m′,σ ′ f

†
imσ fim′σ ′ , (3)

where fimσ is an annihilation operator of f -electron at site
i, σ = +1 (−1) for up (down) spin, m is the z-component
of angular momentum � = 3, λ is the spin-orbit interaction,
and the matrix elements are expressed by

ζm,σ ;m,σ = mσ

2
,

ζm+σ ,−σ ;m,σ =
√
�(� + 1)−m(m + σ)

2
,

(4)

and zero for other cases.
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Next we consider the CEF term, which is expressed as

HCEF =
∑

i,m,m′,σ

Bm,m′ f †imσ fim′σ , (5)

where Bm,m′ is the CEF potential for f electrons from the
ligand ions, which is determined from the table of Hutchings
for angular momentum � = 3 [37]. For the cubic structure
with Oh symmetry, Bm,m′ is expressed by using three CEF
parameters, B40 and B60, as

B3,3 = B−3,−3 = 180B40 + 180B60,

B2,2 = B−2,−2 = −420B40 − 1080B60,

B1,1 = B−1,−1 = 60B40 + 2700B60,

B0,0 = 360B40 − 3600B60,

B3,−1 = B−3,1 = 60
√

15(B40 − 21B60),

B2,−2 = 300B40 + 7560B60.

(6)

Note the relation of Bm,m′ = Bm′,m. Following the traditional
notation [38], we define

B40 = Wx

F(4)
,

B60 = W(1− |x|)
F(6)

,

(7)

where W determines an energy scale for the CEF potential, x
specifies the CEF scheme for Oh point group, and F(4) = 15
and F(6) = 180 for � = 3.

Finally, the Coulomb interaction term HC is given by

H1 =
∑

i,m1∼m4

∑

σ ,σ ′
Im1m2,m3m4 f

†
im1σ f

†
im2σ ′ fim3σ ′ fim4σ , (8)

where the Coulomb integral Im1m2,m3m4 is expressed by

Im1m2,m3m4 =
6∑

k=0

Fkck(m1,m4)ck(m2,m3). (9)

Here Fk is the Slater-Condon parameter and ck is the Gaunt
coefficient which is tabulated in the standard textbooks of
quantum mechanics [39]. Note that the sum is limited by
the Wigner-Eckart theorem to k = 0, 2, 4, and 6. The
Slater-Condon parameters should be determined for the
material from the experimental results, but in this paper, for a
purely theoretical purpose, we set the ratio among the Slater-
Condon parameters as physically reasonable values, given by

F0 : F2 : F4 : F6 = 10 : 5 : 3 : 1. (10)

Note that F6 is considered to indicate the scale of Hund’s rule
interaction among f orbitals.

2.2. Kinetic Term. Next we consider the kinetic term of
f electrons. When we discuss magnetic properties of f -
electron materials as well as the formation of heavy quasi-
particles, it is necessary to include simultaneously both
conduction electrons with wide bandwidth and f electrons

with narrow bandwidth, since the hybridization is essentially
important for the formation of heavy quasiparticles. In this
sense, it is more realistic to construct orbital-degenerate
periodic Anderson model for the theory of multipole
ordering in heavy-electron systems.

However, if we set the starting point of the discussion in
the periodic Anderson model, the calculations for multipole
susceptibility will be very complicated. Thus, we determine
our mind to split the problem into two steps: namely, first
we treat the formation of heavy quasiparticles and then, we
discuss the effective model for such heavy quasiparticles. If
we correctly include the symmetry of f -electron orbital, we
believe that it is possible to grasp qualitatively correct points
concerning the multipole ordering by using an effective
kinetic term for f electrons.

Based on the above belief, we consider the effective
kinetic term in a tight-binding approximation for f elec-
trons. Then, Hkin is expressed as

Hkin =
∑

i,a,m,m′,σ

ta
m,m′ f

†
imσ fi+am′σ , (11)

where ta
m,m′ indicates the f -electron hopping between m-

and m′-orbitals of adjacent atoms along the a direction. The
hopping amplitudes are obtained from the table of Slater-
Koster integrals, [40–42] but, for convenience, here we show
explicitly ta

m,m′ on the three-dimensional cubic lattice.
The hopping integrals along the z-axis are given in quite

simple forms as

tz
0,0 =

(
f f σ

)
,

tz
−1,−1 = tz

1,1 =
(
f f π

)
,

tz
−2,−2 = tz

2,2 =
(
f f δ

)
,

tz
−3,−3 = tz

3,3 =
(
f f φ

)
,

(12)

and zeros for other cases. Here ( f f �) denotes the Slater-
Koster integral through � bond between nearest neighbor
sites. Note that the above equations are closely related to the
definitions of ( f f σ), ( f f π), ( f f δ), and ( f f φ).

