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We generalize the univariate Pareto distribution of the second kind to the matrix case and give
its derivation using matrix variate gamma distribution. We study several properties such as
cumulative distribution function, marginal distribution of submatrix, triangular factorization,
moment generating function, and expected values of the Pareto matrix. Some of these results are
expressed in terms of special functions of matrix arguments, zonal, and invariant polynomials.

1. Introduction

The Lomax distribution, also called the Pareto distribution of the second kind is given by the
p.d.f.

p v\ ~(B+1) 11
1(14‘1) , 'U>0, ()

where shape parameter > 0 and location parameter A > 0. The Lomax distribution, named
after Lomayx, is a heavy-tail probability distribution often used in business, economics, and
actuarial modeling. The standard Pareto Distribution of the second kind has A = 1 with the
p.d.f.

B +0)" PV, v>0, p>o0. (1.2)
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Although a wealth of results on Pareto distribution is available in the literature (see Johnson
et al. [1]) nothing appears to have been done to define and study matrix variate Pareto
distribution.

Therefore, in this paper, we define matrix variate Pareto distribution and study several
of its properties.

We will use the following standard notations (cf. Gupta and Nagar [2]). Let A = (a;})
be an m x m matrix. Then, AT denotes the transpose of A; tr(A) = a1 + -+ + Ay etr(A) =
exp(tr(A)); det(A) = determinant of A; ||A|| = norm of A; A > 0 means that A is symmetric
positive definite and A'/? denotes the unique symmetric positive definite square root of A >
0. The submatrices A@ and Ay, 1 £ a < m, of the matrix A are defined as AW@ = (aij), 1<
i, j<a,and Ay = (aij), « <1, j <m, respectively.

The multivariate gamma function which is frequently used in multivariate statistical
analysis is defined by

Fm(a) = f etr(_X) det (X)a—(m+1)/2dX
X>0

m i1 1 (1.3)
— m(m-1)/4 _ 1— m —
i E[r(a 2 ) Re(a) > —5—
The multivariate generalization of the beta function is given by
I"l
B (a,b) = det (X)ai(mﬂ)/2 det (I, — X)b*(mﬂ)/z dx
0 (1.4)
L' (a)lm ()
= T o N T Bm b/ 7
Ty (a +b) (b,a)

where Re(a) > (m —1)/2 and Re(b) > (i — 1) /2. Further, by using the matrix transformation
X = (In + Y)Y in (1.4) with the Jacobian J(X — Y) = det(I,, + Y)_("”l) one can easily
establish the identity

B (a,b) = j det (Y)* ™ D/2 det (I, + Y) @ gy, (1.5)
Y>0

The beta type 1 and beta type 2 families of distributions are defined by the density
functions (Johnson et al. [1]):

{B(a, B) }_1u"‘_1(1 —uw)fl, 0<u<l, (1.6)

{B(a,p)} o (1 +0) P, >0, (1.7)

respectively, where a > 0, > 0, and

T(@)T(p)

Taip) (1.8)

B(a,p) =
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Recently, Carderio et al. [3] have defined and studied the family of beta type 3 distributions.
A random variable w is said to follow a beta type 3 distribution if its density function is given

by
2%{B(a, )} w1 (1 -w) (1 +w) P, 0<w<1. (1.9)

If a random variable u has the p.d.f. (1.6), then we will write u ~ Bl(a, ), and if the
p-d.f. of the random variable v is given by (1.7), then v ~ B2(a, f8). The distribution given by
the density (1.9) will be designated by w ~ B3(a, f). The matrix variate generalizations of
(1.6), (1.7), and (1.9) are defined as follows (Gupta and Nagar [2, 4, 5]).

Definition 1.1. An mxm random symmetric positive definite matrix U is said to have a matrix
variate beta type 1 distribution with parameters (a, ), denoted as U ~ B1(m, a, f3), if its p.d.f.
is given by

det (u)af(erl)/Z det (Im _ u)ﬂf(m+1)/2

, 0<U<I,, 1.10
B, ) <U<Iy (1.10)

wherea > (m—-1)/2and > (m-1)/2.

Definition 1.2. An mxm random symmetric positive definite matrix V is said to have a matrix
variate beta type 2 distribution with parameters («a, ), denoted as V ~ B2(m, a, f), if its p.d.f.
is given by

det (V) "2 det (I, + V)P

Bon(a, ) , V>0, (1.11)

where a > (m—-1)/2and g > (m—-1)/2.

