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We have proposed a nutrient-consumer-predator model with additional food to predator, at variable nutrient enrichment levels.
The boundedness property and the conditions for local stability of boundary and interior equilibrium points of the system are
derived. Bifurcation analysis is done with respect to quality and quantity of additional food and consumer’s death rate for the
model. The system has stable as well as unstable dynamics depending on supply of additional food to predator. This model shows
that supply of additional food plays an important role in the biological controllability of the system.

1. Introduction

The interactions between living and nonliving organisms
have significant role in ecological modelling. In every eco-
system, there always have been material fluxes from the
outside to the system as well as from the system to outside.
In a hypothetical steady state, these nutrient inputs and
outputs balance. Many mathematical models have included
these interactions. Effects of nutrient enrichment on a food
chain model have been investigated, both empirically as well
as theoretically by many scientists [1–3]. These nutrients
enrichment may reduce species diversity and ecosystem
functioning [4]. Also, many researchers [5–7] have shown
that nutrient enrichment can lead to a complex dynamics as
well as extinctions of species. In the late 1970s, Pimm and
Lawton [8] simulated a large number of food webs including
omnivorous links, as nonlinear interactions. They discovered
that these additional interactions in general stable internal
equilibria to become statistically rare.

The role of additional food as a tool in biological con-
trol programs has become a topic of great attention for
many scientists due to its ecofriendly nature. In recent
years, many biologists, experimentalists, and theoreticians
have concentrated on investigating the effects of providing
additional food to predators in a predator-prey system [9–
14]. Srinivasu et al. [12] have studied qualitative behavior of

a predator-prey system in the presence of additional food to
the predators, and they concluded that handling times for the
available foods to the predator play a key role in determining
the state of the ecosystem. In the controllability studies
by Srinivasu et al. [12], it is observed that, for properly
chosen quality and quantity of the additional food, the
asymptotic state of a solution of the system can either be an
equilibrium or a limit cycle. Sahoo and Poria [13] discussed
the dynamic behaviour for seasonal effects on additional
food in a predator-prey model. Very recently, Sahoo [14]
discussed that existence of species in a system depends on
interaction functions and supply of the quality of additional
food. The decline of large predators at the top of the food
chain has disrupted ecosystems all over the planet, according
to a review of recent findings conducted by an international
team of scientists and published in Science (Estes et al. [15]).
They concluded that the loss of apex consumers may be the
most pervasive influence on the natural world. Therefore,
analysis of strategies related to effects of additional foods to
predators is important in real world.

In this paper, we propose a model of nutrient-consumer-
predator interaction (Figure 1) with additional food (char-
acterized by predator’s handling time) to predator, at
variable nutrient enrichment levels. We have derived the
existence and local stability conditions of boundary and
interior equilibrium points of the system. We have analyzed
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Figure 1: Diagrammatic representation of nutrient-consumer-
predator interactions.

the behaviour of the proposed model through numerical
simulations depending on some identified vital ecological
parameters. We have done bifurcation analysis of our model
with respect to quality and quantity of additional food and
consumer’s death rate, respectively, and finally conclusion is
given.

2. Model Formulation

We formulate a nutrient-consumer-predator model as

dX

dT
= X

(
N0 − aX

)− A1XY + w(E1Y + E2Z),

dY

dT
= A2XY − A3

YZ

B1 + Y
−D1Y ,

dZ

dT
= A4

YZ

B1 + Y
−D2Z.

(1)

Here, X stands for the amount of nutrients present
within the ecosystem, and Y and Z denote the number of
the consumer species and predator, respectively. Here, T
is time. Let N0 be the constant rate of nutrient supply in
the system; the constants A1 and A2 are conversion rates
of nutrients supply to consumer; the constants A3 and A4

are conversion rates of consumer to predator for species Y
and Z, respectively; D1 and D2 are constant death rates for
species Y and Z respectively. The terms wE1 and wE2 are the
nutrient regeneration rate from dead consumer and predator
population. The constant B1 is the half-saturation constant
for Z.

