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We extend the idea of hidden Markov chains on lines to the situation of hidden Markov chains
indexed by Cayley trees. Then, we study the strong law of large numbers for hidden Markov
chains indexed by Cayley trees. As a corollary, we get the strong limit law of the conditional sample
entropy rate.

1. Introduction

Recently, interest in the theory of hidden Markov models (abbreviated HMM hereafter)
has become widespread especially in areas such as speech recognition [1], image
processing [2], DNA sequence analysis [3, 4], DNA microarray time-course analysis
[5], and econometrics [6, 7]. For a good review of statistical and information-theoretic
aspects of hidden Markov processes (HMPs); please see Ephraim and Merhav [8]. In
recent years, the work of Baum and Petrie [9] on finite-state finite-alphabet HMMs has
been expanded to HMM with finite as well as continuous state spaces and a general
alphabet. In particular, statistical properties and ergodic theorems for relative entropy
densities of HMMs were developed, and consistency and asymptotic normality of the
maximum-likelihood (ML) parameter estimator were proved under some mild conditions
[9–12].

In this paper, we extend hidden Markov chain to hidden Markov chain indexed by
Cayley trees, then we mainly prove the strong law of large numbers of offspring empirical
measure for hidden Markov chain indexed by Cayley trees.
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1.1. Notations and Preliminaries

A tree T is a graph which is connected and contains no loops. Given any two vertices α/= β ∈
T , let αβ be the unique path connecting α and β. Define the graph distance d(α, β) to be the
number of edges contained in the path αβ.

Let T be an infinite tree with root 0. The set of all vertices with distance n from the
root is called the nth generation of T , which is denoted by Ln. We denote by T (n) the union
of the first n generations of T . For each vertex t, there is a unique path from 0 to t and |t|
for the number of edges on this path. We denote the first predecessor of t by 1t. The degree
of a vertex is defined to be the number of neighbors of it. If every vertex of the tree has d
neighbors in the next generation, we call it Cayley tree, which is denoted by TC,d. Thus on
Cayley tree TC,d, every vertex has degree d + 1 except that the root vertex has degree d. For
any two vertices s and t of tree T , write s ≤ t if s is on the unique path connecting the root 0 to
t. For any two vertices s and t, we denote by s∧ t the vertex farthest from 0 satisfying s∧ t ≤ s
and s ∧ t ≤ t. XA = {Xt, t ∈ A} and denote by |A| the number of vertices of A.

In the following, we always let T denote the Cayley tree TC,d.

Definition 1.1 (T -indexed homogeneous Markov chains (see [13, 14])). Let T be an infinite
Cayley tree and {Xt, t ∈ T} a stochastic process defined on probability space (Ω,F, P) and
with finite state space X. Let

p =
{
p(i), i ∈ X}

(1.1)

be a distribution on X, and

A =
(
a
(
j | i)), i, j ∈ X (1.2)

a transition probability matrix on X2. If for vertex t ∈ T , we have

P
(
Xt = j | X1t = i, Xs = xs ∀s satisfying t ∧ s ≤ 1t

)

= P
(
Xt = j | X1t = i

)
= a

(
j | i) ∀i, j ∈ X,

(1.3)

P(X0 = i) = p(i) ∀i ∈ X, (1.4)

then we call {Xt, t ∈ T} to be an X-valued homogeneous Markov chain indexed by infinite
Cayley tree with the initial distribution (1.1) and transition probability matrix A whose
elements are determined by (1.3).

Definition 1.2. Let T be an infinite Cayley tree and X and Y two finite state spaces. {Xt, Yt, t ∈
T} is a stochastic process on a probability space (Ω,F, P). Let A = (a(j | i)) and B = (b(y |
i))i∈X,y∈Y be two stochastic matrices on X2 and X × Y, respectively. Suppose

P(X0 = i) = p(i) ∀i ∈ X,

P
(
Y0 = y0 | X0 = x0

)
= b

(
y0 | x0

)
.

(1.5)
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If for vertex t ∈ T , we have

P
(
Yt = yt, Xt = xt | Y1t = y1t, X1t = x1t, Ys = ys,Xs = xs, ∀s satisfying t ∧ s ≤ 1t

)

= P
(
Yt = yt, Xt = xt | X1t = x1t

)
.