Definition 1.3. An mxm random symmetric positive definite matrix W is said to have a matrix
variate beta type 3 distribution with parameters (a, ), denoted as W ~ B3(m, a, p), if its p.d.f.
is given by

27 det (W) "D/2 det (I, - W)P~ D/
By (a, B) det (I, + W)™

, 0<W<I,, (1.12)

where a > (m—-1)/2and > (m—-1)/2.

2. The Density Function

First we define the matrix variate Pareto distribution of the second kind.
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Definition 2.1. An mxm random symmetric positive definite matrix V is said to have a matrix
variate Pareto distribution of the second kind, denoted as V' ~ P,,,(8), p > (m-1)/2,ifits p.d.f.
is given by

Lw[B+ (m+1)/2]

—p-(m+1)/2
(A Talmr1)/2) 2t dn+V) , V>0 2.1)

Definition 2.2. An mxm random symmetric positive definite matrix U is said to have a matrix
variate Lomax distribution with parameters A and f, denoted as U ~ L,,(A, p), if its p.d.f. is
given by

Lw[B+ (m+1)/2]
Fm(ﬁ)rm[(m +1)/2]

, U>0, (2.2)

—p-(m+1)/2
det (A)""D/2 det (Im + A-lu) pime

where A is an m x m symmetric positive definite matrix and g > (m -1)/2.

From Definitions 2.1 and 2.2 it is clear that if V ~ P,,(f), then for an m x m symmetric
positive definite constant matrix A, AY2VAY2 ~ L,(A,B) and if U ~ Ly(A,p), then
AV2UATY? ~ Py(B).

For m = 1, the matrix variate Pareto distribution and matrix variate Lomax distribution
reduce to their respective univariate forms.

The matrix variate Pareto distribution can be derived by using independent gamma
matrices. A random matrix Y is said to have a matrix variate gamma distribution with
parameters ¥ (> 0) and « (> (m —1)/2), denoted by Y ~ Ga(m, x, ¥), if its p.d.f. is given
by

etr (~¥1Y) det (Y)< 1)/

T det@yr 0 Y70 @3)

Theorem 2.3. Let Y1 and Y, be independent, Y1 ~ Ga(m, (m +1)/2,1,,) and Y, ~ Ga(m, f, L,).
Then, Y, /*Y1Y, "% ~ Pu().

Proof. The joint density function of Y7 and Y is given by

etr[—(Y1 + Y2)] det (Y)F~(m+D)/2

rm[(m N 1)/2]rm (ﬂ) , Yl >0, Y2 > 0. (24)

Transforming W = Y, 1/ ZYlYE /2 with the Jacobian | Y1 - W) = det(Yz)(m+1)/ % in the joint
density of Y7 and Y;, we obtain the joint density of W and Y> as

etr[— (I, + W)Ya] det (Y, )Pt (m+D/2-(m+1)/2

Tl (m +1)/2]T, (B) ; 0<W < Iy Y2>0. 2.5)

Now, the desired result is obtained by integrating Y, using (1.3). O
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The cumulative distribution function of V is obtained as

L [B+(m+1)/2]
T (B) T [(m +1)/2
_ Tu[B+(m+1)/2]
C Tu(B)Tm[(m+1)/2]

P(V<Q)=

Q
] f det (I, + V) P~ m /2 gy
0
(2.6)

Im
det ()"’ Zf det (I,, + QW) P02 gy,
0

where the last line has been obtained by substituting W = Q71/2VQ~1/2 with the Jacobian
J(V = W) = det(Q)"™*’2, Now, writing

det(I,, + QW) = det(I,, + Q) det(Im — Iy + Q)7 QL - W)>, (2.7)

the above expression is rewritten as

Ui [ﬁ +(m+ 1)/2] det (Q)(m+1)/2
Fm(ﬂ)rm[(m + 1)/2] det (Im + Q)ﬂ+(m+1)/2

P(V <Q) =
(2.8)

In —B—(m+1)/2

< f det (I, = (I + Q) ' Q(I, - W) 2w

0

Finally, using the integral representation of the Gauss hypergeometric function (Herz [6],
Constantine [7], James [8], and Gupta and Nagar [2]), namely,

21:'1([1 bCX) = Fm—((f) o det(R)a—(m+1)/2
YU,y rm(a)rm(c— a) 0 (29)

x det(L, — )< " V/2det(I,, — XR) YdR,
where Re(a) > (m—-1)/2, Re(c—a) > (m-1)/2,and X < I,,,, we obtain