On the other hand, hopping integrals along the x- and
y-axes are given by the linear combination of ( f f σ), ( f f π),
( f f δ), and ( f f φ). We express ta

m,m′ as

ta
m,m′ =

∑

�

(
f f �

)
Ea�
m,m′ , (13)

where the coefficient Ea�
m,m′ indicates the two-center integral

along a direction between m and m′ orbitals and � runs
among σ , π, δ, and φ. In Table 1, we show the values of Ea�

m,m′ .
Other components are zeros unless they are obtained with
the use of relation of Ea�

m,m′ = Ea�
m′,m = Ea�

−m,−m′ .
By using the experimental results concerning the Fermi-

surface sheets for actual materials, it is possible to determine
the Slater-Koster parameters, ( f f σ), ( f f π), ( f f δ), and
( f f φ), so as to reproduce the experimental results. Namely,
the hopping integrals should be effective ones for quasipar-
ticles, as mentioned above. Here it is important to include
correctly the symmetry of local f orbitals in the evaluation
of hopping amplitudes, although the whole energy scale
will be adjusted by experimental results and band-structure
calculations.
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Table 1: Coefficients Ea�
m,m′ along the x- and y-axes between f

orbitals of nearest neighbor sites. Note that in double signs, the
upper and lower signs correspond to the value along the x- and y-
axes, respectively.

m m′ σ π δ φ

−3 −3 5/16 15/32 3/16 1/32

−3 −1 ∓√15/16 ∓√15/32 ±√15/16 ±√15/32

−3 1
√

15/16 −√15/32 −√15/16
√

15/32

−3 3 ∓5/16 ±15/32 ∓3/16 ±1/32

−2 −2 0 5/16 1/2 3/16

−2 0 0 ∓√30/16 0 ±√30/16

−2 2 0 5/16 −1/2 3/16

−1 −1 3/16 1/32 5/16 5/32

−1 1 ∓3/16 ±1/32 ∓5/16 ±5/32

0 0 0 3/8 0 5/8

3. Multipole Ordering

In order to discuss the multipole ordered phase from the
itinerant side, we evaluate the multipole susceptibility χ by
following the standard quantum field theory. The multipole
susceptibility is defined by

χ
(

q, iνn
) =

∫ 1/T

0
dτeiνnτ〈X̂q(τ)X̂†−q(0)〉, (14)

where X̂q denotes the multipole operator with momentum
q, ν = 2πTn is the boson Matsubara frequency with an
integer n, T is a temperature, Xq(τ) = eHτXqe−Hτ , and 〈· · · 〉
indicates the thermal average by using H . In the following,
we introduce the multipole operator and explain a method
to evaluate the susceptibility.

3.1. Multipole Operator. In any case, first it is necessary to
define multipole. As for the definition of multipole, readers
should consult with [30, 31], but here we briefly explain the
definition in order to make this paper self-contained. We
define X in the one-electron density-operator form as

X̂q =
∑

k,γ

pk,γ
(

q
)
T̂(k)
γ

(
q
)
, (15)

where k denotes the rank of multipole, γ indicates the

irreducible representation for cubic point group, and T̂(k)
γ (q)

indicates the cubic tensor operator, expressed in the second-
quantized form as

T̂(k)
γ

(
q
) =

∑

k,m,σ ,m′γ′
T

(k,γ)
mσ ,m′σ ′ f

†
kmσ fk+qm′σ ′ . (16)

Here the matrix elements of the coefficient T̂(k,γ) are
calculated from the Wigner-Eckert theorem as [43]

T
(k,γ)
mσ ,m′σ ′ =

∑

j,μ,μ′,q
G(k)
γ,q

〈
j
∥∥∥T(k)