(1.6)

Moreover, we suppose that

P
(
Yt = yt, Xt = xt | X1t = x1t

)
= P

(
Yt = yt | Xt = xt

)
P(Xt = xt | X1t = x1t)

= b
(
yt | xt

)
a(xt | x1t)

(1.7)

then {Xt, Yt, t ∈ T}will be called anX×Y-valued hidden Markov chain indexed by an infinite tree
T or called tree-indexed hidden Markov chain taking values in the finite set X × Y.

Remark 1.3. (i) If we sum over yt in (1.6), we can get, for any t ∈ T ,

∑

yt∈Y
P
(
Yt = yt, Xt = xt | Y1t = y1t, X1t = x1t, Ys = ys,Xs = xs, ∀s satisfying t ∧ s ≤ 1t

)

=
∑

yt∈Y
P
(
Yt = yt, Xt = xt | X1t = x1t

)

= P(Xt = xt | X1t = x1t).

(1.8)

After taking conditional expectations with respect to {X1t, Xs, t ∧ s ≤ 1t} on both sides of
above equation, we arrive at (1.3). Therefore, {Xt, Yt, t ∈ T} is a tree-indexed Markov chain.

In Definition 1.2, we also call the processes {Xt, t ∈ T} and {Yt, t ∈ T} to be state process
and the observed process, respectively, indexed by an infinite tree.

(ii) Obviously, by (1.6), the process Zt = (Xt, Yt) is a tree-indexed Markov chain with
state-space X × Y.

Property 1. Suppose that {Xt, Yt, t ∈ T} is a hidden Markov chain indexed by an infinite tree
T which take values in X × Y, then we have

P
(
YT (n)

= yT (n)
)
=

∑

xT(n)

p(x0)b
(
y0 | x0

) ∏

t∈T (n)\{0}
b
(
yt | xt

)
a(xt | x1t). (1.9)



4 ISRN Probability and Statistics

Proof. Since {Zt = (Xt, Yt), t ∈ T} is a tree-indexed Markov chain, it is easy to see

P
(
YT (n)

= yT (n)
, XT (n)

= xT (n)
)

= p(x0)P
(
Y0 = y0 | X0 = x0

) ∏

t∈T (n)\{0}
P
(
Yt = yt, Xt = xt | X1t = x1t

) (1.10)

= p(x0)P
(
Y0 = y0 | X0 = x0

) ∏

t∈T (n)\{0}
P(Xt = xt | X1t = x1t)P

(
Yt = yt | Xt = xt

)

= p(x0)b
(
y0 | x0

) ∏

t∈T (n)\{0}
b
(
yt | xt

)
a(xt | x1t).

(1.11)

On the other hand, we have

P
(
YT (n)

= yT (n)
)
=

∑

xT(n)

P
(
YT (n)

= yT (n)
, XT (n)

= xT (n)
)
. (1.12)

The conclusion (1.9) is directly derived from (1.11) and (1.12).

2. Strong Law of Large Numbers

Let {Xt, Yt, t ∈ T} be X × Y-valued hidden Markov chains indexed by an infinite Cayley tree
T . For every finite n ∈ N, we define the offspring empirical measure as follows:

Sn

(
x, y

)
=

∑
t∈T (n) δx(Xt)δy(Yt)

∣∣T (n)
∣∣ ∀(x, y) ∈ X × Y, (2.1)

here and thereafter δx(·) denotes the Kronecker function. In the rest of this paper, we consider
the limit law of the random sequence of Sn(x, y) which are defined as above.

Theorem 2.1. Let T be a Cayley tree and let {Xt, Yt, t ∈ T} be X × Y-valued hidden Markov chains
indexed by T . If the transition probability matrix A of {Xt, t ∈ T} is ergodic, then

lim
n→∞

Sn

(
x, y

)
= π(x)b

(
y | x) a.e., (2.2)

where and thereafter π is the stationary distribution of the ergodic matrix A; that is, π = πA, and
Σx∈Xπ(x) = 1.