L[+ (m+1)/2]Tu[(m+1)/2]  det(Q)™/2

P(V<Q)=
Lo (B) T (m +1) det (I, + Q)PF(m+D/2 210)
1 1
% 2F) <ﬂ,ﬁ 1 (L + Q)‘1£2>.
2 2
The moment generating function of V' is derived as
I.16+ +1)/2
Mx(2) [p+(m+1)/2] etr(ZV) det (I, + V)P mD/2qy (2.11)

T T (B)Tnl(m+1)/2] Jyso
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where Z (m x m) = ((1 + 6j)zij/2). Now, evaluating the above integral, we obtain

Mx(Z2) =

Tp[B+(m+1)/2] <m+l m+1 z), 2.12)

T (P) Pt

where the confluent hypergeometric function ¥, with mxm symmetric matrix X as argument,
is defined by the integral

1P‘((I, c, X) = etr(—RX) det (R)a—(m+1)/2

1
Tm(a) Jrso (2.13)
x det (I, + R)<"mD/2gR

valid for Re(X) > 0 and Re(a) > (m -1)/2.

3. Properties

In this section, we give several properties of the matrix variate Pareto distribution of the
second kind defined in the previous section.

Theorem 3.1. Let V ~ P, (p) and let A be an m x m constant nonsingular matrix. Then, the density

of X = AVAT is

Ly [p+ (m+1)/2]
Fm(ﬂ)rm[(m +1)/2]

. X>0. (3.1)

det <AAT>ﬂ det (AAT + X)iﬂ S

Theorem 3.2. Let V ~ P, (f) and let H be an m x m orthogonal matrix, whose elements are either
constants or random variables distributed independent of V. Then, the distribution of V' is invariant
under the transformation V. — HVHT. Further, if H is a random matrix, then V and H are
distributed independently.

Theorem 3.3. If V ~ P,,(f), then, V™! ~ B2(m, §, (m+1) /2), (2L,+V)'V ~ B3(m, (m+1)/2,p)
and (I, +2V) ™" ~ B3(m, B, (m+1)/2). Further, if W ~ B3(m, (m+1) /2, B), then 2(I,— W)W ~
P (p).

Theorem 3.4. Let V = <¥; XZ ), where V11 is a g x q matrix. Define Vi1, = Vi1 — V12V2‘21 Vo1 and

Vg = Vap — V21V1‘11V12. If V.~ Py, (B), then (i) Vi1 and V. are independent, Vi1 ~ B2(q, (m +
1)/2,p - (m—q)/2) and Vap.1 ~ Py_q(P); (ii) Voo and Viy.5 are independent, Vo ~ B2(m — g, (m +
1)/2,—q/2) and Vi1o ~ Py(p).

Proof. From the partition of V, we have

det(L, + V) = det(ly + Vir) det( Ly + Vao1 + Var Vi (I + Vin) ' Vaa). (32)
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Now, making the transformation Vi; = Vi1, X = V21V1711/ 2 and Va1 = Voo — V21V1]1V12 =
Vo — XXT with the Jacobian J(Vi1, Vaz, Vo1 — Vi1, Vaz1, X) = det(Vi1) ™ /2 in the density of
V, we get the joint density of Vi1, V.1, and X as

Tw[B+(m+1)/2]
L (B)Tm[(m +1)/2]

det (Vll)(m—q)/z det (I, + Vll)—ﬂ—(m+1)/2

(3.3)

_ —p-(m+1)/2
x det (L + Vo1 + X (I + Vi) 'XT) e

Further, transforming Y = (I, + sz‘l)_l/zX(Iq + Vn)_l/2 with the Jacobian J(X — Y) =
det(I—q + sz.l)q/2 det(I, + VH)("’_")/z, the joint density of Vi1, Va1, and Y is derived as

Ly [p+ (m+1)/2]

det (Vi)™ 972 qet I, +V; -p-(gq+1)/2
Tm(ﬂ)rm[(m+1)/2] et (V1) et (I, + V11)

(3.4)

7

—B—(m— -f-(m+1)/2
x det (L + Vioa) "1 2 det (L4 + YYT) pom

where Vi1 > 0, Vapg > 0and Y € R™9*4, From the above factorization, it is clear that V4; and
V2.1 are independent, Vi1 ~ B2(q, (m +1)/2,p — (m - q)/2) and Va1 ~ Py_4(p). The second
part is similar. O

Theorem 3.5. Let A be a q x m constant matrix of rank q (< m). If V ~ P, (B), then

[(AAT>71/2AV‘1AT <AAT>71/2] T Py (B),
(3.5)

<AAT>_1/2AVAT <AAT>_1/2 ~ B2 <q, mTHrﬂ - ?>

Proof. Write A = M(I;,0)G, where M is a g x g nonsingular matrix and G is an m x m
orthogonal matrix. Now,