If h1 and e1 are constants representing handling time of
the predator Z per consumer item and ability of the predator
to detect the consumer, then we have A3 and B1, representing
the maximum predation rate and half-saturation values of

the predator Z, to be 1/h1 and 1/e1h1, respectively. If ε
represents the efficiency with which the food consumed by
the predator gets converted into predator biomass, then A4,
the maximum growth rate of the predator, is given by ε/h1.

Now, we modify the model (1) by introducing “addi-
tional food” to predator population. We make the following
assumptions:

(a) predator is provided with additional food of constant
biomass A which is distributed uniformly in the
habitat;

(b) the number of encounters per predator with the ad-
ditional food is proportional to the density of the
additional food;

(c) the proportionality constant characterizes the ability
of the predator to identify the additional food.

Now, the modified model takes the following form:

dX

dT
= X

(
N0 − aX

)− A1XY + w(E1Y + E2Z),

dY

dT
= A2XY − A3

YZ

B1 + αμA + Y
−D1Y ,

dZ

dT
= A4

(
Y + μA

)
Z

B1 + αμA + Y
−D2Z.

(2)

If h2 represents the handling time of the predator Z per
unit quantity of additional food, and e2 represents the ability
for the predator Z to detect the additional food, then we have
μ = e2/e1 and α = h2/h1. The term μA represents effectual
additional food level. The system has to be analyzed with the
following conditions: X(0) > 0, Y(0) > 0, and Z(0) > 0.

To reduce the number of parameters and to determine
which combinations of parameters control the behavior of
the system, we nondimensionalize the system (2) with N =
X , C = Y/B1, P = Z, and t = T and obtain the following
system of equations:

dN

dt
= N

(
N0 − aN

)− α1NC + ω
(
γ1C + γ2P

)
,

dC

dt
= α2NC − βCP

1 + αξ + C
− d1C,

dP

dt
= β1(C + ξ)P

1 + αξ + C
− d2P,

(3)

where α1 = A1B1, α2 = A2B1, γ1 = E1B1, γ2 = E2, β =
A3, w = ω, β1 = A4, ξ = μA/B1, d1 = D1, and d2 = D2.
The system (3) has to be analyzed with the following initial
conditions: N(0) > 0, C(0) > 0, and P(0) > 0.

The nutrient uptake rate per unit biomass of consumer
per unit time is α1. Nutrient involved in the system also
undergos loss due to leaching at a rate a. Consumer growth
rate per unit time is α2. The terms ωγ1 and ωγ2 are the
nutrient regeneration rate from dead consumer and predator
population. It is assumed that input of external nutrient
supply is dependent on the amount of nutrient present in
the system.

Here, α represents the “quality” of the additional food
(ratio between predator’s handling time towards additional
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food and consumer item), and ξ represents the “quantity”
of the additional food for predator. The parameters α, ξ are
the parameters which characterize the additional food. We
do not make any distinction regarding the additional food
like complementary, essential, or alternative. Here, we only
assume that the predators are capable of reproducing by
consuming the available food sources. Next, we shall analyze
the dynamics of the model (3) theoretically and numerically.

3. Theoretical Study

In this section, positivity and boundedness for the system (3)
are established. Since the state variables N ,C, and P represent
populations, positivity insures that they never become
negative and population always survives. The boundedness
may be interpreted as a natural restriction to growth as a
consequence of limited resources.

3.1. Positive Invariance. The system (3) can be put into the
matrix form F = F(X) with X(0) = X0 ∈ R3

+, where X =
(N ,C,P)T ∈ R3

+. F(X) is given by

F = F
(
X
)
=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

N
(
N0 − aN

)− α1NC + ω
(
γ1C + γ2P

)

α2NC − βCP

1 + αξ + C
− d1C

β1(C + ξ)P
1 + αξ + C

− d2P

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

(4)

where F : C+ → R3 and F ∈ C∞(R3).
It can be seen that whenever X(0) ∈ R3

+ such that, Xi = 0
then Fi(X)|Xi=0 ≥ 0 (for i = 1, 2, 3). Now any solution of
F = F(X) with X0 ∈ R3

+, say X(t) = X(t,X0), is such that
X(t) ∈ R3

+ for all t > 0 (Nagumo [16]).