∥∥∥ j
〉

√
2 j + 1

〈 jμ | jμ′kq〉

×
〈
jμ | �ms

σ

2


〈
jμ′ | �m′s

σ ′

2



,

(17)

where � = 3, s = 1/2, j = � ± s, μ runs between − j and j, q

runs between −k and k, G(k)
γ,q is the transformation matrix

between spherical and cubic harmonics, 〈JM|J ′M′J ′′M′′〉
denotes the Clebsch-Gordan coefficient, and 〈 j‖T(k)‖ j〉 is
the reduced matrix element for spherical tensor operator,
given by

〈
j
∥∥∥T(k)

∥∥∥ j
〉
= 1

2k

√√√√
(
2 j + k + 1

)
!(

2 j − k
)
!

. (18)

Note that k ≤ 2 j and the highest rank is 2 j. When we define
multipoles as tensor operators in the space of total angular
momentum J on the basis of the LS coupling scheme, there
appear multipoles with k ≥ 8 for the cases of J ≥ 4, that is,
for 2 ≤ n ≤ 4 and 8 ≤ n ≤ 12, where n is local f -electron
number. If we need such higher-rank multipoles with k ≥ 8,
it is necessary to consider many-body operators beyond the
present one-body definition.

Note that when we express the multipole moment as (16)
and (17), we normalize each multipole operator so as to
satisfy the orthonormal condition [44]

Tr
{
T̂(k,γ)T̂(k′,γ′)

}
= δkk′δγγ′ , (19)

where δkk′ denotes the Kronecker’s delta.

3.2. Multipole Susceptibility. Now we move to the evaluation
of multipole susceptibility. In order to determine the coeffi-
cient pk,γ(q) in (15), it is necessary to calculate the multipole
susceptibility in the linear response theory. The multipole
susceptibility is expressed as

χ
(

q, iνn
) =

∑

kγ,k′γ′
pk,γχkγ,k′γ′

(
q, iνn

)
p∗k′,γ′ , (20)

where the susceptibility matrix is given by

χkγ,k′γ′
(

q, iνn
) =

∑

m1∼m4

∑

σ1∼σ4

T
(k,γ)
m1σ1,m3σ3

× χm1σ1m2σ2,m3σ3m4σ4

(
q, iνn

)
T

(k,γ)∗
m2σ2,m4σ4 .

(21)

Then, χ and pk,γ are determined by the maximum eigenvalue
and the corresponding normalized eigenstate of the suscep-
tibility matrix equation (21).

In order to calculate actually the multipole susceptibility,
it is necessary to introduce an appropriate approximation. In
this paper, we use a random phase approximation (RPA) for
the evaluation of multipole susceptibility. For the purpose,
we redivide the Hamiltonian H into two parts as

H = H0 + H1, (22)

where H0 indicates the one-electron part given by H0 =
Hkin + Hso + HCEF and H1 is the interaction part, which is
just equal to HC in the present case. Then, we consider the
perturbation expansion in terms of the Coulomb interaction.

The susceptibility diagrams are shown in Figure 1 and
they are expressed in a compact matrix form as

χ̂ = χ̂(0)
[

1̂− Ûχ̂(0)
]−1

+ χ̂(0)
[

1̂ + Ĵ χ̂(0)
]−1 − χ̂(0), (23)
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Figure 1: Feynman diagrams for multipole susceptibility in the
RPA. The solid curve and broken line denote the noninteracting
Green’s function G(0) and Coulomb interaction, respectively.

where Û and Ĵ are, respectively, given by

Um1σ1m2σ2,m3σ3m4σ4 = Im1m2,m3m4δσ1σ4δσ2σ3 ,

Jm1σ1m2σ2,m3σ3m4σ4 = Im1m2,m4m3δσ1σ3δσ2σ4 ,
(24)

and the dynamical susceptibility χ̂(0) is given by

χ(0)
m1σ1m2σ2,m3σ3m4σ4

(
q, iνn

)

= −T
∑

n′

∑

k

G(0)
m1σ1,m4σ4

(k, iωn′)

×G(0)
m2σ2,m3σ3

(
k + q, iωn′ + iνn

)
.

(25)

Here G(0) is the one-electron Green’s function defined by the
noninteracting part H0.