We postpone the proof of Theorem 2.1 to Section 3.
From the expression of (2.1), we can easily obtain the empirical measure of the

observed chain {Yt, t ∈ T}which is denoted byMn(·)

Mn

(
y
)
=
∑

x∈X
Sn

(
x, y

)
=

∑
t∈T (n) δy(Yt)
∣∣T (n)

∣∣ ∀y ∈ Y. (2.3)

Thus, we can obtain the following Corollary 2.2.
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Corollary 2.2. Under the same conditions of Theorem 2.1, one has

lim
n→∞

Mn

(
y
)
=
∑

x∈X
π(x)b

(
y | x) a.e. (2.4)

Let f(x, y) be any function defined on X × Y. Denote

Gn(ω) =
∑

t∈T (n)

f(Xt, Yt). (2.5)

By simple computation, we arrive at the following Corollary 2.3.

Corollary 2.3. Under the same conditions of Theorem 2.1, one also has

lim
n→∞

Gn(ω)
∣∣T (n)

∣∣ =
∑

(x,y)∈X×Y
π(x)b

(
y | x)f(x, y) a.e. (2.6)

Now, we define the conditional entropy rate of YT (n)
given XT (n)

as follows

fn(ω) = − 1
∣∣T (n)

∣∣ lnP
(
YT (n) | XT (n)

)
. (2.7)

From (1.6), we obtain that

fn(ω) = −
∑

t∈T (n) lnP(Yt | Xt)∣∣T (n)
∣∣ . (2.8)

The convergence of fn(ω) to a constant in a sense (L1 convergence, convergence in
probability, a.e. convergence) is called the conditional version of Shannon-McMillan theorem
or the entropy theorem or the AEP in information theory. Here from Corollary 2.3, if we let

f(Xt, Yt) = − lnP(Yt | Xt), (2.9)

we can easily obtain the Shannon-McMillan theorem with a.e. convergence for conditional
sample entropy rate of hidden Markov chain fields on Cayley tree T .

Corollary 2.4. Under the same conditions of Theorem 2.1, one has

lim
n→∞

fn(ω) = −
∑

y∈Y

∑

x∈X
π(x)b

(
y | x) ln b(y | x) a.e. (2.10)
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3. Proof of Theorem 2.1

Let T be a Cayley tree and let {Xt, Yt, t ∈ T} be X × Y-valued hidden Markov chains indexed
by T . Let gt(i, j, y) be functions defined on X × X × Y. Let λ be a real number, L0 = {0},
Fn = σ(XT (n)

, Y T (n)
), now we define a stochastic sequence as follows:

tn(λ,ω) =
eλ

∑
t∈T(n)\{0} gt(X1 t,Xt,Yt)

∏
t∈T (n)\{0}E

[
eλgt(X1 t,Xt,Yt) | X1t

] . (3.1)

At first, we come to prove the following fact.

Lemma 3.1. The {tn(λ,ω),Fn, n ≥ 1} is a nonnegative martingale.

Proof of Lemma 3.1. Obviously, we have

P
(
XLn = xLn , YLn = yLn | XT (n−1)

= xT (n−1)
, Y T (n−1)

= yT (n−1))

=
P
(
XT (n)

= xT (n)
, Y T (n)

= yT (n)
)

P
(
XT (n−1) = xT (n−1) , Y T (n−1) = yT (n−1))

=
∏

t∈Ln

P
(
Xt = xt, Yt = yt | X1t = x1t

)
,

(3.2)

here the second equation holds because of (1.10). Furthermore, we have

E
[
eλ

∑
t∈Ln gt(X1t,Xt,Yt) | Fn−1

]

=
∑

xLn ,yLn

eλ
∑

t∈Ln gt(x1t,xt,yt)P
(
XLn = xLn , YLn = yLn | XT (n−1)

, Y T (n−1))

=
∑

xLn ,yLn

∏

t∈Ln

eλgt(X1 t,xt,yt)P
(
Xt = xt, Yt = yt | X1t

)

=
∏

t∈Ln

∑

(xt,yt)∈X×Y
eλgt(X1 t,xt,yt)P

(
Xt = xt, Yt = yt | X1t

)

=
∏

t∈Ln

E
[
eλgt(X1 t,Xt,Yt) | X1t

]
a.e.