-1

(AV’lAT)_l = (M(1, 0)GV'G (1, 0)" MT)

(M) [(Iq 0)Y~! <’g>] e (3.6)

() )
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where Y = (g g;) = GVGT ~ P,,(f), Yn is a q x g matrix, and Y11 = (Yy; — Y1,Y) Vo)™ =
Y;],. From Theorem 3.4, Y15 ~ P;(f), and Theorem 3.1, Z = (MT)™Y1,M™! has the p.d.f.
proportional to

—p-(m+1)/2

Lulpr(m+ /2] (MMT>_ﬂ det ((MMT>_1 + z> . Z>0. (37

T (B)Tm[(m+1)/2]

Now, noting that MMT = AAT and making the transformation S = (AAT)"2Z(AAT)"/? with
the Jacobian J(Z — S) = det(AAT)’("”l)/ 2 in the above density, we get the desired result.
The proof of the second part is similar. O

From Theorem 3.5, it is clear that if V ~ P,,() and a € R™, a#0, then a’a(a’ V'a)™" ~
P(p). Further, if y(m x 1) is a random vector, independent of W, and P(y #0) = 1, then it
follows that yTy(y"V-"'y)™ ~ P(B) and (y"y) ' (y'Vy) ~ B2((m + 1) /2, - (m —1)/2).

From the above results, it is straightforward to show that if ¢(m x 1) is a nonzero
constant vector or a random vector independent of V with P(c#0) = 1, then

Jvlc
——— ~ B1(5,1),
T asge BHAD)
e

TV he B1(1,p),

(3.8)

Jvlc
~B2(f,1),
V2 o)

Ve m+1 m—1
~ B2 - .
e < 2 P 2 )

The expectation of V, E(V), can easily be obtained from the above result. For any fixed
ceR™, c#0,

E[CTTV C] - E(v), (3.9)
c'C

where v ~ B2((m +1)/2,— (m —1)/2). Hence, for all c € R,

T T . om+1 7 m+1
¢ E(V)c=c cE(v) = —Zﬁ—m—lc ¢ p> 5 (3.10)
which implies that
m+1 m+1
E(V) = —2ﬁ—m—11’"’ p>—= (3.11)
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Theorem 3.6. If V ~ P,(f) and V.= WWT, where W = (wj;) is a lower triangular matrix with
positive diagonal elements, then wny, . . ., Wy are all independent, wl.2i ~B2(m+2-1)/2, p—(m—
i)/2),i=1,...,m.

Proof. Making the transformation V = WWT with the Jacobian J(V — W) = 2" w*!
in (2.1), the density of W is derived as

m_Lm[f+ (m+1)/2] B2
T (B Tml(m + 1)72] °" (In+ W) l_llw , (3.12)

where w;; >0,i=1,...,mand —oo < w;; < oo for 1 < j < i < m. Now, partition W as

_ w11 0
W = ( " sz), (3.13)

where w is an (m — 1) x 1 vector and Wy, is an (m — 1) x (m — 1) lower triangular matrix. Then

1 + w? wyw!
Ty = 11 1
det<1m TWW ) det( wnW Ly +ww! + W22W2T2>

(1+ 20}, ) det(Ly1 + W W) (3.14)

1 -1
x |1+ W (L + W WD) wl.
[ 1+ w%l ( m-1 22 22) ]
Now, make the transformation

1 7\"1/2
gy (T E) o9
11

with the Jacobian J(w — y) = (1 + w%l)("’*l)/2 det(l,,-1 + W22W2T2)1/2 in (3.12) to get the joint
density of wq1, Wy, and y as

o Tw[B+ (m+1)/2] wm<1+ 21)—[5—1

T (B)Tm[(m+1)/2] M !
(3.16)
—pem/2 M >—[5—(m+1)/2.

ngﬁl—i <1 +yTy

x det (L1 + WnWh)
i=2

From the above factorization, it is clear that wi, W2, and y are all independent, w%l ~
B2((m+1)/2,p - (m—1)/2) and the density of W5, is proportional to

~p-m/2 M .
det (L1 + WnWh) " T Juwpt (3.17)
i=2
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which has the same form as the density (3.12) with m replaced by m — 1. Repeating the
argument given above on the density function of Wy, we observe that w%z ~ B2(m/2,p -
(m —2)/2) and is independent of ws3, .. ., Wy,. Continuing further with the same argument,
we get the desired result. O

Corollary 3.7. If V ~ P, (p), then the distribution of det(V') is the same as the distribution of the
product of m independent beta type 2 variables, that is, det(V) ~ [Ti%,v; where v; ~ B2((m +2 —
i)/2,p-(m-1i)/2),i=1,..., m.