In order to determine the multipole ordering, it is
necessary to detect the divergence of χ at νn = 0. We cannot
evaluate the susceptibility just at a diverging point, but we
find such a critical point by the extrapolation of 1/χmax as
a function of U , where U indicates the energy scale of the
Slater-Condon parameters and χmax denotes the maximum
eigenvalue of susceptibility matrix equation (21) for νn = 0.
When we increase the magnitude of U , 1/χmax is gradually
decreased from the value in the weak-coupling limit. In
actual calculations, we terminate the calculation when 1/χmax

arrives at a value in the order of unity. By using the calculated
values of 1/χmax, we make an extrapolation of 1/χmax as
a function of U . Then, we find a critical value of U at
which 1/χmax becomes zero. As for the type of multipole and
ordering vector in the ordered phase, we extract such infor-
mation from the eignevectors of the susceptibility matrix
corresponding to the maximum eigenvalue. By performing
the above calculations, it is possible to find the multipole
ordered phase from a microscopic viewpoint in principle.

4. Results

In the previous sections, we have explained the model
Hamiltonian and the procedure to determine the type of
multipole ordering. We believe that the present procedure
can be applied to actual materials, but there are so many
kinds of materials and multipole phenomena. Here we show
the calculated results for the case of n = 2 concerning Γ3

non-Kramers quadrupole ordering, in order to see how the
present procedure works. The results for actual materials will
be discussed elsewhere.

4.1. CEF States. First we discuss the local CEF states in order
to determine the CEF parameter. We consider the case of

n = 2 corresponding to Pr3+ and U4+ ions. Since we discuss
the local electron state, the energy unit is taken as F6. As for
the spin-orbit coupling, here we take λ/F6 = 0.1. Concerning
the value of W , it should be smaller than λ and we set W as
W/F6 = 0.001.

In Figure 2, we show the CEF energies as functions of x.
As easily understood from the discussion in the LS coupling
scheme, the ground state multiplet for n = 2 is characterized
by J = 4, where J is total angular momentum given by
J = |L− S| with angular momentum L and spin momentum
S. For n = 2, we find L = 5 and S = 1 from the Hund’s rules
and, thus, we obtain J = 4. Due to the effect of cubic CEF,
the nonet of J = 4 is split into four groups as Γ1 singlet, Γ3

non-Kramers doublet, Γ4 triplet, and Γ5 triplet. In the present
diagonalization of Hloc, we find such CEF states, as shown in
Figure 2. When we compare this CEF energy diagram with
that of the LS coupling scheme [38], we find that the shape
of curves and the magnitude of excitation energy are different
with each other. However, from the viewpoint of symmetry,
the structure of the low-energy states is not changed between
the LS and j- j coupling schemes [1]. Since we are interested
in a possibility of Γ3 quadrupole ordering, we choose the
value of x as x = 0.0 in the following.

4.2. Energy Bands. Next we consider the band structure
obtained by the diagonalization of H0 = Hkin + HCEF + Hso.
As for the Slater-Koster integrals, it is one way to determine
them so as to reproduce the Fermi-surface sheets of actual
materials, but here we determine them from a theoretical
viewpoint as

−( f f σ) = ( f f δ) = t,
(
f f π

) = ( f f φ) = −t/2,
(26)

where t indicates the magnitude of hopping amplitude.
The size of t should be determined by the quasi-particle
bandwidth, but here we simply treat it as an energy unit.

In Figure 3, we depict the eigen energies of H0 along the
lines connecting some symmetric points in the first Brillouin
zone. As for the spin-orbit coupling and CEF parameters,
we set λ/t = 0.1 and W/t = 0.001. First we note that
there exist seven bands and each band has double degeneracy
due to time-reversal symmetry, which is distinguished by
pseudospin. Since the magnitude of λ is not so large, we
do not observe a clear splitting between j = 7/2 octet and
j = 5/2 sextet bands. Around at Γ point, we find that j = 5/2
sextet is split into two groups, Γ7 doublet and Γ8 quartet.
Here we note that the energy of Γ8 quartet is lower than
that of Γ7. Since the Γ8 has orbital degeneracy, it becomes an
origin of the formation of Γ3 non-Kramers doublet, when we
accommodate a couple of electrons per site.