3.2. Boundedness

Theorem 1. All the solutions of the system (3) which start in
R3

+ are uniformly bounded.

Proof. Let (N(t),C(t),P(t)) be any solution of the system (3)
with positive initial conditions.

Let us consider that

w = N + C + P,

That is,
dw

dt
= dN

dt
+
dC

dt
+
dP

dt
.

(5)

Using (3), we have

dw

dt
= N

(
N0 − aN

)− α1NC + ω
(
γ1C + γ2P

)
+ α2NC

− βCP

1 + αξ + C
− d1C +

β1(C + ξ)P
1 + αξ + C

− d2P.
(6)

Therefore,

dw

dt
= NN0 − aN2 − (α1 − α2)NC + ω

(
γ1C + γ2P

)

−
(
β − β1

)
CP

1 + αξ + C
+

β1ξP

1 + αξ + C
− d1C − d2P.

(7)

Since α1 ≥ α2 and β ≥ β1, we get the following expression:

dw

dt
≤ NN0 + ω

(
γ1C + γ2P

)− d1C − d2P + β1ξP,

That is,
dw

dt
≤ 2NN0 −NN0 + ω

(
γ1C + γ2P

)− d1C

− d2P + β1ξP,

That is,
dw

dt
≤ (2NN0 + ωγ1C + ωγ2P + β1ξP

)

− K(N + C + P),
(8)

where K = min(N0,d1,d2).
Hence,

dw

dt
+ Kw ≤ θ

(
2N0 + ωγ1 + ωγ2 + β1ξ

)
, (9)

where θ = max{N(0),N0/a, C(0),P(0)}.
Applying the theory of differential inequality, we obtain

0 < w ≤ θ
(
2N0 + ωγ1 + ωγ2 + β1ξ

)

K

(
1− e−Kt

)

+ w(N(0),C(0),P(0))e−Kt.
(10)

For t → ∞, we have 0 < w ≤ θ(2N0 + ωγ1 + ωγ2 + β1ξ)/K .
Hence, all the solutions of (3) that initiate in R3

+ are
confined in the region

B =
{

(N ,C,P) ∈ R3
+ :

0 < w ≤ θ
(
2N0 + ωγ1 + ωγ2 + β1ξ

)

K

}

.

(11)

This proves the theorem.

3.3. Existence and Local Stability of Boundary Equilibrium
Points. The system (3) always has two boundary equilibrium
points. E0(0, 0, 0) is the trivial equilibrium point. The axial
equilibrium point is E1(N0/a, 0, 0). The third boundary equi-
librium point E2(N̂ , Ĉ, 0) is the predator-free equilibrium
point, where N̂ = d1/α2 and Ĉ = d1(N0 − a(d1/α2))/(α1d1 −
ωγ1α2).

The predator-free equilibrium point E2 exists if d1(N0 −
a(d1/α2)) > 0 and (α1d1 − ωγ1α2) > 0.

The Jacobian matrix J of the system (3) at any arbitrary
point (N ,C,P) is given by

J =
⎛

⎜
⎝
F1N F1C F1P

F2N F2C F2P

F3N F3C F3P

⎞

⎟
⎠. (12)

Theorem 2. The trivial equilibrium point E0 is always unsta-
ble. The axial equilibrium point E1 is unstable if α2N0/a > d1

and β1ξ/(1 + αξ) > d2. The predator-free equilibrium point E2

is locally stable if β1(Ĉ+ξ)/(1+αξ+Ĉ) < d2, N0−2aN̂−α1Ĉ <

0, and ωγ1 < α1N̂ .
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Figure 2: Bifurcation diagram of consumer and predator with respect to quality of additional food α ∈ [0, 11) keeping fixed ξ = 0.2 of the
system (3) for N0 = 2.5, a = 0.26, α1 = 1, α2 = 0.5, γ1 = 0.2, γ2 = 0.15, β = 0.4, β1 = 0.2, d1 = 0.215, d2 = 0.107, and ω = 0.5.
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Figure 3: Bifurcation diagram of consumer and predator with respect to quality of additional food α ∈ [0.5, 7.5] taking ξ = 0.2, d1 = 0.115,
and the above set of other parameter values of the system (3).