Corollary 3.8. If V ~ P,,(p), then

det(VD) det(V@) det(Vm)
, det(V©@) =1 3.18
det(V®)" det(VD) det(Vm-1) < e< > ) (3.18)

are independently distributed. Further, fori=1,...,m, det(V®)/ det(VED) ~ B2((m+2-i)/2, -
(m—1)/2).

Theorem 3.9. If V. ~ P, (p) and V.= WWT, where W = (wjj) is an upper triangular matrix
with positive diagonal elements, then i, ..., Wy, are all independent, wfl ~B2((i+1)/2,p—-(i—
1)/2),i=1,...,m.

Proof. Making the transformation V. = WWT with the Jacobian J(V — W) = 2" w!, in
(2.1), the density of W is derived as

—(m+1) /2 1

w Im[B+ (m+1)/2] I w: (3.19)
i=1

T (B)Tm[(m+1)/2]

det <Im + WWT>7ﬂ

where w;; >0,i=1,...,mand —oo < w;; < oo for 1 <i < j < m. Now, partition W as

W = <W“ w ) (3.20)

0 wWmm
where w is an (m —1) x 1 vector and Wy is an (m —1) x (m — 1) upper triangular matrix. Then

T T
det(Im + WWT> = det(Im‘l +ww + WiWi, wymw >

Wy W' 1+ w2,

(1 + wfnm> det(Im,1 + anfl) (3.21)

-1
T T
X [1 + 1 +w%nmw <Im_1 +W11W11> w].

Now, make the transformation

1 -1/2
7= Wy ) 62
mm
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with the Jacobian J(w — y) = (1+ wfnm)(m*l)/2 det(l,,-1 + WquTl)l/2 in (3.19) to get the joint
density of W11, y, and wyy, as

o Ty [p+ (m+1)/2] w$m<1 .\ wfnm>_ﬁ_l
L (B)Tm[(m+1)/2]
(3.23)

_f— -1 L
x det <Im_1 + W11W17“1> p m/Zmefi (1 + YTy> P (m+1)/2.
i=1

From the above factorization, it is clear that W11, wWpm, and y are all independent, w2, ~
B2((m+1)/2,p - (m—1)/2) and the density of Wi, is proportional to

—Bm/2m=1
det (L1 + W W) g /2]‘[w;i (3.24)

i=1

which has the same form as the density (3.19) with m replaced by m — 1. Repeating

the argument given above on the density function of Wiy, we observe that w? | = ~

B2(m/2,p - (m —2)/2) and is independent of w;,_ -2, . . ., w11. Continuing further with the
same argument, we get the desired result. O

Corollary 3.10. If V ~ P,,(B), then the distribution of det(V') is the same as the distribution of the
product of m independent beta type 2 variables, that is, det(V') ~ [ 1" v; where v; ~ B2((i+1)/2, -
(i-1)/2),i=1,...,m.

Corollary 3.11. If V ~ P,,(B), then

det(Viy)) det(Viz) det(Vim)
det(Vip) " det(Viz) " det(Vim)

(det(V<m+1)) = 1) (3.25)

are independently distributed. Further, for i = 1,...,m, det(V(;))/ det(Viin)) ~ B2((i +1)/2, -
(i-1)/2).

We conclude this section by deriving moments of det(V) and det(I,, + V)

Theorem 3.12. Let V ~ P,,(p), then

det (V)" _T[B+(m+1)/2]Ty[(m+1)/2+7]Tn(B+s—1)
det(In+ V)| Tu[p+m+1)/2+s]|Tu[(m+1)/2]T,,(8)

(3.26)

where Re(r) > -1and Re(f+s) > (m—1)/2.
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Proof. By definition

[ det (V)" ] ~ T, [,6 +(m+ 1)/2] J‘ det (V)(m+1)/2+r (m+1)/2 dV (327)
det (I, +V)°] Ty, B)Twl(m+1)/2] Jvso  det (I, + V)ﬂJ'("’J'W2+s .
Now, evaluating the above integral using (1.5), we get the result. O
Corollary 3.13. If V ~ P,,(f), then
r_ Lulm+1)/2+ 7] (B-71) m
E[det (V)] = Tl + D2 (B) Re(f-r) > -
oy Tm[p+(m+1)/2]T,(B+5) m—1 '
E[det (I, + V)] = T fr e )25 5T’ Re(f+5) > —

By writing multivariate gamma functions in terms of ordinary gamma functions, expressions
E[det(V)"] and E[det(I,, + V)~°] can be simplified as