(3.3)

On the other hand, we also have

tn(λ,ω) = tn−1(λ,ω)
eλ

∑
t∈Ln gt(X1t,Xt,Yt)

∏
t∈Ln

E
[
eλgt(X1 t,Xt,Yt) | X1t

] . (3.4)

Combining (3.3) and (3.4), we get

E[tn(λ,ω) | Fn−1] = tn−1(λ,ω) a.e. (3.5)

Thus, we complete the proof of Lemma 3.1.
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Lemma 3.2. Let {Xt, Yt, t ∈ T} beX×Y-valued hidden Markov chains indexed by an infinite Cayley
tree T . {gt(i, j, y), t ∈ T} are functions defined as above, denote

Rn(ω) =
∑

t∈T (n)\{0}
E
[
gt(X1t, Xt, Yt) | X1t

]
. (3.6)

Let α > 0, denote

D(α) =

⎧
⎨

⎩
lim sup
n→∞

1
∣
∣T (n)

∣
∣

∑

t∈T (n)\{0}
E
[
g2
t (X1t, Xt, Yt)eα|gt(X1t,Xt,Yt)| | X1t

]
= M(ω) < ∞

⎫
⎬

⎭
, (3.7)

Hn(ω) =
∑

t∈T (n)\{0}
gt(X1t, Xt, Yt). (3.8)

Then,

lim
n→∞

Hn(ω) − Rn(ω)
∣∣T (n)

∣∣ = 0 a.e. on D(α). (3.9)

Proof. By Lemma 3.1, we have known that {tn(λ,ω),Fn, n ≥ 1} is a nonnegative martingale.
According to Doob’s martingale convergence theorem, we have

lim
n

tn(λ,ω) = t(λ,ω) < ∞ a.e., (3.10)

so that

lim sup
n→∞

ln tn(λ,ω)
∣∣T (n)

∣∣ ≤ 0 a.e. (3.11)

Combining (3.1), (3.8), and (3.11), we arrive at

lim sup
n→∞

1
∣∣T (n)

∣∣

⎧
⎨

⎩
λHn(ω) −

∑

t∈T (n)\{0}
ln
[
E
[
eλgt(X1t,Xt,Yt) | X1t

]]
⎫
⎬

⎭
≤ 0 a.e. (3.12)

Let λ > 0. Dividing two sides of the above equation by λ, we get

lim sup
n→∞

1
∣∣T (n)

∣∣

⎧
⎨

⎩
Hn(ω) −

∑

t∈T (n)\{0}

ln
[
E
[
eλgt(X1t,Xt,Yt) | X1t

]]

λ

⎫
⎬

⎭
≤ 0 a.e. (3.13)
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For case 0 < λ ≤ α, combining with (3.13), the inequalities lnx ≤ x − 1(x > 0) and 0 ≤
ex − 1 − x ≤ 2−1x2e|x|, then it follows that

lim sup
n→∞

1
∣
∣T (n)

∣
∣

⎡

⎣Hn(ω) −
∑

t∈T (n)\{0}
E
[
gt(X1t, Xt, Y ) | X1t

]
⎤

⎦

≤ lim sup
n→∞

1
∣
∣T (n)

∣
∣

∑

t∈T (n)\{0}

{
ln

[
E
[
eλgt(X1t,Xt,Yt) | X1t

]]

λ
− E

[
gt(X1t, Xt, Yt) | X1t

]
}

≤ lim sup
n→∞

1
∣
∣T (n)

∣
∣

∑

t∈T (n)\{0}

{
E
[
eλgt(X1t,Xt,Yt) | X1t

] − 1
λ

− E
[
gt(X1t, Xt, Yt) | X1t

]
}

≤ λ

2
lim sup
n→∞

1
∣
∣T (n)

∣
∣

∑

t∈T (n)\{0}
E
[
g2
t (X1t, Xt, Yt)eλ|gt(X1t,Xt,Yt)| | X1t

]

≤ λ

2
lim sup
n→∞

1
∣∣T (n)

∣∣

∑

t∈T (n)\{0}
E
[
g2
t (X1t, Xt, Yt)eα|gt(X1t,Xt,Yt)| | X1t

]

≤ λ

2
M(ω) a.e. ω ∈ D(α).

(3.14)

Letting λ → 0+ in (3.14), combining with (3.6), we have

lim sup
n→∞

Hn(ω) − Rn(ω)
∣∣T (n)

∣∣ ≤ 0 a.e. ω ∈ D(α). (3.15)

Let −α ≤ λ < 0. Similar to the analysis of the case 0 < λ ≤ α it follows from (3.13) that

lim inf
n→∞

Hn(ω) − Rn(ω)
∣∣T (n)

∣∣ ≥ λ

2
M(ω) a.e. ω ∈ D(α). (3.16)

Letting λ → 0−, we can arrive at

lim inf
n→∞

Hn(ω) − Rn(ω)
∣∣T (n)

∣∣ ≥ 0 a.e. ω ∈ D(α). (3.17)

Combining (3.15) and (3.17), we obtain (3.9) directly.