Proof. The Jacobian matrix J(E0) at E0 is given by

J(E0) =
⎛

⎜
⎝
N0 ωγ1 ωγ2

0 −d1 0
0 0 −d2

⎞

⎟
⎠, (13)

which has one positive eigenvalue N0 and two negativeeigen
values −d1 and −d2, giving a point at the origin with
nonempty stable manifolds and an unstable manifold. So, E0

is always unstable.

The Jacobian matrix J(E1) at E1 is given by

J(E1) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

−N0 ωγ1 − α1N0

a
ωγ2

0
α2N0

a
− d1 0

0 0
β1ξ

1 + αξ
− d2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (14)

From the Jacobian matrix J(E1), it is observed that it has
one negative eigenvalue (−N0) and two positive eigenvalues
if α2N0/a > d1 and β1ξ/(1+αξ) > d2 and again has nonempty
stable and unstable manifolds. Hence, the axial equilibrium
point E1 is unstable if α2N0/a > d1 and β1ξ/(1 + αξ) > d2.
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The Jacobian matrix J(E2) at E2 is given by

J(E2) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

N0 − 2aN̂ − α1Ĉ ωγ1 − α1N̂ ωγ2

α2Ĉ 0
−β1Ĉ

1 + αξ + Ĉ

0 0
β1

(
Ĉ + ξ

)

1 + αξ + Ĉ
− d2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(15)

The characteristic roots of the Jacobian matrix J(E2) are
(β1(Ĉ + ξ)/(1 + αξ + Ĉ))− d2 and roots of the equation

λ2 −
(
N0 − 2aN̂ − α1Ĉ

)
λ− α2Ĉ

(
ωγ1 − α1N̂

)
= 0. (16)

The predator-free equilibrium point E2 is stable if N0−2aN̂−
α1Ĉ < 0 and ωγ1 < α1N̂ . Hence, the theorem is proved.

3.4. Existence and Local Stability of Interior Equilibrium Point.
The interior equilibrium point of the system (3) is given by
E∗(N∗,C∗,P∗), where C∗ = (d2(1 + αξ) − β1ξ)/(β1 − d2),
P∗ = ((1 + αξ + C∗)/β1)(α2N∗ − d1), and N∗ is the positive
root of the equation

PN∗2 + QN∗ + R = 0, (17)

where P = a, Q = {(α1(d2(1 + αξ)− β1ξ))/(β1 − d2)−N0 −
(ωγ2α2/β1)(1 + αξ + (d2(1 + αξ)− β1ξ)/(β1 − d2))}, and R =
ωd1 − (ωγ1((d2(1 + αξ)− β1ξ)/(β1 − d2).

The interior equilibrium point E∗ exists if

d2(1 + αξ) > β1ξ, β1 > d2, α2N
∗ > d1, Q2 ≥ 4PR.

(18)

Theorem 3. The interior equilibrium point E∗(N∗,C∗,P∗)
for the system (3) is locally asymptotically stable if the following
conditions hold: Ω1 > 0, Ω3 > 0, and Ω1Ω2 −Ω3 > 0, where

Ω1 =−
[

N0 − 2aN∗ − α1C
∗ + α2N

∗

−β(1 + αξ)(α2N∗ − d1)
β1(1 + αξ + C∗)

]

,

Ω2 =
[

(α2N∗ − d1)
(1 + αξ + C∗)

· β
(
d2(1 + αξ)− β1ξ

)

β1

+
(
N0 − 2aN∗ − α1C

∗)

·
(

α2N
∗ − β(1 + αξ)(α2N∗ − d1)

β1(1 + αξ + C∗)

)

+
(
α1N

∗ − ωγ1
)
α2C

∗
]

,

Ω3 =−
[

(α2N∗ − d1)(1 + αξ − ξ)

(1 + αξ + C∗)2

·
{
(
N0 − 2aN∗ − α1C

∗)

×
(
β
(
d2(1 + αξ)− β1ξ

)

β1(1 + αξ − ξ)

)

+ ωγ2α2C
∗
}]

.