F[(m+1)/2+r— G-1)/2IT(p-r-(j-1)/2)
T[m+1)/2-(j-1)/2]T(B-(j-1)/2)

Efdet (v)] =] [

j=1

oy LA+ m+1)/2-(j-1)/2]T[p+s-(j—1)/2]
EldetUn V)T = T F 5 a2 s - G- 2T = G- 1) /2]

j=1

, (3.29)

(3.30)

Substituting r, s = 1,2, the first and second order moments of det(V) and det(I,, + V) are
calculated as

) m+1

E[det(V)] = m, p> 5
(2) 1, (4) 1, m+3
Fe = G, P
(2p-m+1), m—1 (3:31)
[det(I +V) ] TEEI p>——
~ (2p-m+1), (2p-m+3),, m—1
E[det(1m+V) 2]: TS T P>

where the Pochhammer notation (a), is defined by (a), = a(a+1):---(a+k-1), k =
1,2,... with (a), = 1.
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4. Results Involving Zonal and Invariant Polynomials

13

Let C(X) be the zonal polynomial of an m x m symmetric matrix X corresponding to the
partition « = (ky,..., km), k1 +---+ky = k, k1 > --- > k;, > 0. Then, for small values of k,

explicit formulas for C,(X) are available as (James [8])

Cay(X) = tr(X),
Coy(X) = 1[(trX)2 r2u(x%)],
Caxy(X) = [(trX) -r(x?)],
Ca(X) = %[(trX)3 +6(trX) (irX2) + 8tr(X7)],

)|

Cas(X) = [(trx) ~3(rX) (X)) + 26 (X°)].

W

Con(X) = g[(tr X)% + (trX) <tr X2) 2tr<X

From the above results, it is straightforward to show that
1
tr(X?) = Cy (%) - 5Can(X),
tr(x3) = Co(X) = 2Con (X) + 2Ci (X)
( ) 4 ( g ) 4 ( ) 4

1 1
tr(X) tr<X2> =Ce)X) + £CenX) - 5Can(X).

For an ordered partition p of r, p = (r1,...,1m), 11 2 -+ 2 1 20, 11 + -+~

I'n(a, p) and Iy, (a, —p) are defined by

Fm(a/P) = (a)prm(a)/ I'm(a,0) = T'n(a),

__(=1) T(a) m—1
rm(a, —p) = m, Re(a) >+ 5 ,

where the generalized hypergeometric coefficient (a),, is defined by

o115,

i=1

Further, det(I,, — X)™*, in terms of zonal polynomials, can be expanded as
Cr(X
det (1, - x) ¢ = 3 3 D) o,

k=0

where Y, denotes summation over all ordered partitions « of k.

(4.1)

(4.2)

+tm =T,

(4.3)

(4.4)

(4.5)
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For properties and further results, the reader is referred to Constantine [7] and Gupta
and Nagar [2].

Lemma 4.1. Let T be an m x m arbitrary complex symmetric matrix. Then

Im
f det (R)*™/2 det (I,, + R)"**Y)C(RT)dR
0
_ Tw(a,®)ln(b,—x)
T Tu(a+b)

Ce(T) (4.6)

 (D)(a, )T (b) m—1
~ (-b+(m+1)/2) Tpu(a+b) Ce(T), Re(b) > k1 + .

Davis [9, 10] introduced a class of polynomials Cg’)‘(X, Y) of m x m symmetric
matrix arguments X and Y, which are invariants under the transformation (X,Y) —
(HXHT,HYHT), H € O(m). For properties and applications of invariant polynomials, we
refer to Davis [9, 10], Chikuse [11], and Nagar and Gupta [12]. Let «, A, ¢, and p be ordered
partitions of the nonnegative integers k, ¢, f = k + ¢, and r, respectively. Then

C* (I, ILy)
x,A _ kA o [ mym
(X, X) =05 Cp(X), 6] = =Gt
(4.7)
Cy(In)Ci(X)
ok =g )
Cd) (X/Im) - 9¢ CK(Im) 7
CXY)=Ce(X), CYMXY)=Cy(Y),
(4.8)

CX)Ca(Y) = 3, 65 CHH(X,Y),
pex-A

where ¢ € « - A denotes that irreducible representation of GI(m, R), the group of m x m real
invertible matrices, indexed by 2¢, appears in the decomposition of the tensor product 2k®2.\
of the irreducible representation indexed by 2x and 2\. Further,