Note that the Fermi level is denoted by a horizontal line,
which is determined by the condition of n = 2, where n
is the average electron number per site. When we pay our
attention to the band near the Fermi level, we find that
the orbital degeneracy exists in the bands on the Fermi
surface. For instance, we see the degenerate bands on the
Fermi surface around the Γ point. Such orbital degeneracy in
the momentum space is considered to be a possible source
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Figure 2: CEF energy levels obtained by the diagonalization of Hloc

for λ/F6 = 0.1 and W/F6 = 0.001 with F0 = 10F6, F2 = 5F6, and
F4 = 3F6.

of Γ3 quadrupole ordering, which will be discussed in the
next subsection. Finally, in the present case, we expect the
appearance of the large-volume Fermi surface as well as
the small-size pocket-like Fermi surface. Such mixture of
the Fermi surface sheets with different topology may be an
important issue for the appearance of higher-rank multipole
ordering.

4.3. Phase Diagram. Now we show the phase diagram of
the multipole state. First it is necessary to calculate the
susceptibility equation (25) at νn = 0. As for the momentum
q, we divide the first Brillouin zone into 16 × 16 × 16
meshes. Concerning the momentum integration in (25),
we exploit the Gauss-Legendre quadrature with due care.
At low temperatures such as T/t = 0.01, it seems to be
enough to divide the range between −π and π into 60
segments along each direction axis. As found in (25), χ(0)

has 144 components in the spin-orbital space, but it is
not necessary to calculate all the components due to the
symmetry argument. We have checked that it is enough to
evaluate 1586 components of χ(0).

We set the parameters as λ/t = 0.1, x = 0.0, W/t = 0.001,
F2 = 0.5F0, F4 = 0.3F0, F6 = 0.1F0, −( f f σ) = ( f f δ) = t,
and ( f f π) = ( f f φ) = −t/2. Note that the ratio among
the Slater-Condon parameters is the same as that in Figure 2.
We also note that the hopping amplitude t is relatively large
compared with local potential and interactions, since we
consider the multipole ordering from the itinerant side. Here
we emphasize that our framework actually works for the
microscopic discussion on the multipole ordering. A way
to determine more realistic parameters in the model will be
discussed elsewhere.

By changing the values of temperature T/t, we depict
the phase diagram in the plane of t/F0 and T/t. Note that
t2/F0 corresponds to the typical magnitude of multipole-
multipole interaction between nearest neighbor sites. As
naively understood, when the temperature is increased,
larger value of U is needed to obtain the ordered state.
Then, the phase diagram is shown in Figure 4. We evaluate
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Figure 3: Energy band structure obtained by the diagonalization of
H0 for ( f f σ) = −t, ( f f π) = −t/2, ( f f δ) = t, ( f f φ) = −t/2,
λ/t = 0.1, and W/t = 0.001. Note that we show the eigen energies
along the lines of Γ → X → M → Γ → R → X .

the maximum eigenvalue of the multipole susceptibility by
increasing F0/t. One may think that the magnitude of t/F0

in Figure 4 is too small to obtain reasonable results in the
RPA calculations. Here we note that the total bandwidth of
the seven-orbital system is in the order of 10t, as shown in
Figure 3. Namely, the critical value of the interaction F0

c at
low enough temperatures is considered to be in the order of
the total bandwidth. In this sense, we consider that the value
of t/F0 in Figure 4 is not small for the RPA calculations. Note
also that when the temperature is increased, the magnitude
of noninteracting susceptibility is totally suppressed, leading
to the enhancement of F0

c . Thus, t/F0 is decreased when T is
increased, as observed in Figure 4.

At low temperatures as T/t < 0.3, we obtain that the max-
imum eigen value of susceptibility matrix is characterized
by the multipole with Γ3 symmetry and the ordering vector
Q = (π,π,π). The component of the multipole depends on
the temperature, but the 90% of the optimized multipole is
rank 2 (quadrupole). Others are rank 4 (hexadecapole) and
rank 6 (tetrahexacontapole) components, which are about
10%. Note again that the multipoles with the same symmetry
are mixed in general, even if the rank of the multipole
is different. Namely, quadrupole is the main component,
while hexadecapole and tetrahexacontapole are included
with significant amounts. Note also that the phase diagram
is shown only in the region of T/t < 1, but the boundary
curve approaches the line of t/F0 = 0. Since the case with
very large F0 is unrealistic, we do not pay our attention to the
phase for T > t, although we can continue the calculation in
such higher temperature region.