(19)

Proof. The Jacobian matrix of the system (3) at the interior
equilibrium point E∗ is

J(E∗) =
⎛

⎜
⎝
A11 A12 A13

A21 A22 A23

A31 A32 A33

⎞

⎟
⎠, (20)

where A11 = N0 − 2aN∗ − α1C∗, A12 = ωγ1 − α1N∗, A13 =
ωγ2, A21 = α2C∗, A22 = α2N∗−β(1+αξ)(α2N∗−d1)/β1(1+
αξ+C∗), A23 = −β(d2(1+αξ)−β1ξ)/β1(1+αξ−ξ), A31 = 0,
A32 = (α2N∗ − d1)(1 + αξ − ξ)/(1 + αξ + C∗), A33 = 0. The
characteristic equation of the Jacobian matrix E∗ is given by

λ3 + Ω1λ
2 + Ω2λ + Ω3 = 0. (21)

Using the Routh-Hurwitz criteria [17], we observe that
the system (3) is stable around the positive equilibrium point
E∗ if the conditions Ω1 > 0, Ω3 > 0, and Ω1Ω2 − Ω3 > 0
hold.

4. Numerical Study

For numerical simulation, we choose N0 = 2.5, a = 0.26,
α1 = 1, α2 = 0.5, γ1 = 0.2, γ2 = 0.15, β = 0.4, β1 = 0.2,
d1 = 0.215, d2 = 0.107, and ω = 0.5 which remains the same
for all numerical simulations. The remaining two parameters
α (quality of additional food) and ξ (quantity of additional
food) are varied to obtain different types of behaviours of the
system.

4.1. Bifurcation Analysis with respect to the Quality of
Additional Food α. We have done bifurcation analysis of the
system (3) with respect to quality of additional food α within
the range 0 ≤ α < 11 taking ξ = 0.2 as fixed. From
Figure 2, we observe that the system shows chaotic behaviour
without any additional food. If we increase availability of the
quality of additional food after α ≥ 0.42, the system shows
periodic oscillations. The system again enters into chaotic
region within 8.2 < α < 9.4, and after that, the system
shows regular behaviour and finally settles down to steady
state for α > 10.8. However, from these bifurcation diagrams,
we observe that increase of quality of additional food α up
to a certain level reduces the prevalence of chaos, and the
system enters into periodic region. Even, beyond a certain
concentration level of food supply, the system will enter into
a stable state. It shows that the consumer population has
extinction risk for low quality of additional food. Figure 3 is
the bifurcation diagram of the system with respect to quality
of additional food α taking death rate d1 = 0.115, γ1 = 0.1
instead of d1 = 0.215, γ1 = 0.2. From Figure 3, we observe
that the chaotic dynamics vanishes, and it shows oscillatory
behaviour of the system (3) with suitable supply of additional
food depending upon the death rate of the consumer.

4.2. Bifurcation Analysis with respect to the Quantity of
Additional Food ξ. We have done bifurcation analysis with
respect to quantity of additional food ξ within the range
0 ≤ ξ ≤ 2.6 taking α = 2. Figure 4 represents the bifurcation
diagram of consumer and predator with respect to ξ for



6 ISRN Biomathematics

0 0.5 1 1.5 2 2.5
0

2

4

6

8

10

12

14

16

 Quantity of additional food

0 0.5 1 1.5 2 2.5

 Quantity of additional food

 C
on

su
m

er
 p

op
u

la
ti

on

0

10

20

30

40

50

60

 P
re

da
to

r 
po

pu
la

ti
on

Figure 4: Bifurcation diagram of consumer and predator with respect to quantity of additional food ξ ∈ [0, 2.6] keeping fixed α = 2 of the
system (3) for N0 = 2.5, a = 0.26, α1 = 1, α2 = 0.5, γ1 = 0.2, γ2 = 0.15, β = 0.4, β1 = 0.2, d1 = 0.215, d2 = 0.107, and ω = 0.5.
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Figure 5: Bifurcation diagram of consumer and predator with respect to quantity of additional food ξ ∈ [0.4, 7.5] taking α = 2, d1 = 0.115,
and above set of other parameter values of the system (3).