Now we define the empirical measures of the Markov chain {Xt, t ∈ T} indexed by
Cayley tree T as Sn(x):

Sn(x) =
∑

t∈T (n) δx(Xt)∣∣T (n)
∣∣ ∀x ∈ X. (3.18)

The following lemma is very useful for proving our main result.
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Lemma 3.3 (see [14]). Let T be a Cayley tree and {Xt, t ∈ T} a tree-indexedMarkov chain with finite
state space X, which is determined by any initial distribution (1.1) and finite transition probability
matrix A. Suppose that the stochastic matrix A is ergodic, whose unique stationary distribution is π ;
that is, πA = π and

∑
x∈X π(x) = 1. Let Sn(x) be defined as (3.18). Thus, we have

lim
n→∞

Sn(x) = π(x) a.e. (3.19)

Corollary 3.4. Let T be a Cayley tree and let {Xt, Yt, t ∈ T} be X × Y-valued hidden Markov chains
indexed by T . Define the following empirical measure of triples (X1t, Xt, Yt):

Mn

(
x̃, x, y

)
=

∑
t∈T (n)\{0} δx̃(X1t)δx(Xt)δy(Yt)

∣
∣T (n)

∣
∣ ∀(x̃, x, y) ∈ X ×X × Y. (3.20)

If the transition probability matrix A of {Xt, t ∈ T} is ergodic, we have

lim
n→∞

[
Mn

(
x̃, x, y

) − π(x̃)b
(
y | x)a(x | x̃)] = 0 a.e., (3.21)

where π is the stationary distribution of the ergodic matrix A.

Proof. For any t ∈ T , let

gt
(
i, j, k

)
= δx̃(i)δx

(
j
)
δy(k), (3.22)

then we have

Rn(ω) =
∑

t∈T (n)\{0}
E
[
gt(X1t, Xt, Yt) | X1t

]

=
∑

t∈T (n)\{0}

∑

(xt,yt)∈X×Y
gt
(
X1t, xt, yt

)
P
(
Xt = xt, Yt = yt | X1t

)

=
∑

t∈T (n)\{0}

∑

(xt,yt)∈X×Y
δx̃(X1t)δx(xt)δy

(
yt

)
P(Xt = xt | X1t)P

(
Yt = yt | Xt = xt

)

=
∑

t∈T (n)\{0}
δx̃(X1t)b

(
y | x

)
a(x | x̃)

=
∣∣∣T (n−1)

∣∣∣ · d · Sn−1(x̃)b
(
y | x

)
a(x | x̃),

(3.23)

Hn(ω) =
∑

t∈T (n)\{0}
gt(X1t, Xt, Yt) =

∑

t∈T (n)\{0}
δx̃(X1t)δx(Xt)δy(Yt) =

∣∣∣T (n)
∣∣∣ ·Mn

(
x̃, x, y

)
.

(3.24)
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Since T is a Cayley tree, we have

lim
n→∞

∣
∣T (n−1)∣∣ · d

∣
∣T (n)

∣
∣ = 1. (3.25)

Combining the above fact with (3.9), (3.23), (3.24), and (3.19), we can derive our conclusion
(3.21) directly.

Let us conclude this section by proving our main result Theorem 2.1.

Proof of Theorem 2.1. Comparing (2.1) and (3.20), it is easy to see

Sn

(
x, y

)
=

∑
t∈T (n) δx(Xt)δy(Yt)

∣
∣T (n)

∣
∣ =

∑

x̃∈X
Mn

(
x̃, x, y

)
+
δx(X0)δy(Y0)

∣
∣T (n)

∣
∣ . (3.26)

Taking limit on both sides of the above equation as n tends to infinity, it follows from
Corollary 3.4 that

lim
n→∞

Sn

(
x, y

)
=
∑

x̃∈X
π(x̃)b

(
y | x)a(x | x̃) = π(x)b

(
y | x), (3.27)

where the last equation holds because π is unique stationary distribution of the ergodic
stochastic matrix A; that is, πA = π . Thus, we complete the proof of Theorem 2.1.
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