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We prove a regularity criterion for strong solutions to the hyperbolic Navier-Stokes and related
equations in Besov space.

1. Introduction

First, we consider the following hyperbolic Navier-Stokes equations [1]:

Tuy +up — Au+Vor+u-Vu+71u - Vu+tu-Vu, =0, (1.1)
divu =0, (1.2)
(u,us)(x,0) = (up,u1)(x), x€R", n>2. (1.3)

Here u is the velocity, o is the pressure, and 7 > 0 is a small relaxation parameter. We will
take T = 1 for simplicity.

When 7 = 0, (1.1) and (1.2) reduce to the standard Navier-Stokes equations.
Kozono et al. [2] proved the following regularity criterion:

w:=curlueL! (O, T; Bgm). (1.4)

Here BY,  is the homogeneous Besov space.
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Rack and Saal [1] proved the local well posedness of the problem (1.1)—(1.3). The
global regularity is still open. The first aim of this paper is to prove a regularity criterion. We

will prove the following theorem.

Theorem 1.1. Let (ug, u1) € H*' x H® with s > n/2, n > 2 and div ug = div u; = 0 in R". Let
(u, 7r) be a unique strong solution to the problem (1.1)—(1.3). If u satisfies

w, Vi, u; € L1 (0, T; ng), (1.5)

then the solution u can be extended beyond T > 0.

In our proof, we will use the following logarithmic Sobolev inequality [2]:
lull e < C(1+ gy, Tog(e + ulyr.)) (1.6)

and the following bilinear product and commutator estimates according to Kato and Ponce

[3]:

A < CUF M 1AM o + 1A N2 1181 (1.7)

18°(F9) = FA8llr < CNV A llin |48, + 1A F s g ) (1.8)

L7

withs >0, A:= (-A)?and 1/p = (1/p1) + (1/q1) = (1/p2) + (1/q2).
Next, we consider the fractional Landau-Lifshitz equation:

ap = P x A¥¢, (1.9)
$(x,0) = do(x) €S*, x€eR”", (1.10)

where ¢ € §? is a three-dimensional vector representing the magnetization and f is a positive
constant.

When § = 1, using the standard stereographic projection S> — C U {oo}, (1.9) can be
rewritten as the derivative Schrédinger equation for w € C,

Vo)’ o, (1.11)

iwy + Aw + 4 5
1+ |w|
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Equation (1.9) is also called the Schrodinger map and has been studied by many
authors [4-31]. Guo and Han [32] proved the following regularity criterion:

V¢ € L*(0,T; L (R")) (1.12)

withn > 2.
When 0 < f <1/2, Pu and Guo [33] show the local well posedness of strong solutions
and the blow-up criterion

A*¢ e L1(0,T; L= (R™)) (1.13)

with n < 3.
We will refine (1.13) as follows.

Theorem 1.2. Let 0 < f < 1/2. Let m be an integer such that 2m > (n +1)/2 for any n > 1. Let
APpy € H?™ and ¢y € S? and ¢ be a local smooth solution to the problem (1.9) and (1.10). If ¢
satisfies

A¥¢ e L'(0,T; B, . (R")) (1.14)

for some finite T > 0, then the solution ¢ can be extended beyond T > 0.

2. Proof of Theorem 1.1

Since (u, or) is a local smooth solution, we only need to prove a priori estimates.
First, testing (1.1) by u and using (1.2), we see that

T J‘<§u + uut>dx + I |Vu|~dx

= fufdx+fu-Vu-utdx (2.1)

1
< [t Z19ulc (hulf + )
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Testing (1.1) by 4u; and using (1.2), we find that

d
I f(Zu% + 2|Vu|2>dx +4 f u?dx

=-4 J(u -Vu+u - Vu)udx (2.2)

< ClIVallge (IllF: + oallF2).
Applying A® to (1.1), testing by A®u; and using (1.2), (1.7), (1.8), and (1.6), we have

] |

= —Z JAséi(uiu) - ASupdx — jAs(ut -Vu) - Auydx

2
AS+1u| + |Asut|2>dx + f |ASu|*dx

- Z ’[[Asai(uiut) — u; 0N u | N updx

< Cllulp [ A u

ANu
LA 03

+ C<||ut||Lm | Ay

IVl ATl ) 1A%

< Clul- + 19l + ) |

As+1u||2 + ||Asu ”2
2 tllg2

2 2
<C(1+ (lullgy,, + I Vullgg,, + lullgs, ) 10g (e + 1l + el ))
2
L2>'

Combining (2.1), (2.2), and (2.3) and using the Gronwall inequality, we conclude that

. <||Asut||iz + At

Nl Lo 0,7 0501y + N0t oo o, 1;115) < C- (24)
This completes the proof.

3. Proof of Theorem 1.2

Since ¢ is a local smooth solution, we only need to prove a priori estimates. In this section,
we denote by (-, -) the standard L? scalar product.
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First, testing (1.9) by A%¢ and using (a x b) - a = 0, we see that
1d 2
-z P =0. 1
2dtf|A¢|dx 0 (3.1)

Testing (1.9) by A?"A%¢ and using (a x b) - a = 0, (1.6) and (1.7), we obtain, with
(1/P) + (1/‘1) = (1/pa) + (1/%) = (1/ﬁvc) + (1/‘75!) =1/2,

%% f |AmAﬁ¢|2dx
x A%, AN )

= (9

= (a"(§x M%), AmAY )
(o
(

<cllwrg],famarall - claroly|

2m-1
x A¥p+ 3 CuD™ % x APDp, AmA2ﬂ¢>
a=1

AP <Am¢ x A+ 2§1c D¥"%¢ x AZﬂD“¢> AmAﬂ¢>

el Jarol, < w2720,
<clara]], faaa],
§C<1+ . log<e+||AmAﬂqb”L2>>
- (32)
which yields
2%, <c. (3.3)
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Here we have used the following interesting Gagliardo-Nirenberg inequalities:

[a™]l,, < c||A2ﬂ¢||;9° A"APp ? with p = % 0o = %
[l < el Jamatal " winq =225,
D], < claa], " [amasel]y wime, - I p - 2
o], <l lamatal " witn g =222,
[pena], < e Janasyy wind - 25 t2l 5 - St
a2l < cllaa] . Jaato], witn g - L.

(3.4)

This completes the proof.
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