Im
f det (R)="™D7/2 det (I,,, — R)* ™D/ ZC(';)’*(AR,A(Im - R))dR
0

(4.9)
— rm (tl K)Fm (u! )‘) 61C,)LC¢ (A),
Tu(t+u,¢) ¢
Im
f det (R)="D7/2 et (I,,, — R)* ™D/ 2c;,jf*(AR, BR)dR
° (4.10)

_ Lo (t, )T (u2)

KA
Tairug) P
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From the density of V, we have

T [B+(m+1)/2] —p—(m+1)/2
E[Cc(BV)] = Fo () Tnlm +1/2] J‘V>0 C.(VB)det (I, +V) av .
_ (D (m+1)/2), m-1 '

= (—[5+(m+1)/2),CCK(B), Re(B) > ki + 5

where the last line has been obtained by using (4.6).
Using results (4.1)—(4.2) on zonal polynomials, it is easy to see that

m

E[Cq)(BV)] = M_%C(D(B),

m+1 m+1

E[tr(BV)]=mtr(B), p>——
(m+1)(m+3)

(2ﬁ—m—1)(2ﬁ—m—3)

: (m+1)(m+3)

- 3(2p-m-1)(2p-m-3)

E[C(BV)] =

C2)(B)

m+3

[(tr B)? + 2tr(B2)], p>——

m(m+1)

E[C(12)(BV)] = (Zﬂ—m—l)(Zﬂ—m) C(lz)(B)
3 2m(m + 1) 2 5 m+1
= 3(2[5—111—1)(2[3—711) [(trB) tr(B >], p> 5
3 (m+1)(m+3)(m+D5)
ElCo(BV)] = 2p—m-1)p-m-3)2p-m—5) P
3 (m+1)(m+3)(m+D5)
152 -m—1)(2 - m-3) (2 - m-5)
x [(trB)3 +6(trB)<trB2> +8tr(B3)], B> m2+5,
3 m(m+1)(m+ 3)
FlCen BVl = Gy 2p-m-1) ep-m—3) P
a 3m(m+1)(m+3)
152 -m)(2-m—1)(2p-m-3)
m+3

x [(trB)3 + (tr B) (trBz> - 2tr<B3>], p> —
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E[Ca(BV)] = (m — 1)m(m +1) Coy(B)

C(2B-m)(2B-m+1)(2p-m—-1)
(m-1)ym(@m+1)

T 302p-m+1)(2p-m)(2p-m—-1)

m+1

x [(trB)3 —3(trB)<trBz> +2tr<B3>], p> >

E[tr (BVY] = E[Co(BV)] - 3E[Cor (BV)]

B 2p(m +1) (
~(2p-m)(2p-m-1)(2p-m-3)

(m+1)[(m+2)(2p-m-1) +2] , 3
+(Zﬁ—m)(Zﬂ—m—l)(zp_m_3)<trB>/ p>—

tr B)?

(4.12)

E[tr (BV)3] = E[Ci3(BV)] - }IE[C@D (BV)] + }—LE[C(ls)(BV)]

1+m

T (@p-m+1)(2p-m)(2p-m—1)(2p-m~3)(2p-m-5)

x [11—0{(771— )ym@3 +m)(5+m) —4<m3 +5m +m - 5>ﬁ
+4<m2 +3m + 10) ﬂz}(trB)3
+%{(m—1)m(3+m)(5+m)
—4(m(3 +m) (17 + m) — 30)f + 4<m2 +33m + 60> s } (tr B) <tr B2>

¥ g{(m—l)m(3+m)(5+m) +20B — m(4m? + 25m +29)p

+2(2n0” +11m+20>ﬁ2}tr<B3>], p> m2+5,

E[tr(BV) tr (BV)?] = E[Cs)(BV)] + %E[Cm)(BV)] - %E[C(la)(BV)]

1+m

T 2B-m+1)(2p-m)(2p-m-1)(2p-m-3)(2p—m-5)

x [—%{(m— 1)m(3+m)(5+m) —2(2m - 5m? - 48m +15) p

+4 (m2 —12m - 15) ﬂz}(tr B)®
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+ 12—5{7(m— Vm(3 + m) (5 + m)
+90p — 2m(14m® + 70m + 39) p + 4(7m* + 21m + 45 ) §*}
x (tr B) (tr B2>

+ 12—5{(m— Vm(3 +m) (5 +m) — 4(mG + m) (17 + m) - 30)p

+4(m? +33m +60) ) tr<B3>], p> m; >,

(4.13)

Further, using the invariance of the distribution of V and the above results, one obtains