fixed α = 2. From Figure 4, we observe that in the absence
of quantity of additional food ξ, that is, at ξ = 0, the
system shows chaotic behaviour. After α > 0.3, the system
shows period 3, period 2, and limit cycle oscillation. With the
increase of quantity of additional food ξ after certain level,
system goes to steady state. If we take α = 2, d1 = 0.115, the
chaos totally disappears from the system and shows periodic
behaviour which is shown in Figure 5. From these diagrams,
we conclude that the consumer population has extinction
risk for small quantity of additional food, but it has stable
behaviour for high quanity of additional food. The supply of
additional food to predator decreases the predation pressure

on consumer species, and as, a result, the consumer species
survives.

4.3. Bifurcation Analysis with respect to Death Rate d1 of
Consumer. Figure 6 is the bifurcation diagram of the system
(3) with respect to consumer’s death rate d1. The bifurcation
diagram shows that some consumer species have high
extinction risk in the system. Another consumers species
survives due to presence of additional food to predator. On
the other hand, predator populations have no extinction risk.
They always survive in the system, but the growth rate of
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Figure 6: Bifurcation diagram of consumer and predator with respect to consumer’s death rate d1 ∈ [0, 1] of the system (3) with additional
food α = 2 and ξ = 0.2 and for N0 = 2.5, a = 0.26, α1 = 1, α2 = 0.5, γ1 = 0.2, γ2 = 0.15, β = 0.4, β1 = 0.2, d2 = 0.107, and ω = 0.5.
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Figure 7: This figure illustrates that the smooth line indicates the
stability and the dashed (-) line indicates the instability of the
system (3) with respect to quality of additional food α for N0 = 2.5,
a = 0.26, α1 = 1, α2 = 0.5, γ1 = 0.2, γ2 = 0.15, β = 0.4, β1 = 0.2,
d1 = 0.215, d2 = 0.107, ω = 0.5, and ξ = 1.

predator population decreases with the increase of death rate
d1 of consumer.

Figure 7 is the diagram of stable and unstable dynamics
of the system (3) with respect to quality of additional food
α for N0 = 2.5, a = 0.26, α1 = 1, α2 = 0.5, γ1 = 0.2,
γ2 = 0.15, β = 0.4, β1 = 0.2, d1 = 0.215, d2 = 0.107, ω = 0.5,
and ξ = 1. The smooth lines indicate the stable dynamics,
while the dashed lines indicate the unstable dynamics. From
Figure 7, we can conclude that the system will have stable
dynamic behaviour for proper choice of additional food.

5. Conclusions

In this paper, we have proposed a model of nutrient-con-
sumer-predator interaction with additional food to predator.
Here, we have derived boundedness criteria of our system.
We have studied the existence and local stability conditions
of boundary and interior equilibrium points of the system.
We have done bifurcation analysis of our model with respect
to quality of additional food α, quantity of additional food
ξ, and death rate of consumer d1 species, respectively. We
observe that increasing quality and quantity of additional
food supply, the system’s chaos can be controlled.

Through the theoretical study and bifurcation analysis,
we conclude that nutrient-consumer-predator system in the
presence of additional food exhibits very rich dynamics.
From the bifurcation diagrams, we observe that by varying
quality and quantity of additional food we can control chaos
of a food chain. Notice that the system becomes regular
for some range of values of the death rate of consumer
and regeneration rate of nutrient due to consumer’s death.
Therefore, the system’s dynamics is sensitive to the death rate
of consumer. An important observation the Figure 7 is that
the system has stable and unstable dynamics with respect to
quality of additional food. Therefore, the stability of a system
highly depends on proper supply of additional food.

We observe that consumer species has extinction risk
for low quality and small quantity of additional food, but
consumer can survive only when we supply high quality and
large quantity of additional food. This happened as predator
is taking additional food, and the predation pressure on
consumer is decreasing, and thus, consumer can servive and
have a stable dynamic behaviour. Therefore for biological
conservation, additional food may be very useful for servival
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of consumer species in an ecosystem. So, we conclude that
the proper choice of additional food to predator makes a food
chain model more realistic, ecofriendly, and nonchaotic.
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