When we increase the temperature, the magnetic phase
is observed for T/t > 0.3. The main component is Γ4

dipole and the ordering vector is Q = (0, 0, 0). Note that
the susceptibility for Γ4 multipole moment does not mean
magnetic susceptibility, which is evaluated by the response of
magnetic moment L+2S, that is, J+S. AtT/t = 0.4, admixture
of the multipole is as follows: rank 1 (dipole) 90.7%, rank 3
(octupole) 6.5%, rank 5 (dotriacontapole) 2.1%, and rank
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Figure 4: Phase diagram of the multipole ordering for n = 2 on the
three-dimensional simple cubic lattice.

7 (octacosahectapole) 0.7%. The amounts are changed by
the temperature, but the main component is always dipole.
We have found the low-temperature antiferroquadrupole
state and the high-temperature ferromagnetic phase. Such
a combination of nonmagnetic and magnetic phases can
be observed in other parameter sets including quadrupole
ordering.

5. Discussion and Summary

We have constructed the microscopic framework to discuss
the multipole ordering due to the evaluation of multipole
susceptibility in f -electron systems on the basis of the seven-
orbital Hubbard model with strong spin-orbit coupling. For
the evaluation of multipole susceptibility, we have used the
RPA and found the critical point from 1/χmax. As an example
of the present scheme, we have shown the results for the
case of n = 2 concerning quadrupole ordering on the three-
dimensional simple cubic lattice. If we specify the lattice
structure and determine the hopping parameter from the
comparison with the experimental results on the Fermi-
surface sheets, in principle, it is possible to determine the
type of multipole ordering with the use of appropriate local
CEF parameters and Coulomb interactions.

Although the microscopic theory of multipole ordering
has been proposed, it is necessary to elaborate the present
scheme both from theoretical and experimental viewpoints.
In order to enhance the effectiveness of the present pro-
cedure, we should increase the applicability of the theory.
For instance, we have not considered at all the sublattice
structure in this paper, but in actuality, the staggered-type
multipole ordering has been observed. In order to reproduce
the structure, it is necessary to maximize the multipole
susceptibility by taking into account the sublattice structure.
It is one of future problems from a theoretical viewpoint.

It is also highly expected that the present scheme should
be applied to actual materials in order to explain the origin of
multipole ordering. For instance, it is interesting to seek for
the origin of peculiar incommensurate quadrupole ordering

observed in PrPb3 [45]. At the first glance, it seems to be
quite difficult to explain the origin of the Γ3 quadrupole
ordering with the ordering vector of Q = (π/2±δ,π/2±δ, 0)
with δ = π/8. However, if we use the present scheme,
it may be possible to find a solution in a systematic way.
Another issue is the revisit to octupole and higher-rank
multipole ordering in NpO2. The significant amount of
dotriacontapole component may be understood naturally in
the present scheme.

Another interesting future problem is the emergence of
superconductivity near the multipole ordered phase. It has
been widely accepted that anisotropic d-wave superconduc-
tivity appears in the vicinity of the antiferromagnetic phase,
as observed in several kinds of strongly correlated electron
materials. In general, near the quantum phase transition,
anisotropic superconducting pairs are formed due to the
effect of quantum critical fluctuations. Thus, also in the
vicinity of multipole ordering, superconductivity is generally
expected to occur. Even from purely theoretical interest,
it is worthwhile to investigate superconductivity near the
antiferroquadrupole phase in Figure 4. When we turn our
attention to actual material, in PrIr2Zn20, superconductivity
has been observed and quadrupole fluctuations have been
considered to play some roles [46]. Within the RPA, it is
possible to discuss the appearance of superconductivity in
the vicinity of quadrupole ordering in the present scheme.
It is another future problem.

In summary, we have proposed the prescription to deter-
mine the type of multipole ordering from a microscopic
viewpoint on the basis of the seven-orbital Hubbard model.
The multipole susceptibility has been obtained in the RPA
and the quadrupole ordering has been actually discussed in
a way similar to that for the spin ordering in the single-
orbital Hubbard model. The application to actual f -electron
materials will be discussed elsewhere, but we believe that the
present scheme is useful to consider the origin of multipole
ordering. In addition, a possibility of superconductivity near
the multipole ordering is an interesting future problem.
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