E(V):zﬂ”j%lm’ ﬁ>m;1/
2\ _ (m+1)[4(m+1)ﬂ—m(m+3)] a3
(V>_(2ﬂ—m)(2ﬁ—m—1)(2p_m_3)1mf P>

3\ _ 1+m
E<V > 102 -m+1) (2 -m)(2-m—1)(2p-m—3)(2p-m-5)

X [(m— 1)ym(3 +m)(5 +m)(m2 +m +8>

—4(m? + 6m* + 29m® + 96m® + 28m - 40)
(4.14)

+4(m' + 4m® + 51n? + 104m + 80) 2| L, p > m2+ >,

, ~ 1+m
E[<trv >V] C 15(2p-m+1)(2p-m)(2p-m—1)(2p - m-3)(2p - m-5)

x [(m ~1)ym(@3 +m) (5 + m) <m2 —14m - 2)
+2(=2m° + 33m" +192m” + 143m? + 114m — 120) p

m+5
2

+4(m* = 26m® - 59m? ~156m ~ 120) f*| L., f>
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Theorem 4.2. Let Vi and V, be independent, V; ~ Py (f;), i = 1,2. Define S = Vi + V, and R =
(Vh + V2)71/2V2(V1 + V2)71/2' Then, the density of S is given by

Lo [+ (m+1) /2|0 [fo + (m+1)/2]
Lo (B1) T [(m + 1) /21T, (B2)

(Br+(m+1)/2) (Po+(m+1)/2),

DIPIPIPY Kl (4.15)

<9m>21“((m +1)/2,x)[((m+1)/2,1)
per-d ’ I(m+1,¢)

det (S)"™V/2 det (I, + )~ Pr+PrrmD)

c¢((1,,, + 5)45), S >0.

Further, the density of R is derived as

Lo [pr+ (m+1)/2]Tp B2 + (m+1) /2]
Ly (B1) T (B2) T [(m + 1) /2]
(Pr+(m+1)/2) (fo+ (m+1)/2),

x ZZ;Z kD (4.16)

5 Lt L OTn(fi+P2) pen
¢§). Ln(Pr+po+tm+1,9) 64’

Cg/*(R,Im ~R), 0<R<I,.

Proof. The joint density of V; and V; is given by

T [Br+ (m+1)/2]Ty [fo+ (m+1)/2]
Lo (B1) T (B2) T [((m + 1) /2] (4.17)

x det (I, + V1) P02 det (1, + Vo) P D2y 50, Vo > 0.

Making the transformation V, = S'2RSY? and V; = SY2(I, — R)SY? with the Jacobian
J(V1,V, —- S,R) = det(S)("’”)/2 in (4.17), the joint density of R and S is derived as

| [)61 + (m + 1)/2]Fm [)62 + (Tl’l + 1)/2] det (S)(m+1)/2 det (Im + S)—(,ﬁ1+ﬂ2+m+1)
Lo (B1) o (B2) T3 [ (m + 1) /2] (4.18)

x det (I, — S1R) P~ "D/2 det (I,,, — Sy (I, — R)) P (m/2)
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where S; = (I, + S)™'S,0 < R < I,, and S > 0. Since, ||S1R|| < 1 and ||S1(I, — R)|| < 1, using
(4.5), we can write

det (I, — SyR) (w72 iz (B + (mk-'i- 1)/2)KCK(51R)’
k0w (4.19)
m+1)/2),

det (I, — S1 (I, — R))P~mD/2 — i )y (B2 + (

=0 A

0 Ci(51(Im = R)),

where x and A are the ordered partitions of k and [, respectively. Now, the application of (4.8)
yields

det (Im — SlR)*ﬂlf(m+1)/2 det (Im _ Sl (Im _ R))*ﬁz*(erl)/Z

(Pr+(m+1)/2) (Po+(m+1)/2),

= i i Z Z K (4.20)

=01=0 x A

x eg'*cgrl(is, Si(In - R)).
peK-A

Finally, substituting (4.20) in (4.18), the joint density of R and S is obtained as

Lo [fr+ (m+1) /2|0 [fo + (m+1)/2]
Lo (1) T (B2) T [(m + 1) /2]

(Br+(m+1)/2) (fr+ (m+1)/2),

D)WH) i3 (4.21)

x GQ’ACZA(SlR, S1lm=R)), 0<R<Iy S>0.
Per-A

det (S)™*V/2 det (I,,, + )~ Pr+harm+D)

Now, the integration of R in (4.21) using (4.9) yields the density of S. The density of R is
obtained by substituting S1 = (I, + S)™'S with the Jacobian J(S — S) = det(I — Sl)_(m”) in
(4.21) and integrating S; by using (4.10). O
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