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Healthcare issues arose from population aging. Meanwhile, electrocardiogram (ECG) is a powerful measurement tool. The first
step of ECG is to detect QRS complexes. A state-of-the-art QRS detection algorithm was modified and implemented to an
application-specific integrated circuit (ASIC). By the dedicated architecture design, the novel ASIC is proposed with 0.68 mm2

core area and 2.21 µW power consumption. It is the smallest QRS detection ASIC based on 0.18 µm technology. In addition, the
sensitivity is 95.65% and the positive prediction of the ASIC is 99.36% based on the MIT/BIH arrhythmia database certification.

1. Introduction

Many healthcare issues arose out of population aging [1] and
experts hoped to monitor people’s health through various
physiological sensors [2]. Electrocardiogram (ECG) is one
of the physiological signals [3]. Since the milestone paper
proposed in 1996, the study of ECG is still an ongoing hot
research topic [4–7]. Some software (S/W) application for
ECG analysis had been developed on personal computer
(PC) [8].

Figure 1 shows a standard routine of ECG signal pro-
cessing. The detection of heartbeats (QRS complexes) is the
first step, while R is the peak of the complex and heart rate
variability (HRV) is the standard deviation of time sequence
(RR-intervals). The time domain analysis reports the activity
of circulatory system and the frequency domain analysis
reflects the sympathovagal balance of autonomic nervous
system (ANS) [9–13]. In our previous works, this standard
routine had been modified to MATLAB codes [14, 15] and
the QRS detection algorithm had also been implemented in
field programmable gate array (FPGA) [16].

Beyond PC, mobile phone is another S/W solution [17,
18]. In the other way, the QRS detection algorithm can be
found in hardware (H/W) implementations, such as ARM
[19], DSP [20, 21], FPGA [22–24], or ASP [25]. For the
purpose of long time use, an application-specific integrated

circuit (ASIC) solution of real-time and very low-power
consumption should be considered. Some previous chip
designs were surveyed as the comparison targets [26–38].
We will give a detailed description for our design, which
had been presented briefly in 2010 [39], in this paper. For
the application, one [27] of above ECG chips had been
embedded into a biomedical system already [40].

The remainder of this paper is structured as follows.
In Section 2, the algorithm design is briefly described. In
Section 3, we state the architecture design. In Section 4, the
evaluation and comparison with other designs are discussed.
Finally, in Section 5, we summarize this paper and offer
directions for future work.

2. Algorithm Design

The ECG signals were captured by a 3-channel portable
device (MSI E3-80, FDA proven) at 500 Hz sampling rate
in our study. Of all the ECG features, the QRS complex
is most notable [41, 42]. There were many QRS detection
algorithms in various methods [43–47]. Considered the
trade-off among algorithm complexity, robustness, and
performance, Hamilton and Tompkins’, a real-time QRS
detection algorithm, was chosen and modified for our ASIC
implementation [48].
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Figure 1: The block diagram of the overall signal processing flow of ECG analysis.
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Figure 2: QRS detection steps.

2.1. Overview of the QRS Detection Flow. There are some
types of noise appeared in the ECG signals such as 60 Hz
from power line, electromyogram (EMG) signals from
muscle electrical activity, and motion artifact from the skin
and electrode interface. Besides, large P and T waves can
also be identified as noise signals when detecting the QRS
complexes. Figure 4 in [49] summarizes the relative power
spectra of the ECG, QRS complexes, P and T waves, motion
artifact, and muscle noise.

The QRS complex is the most significant waveform of the
ECG signal. It records the electrical activity of the heartbeat
(ventricular contraction). QRS complexes also lead to the
determination of the heart rate and other important features
of HRV. In other words, QRS detection is the basis for almost
all ECG analysis programs [43].

The signal processing flow of QRS detection and the
corresponding results are shown in Figures 2 and 3. There
are two main stages in the QRS detection flow. One is
the preprocessing stage, which is composed of various
filters for removing noise and acquiring the QRS complex
information. The other stage, peak detection, makes use of
the information acquired by the preprocessing stage and
some criteria to detect the QRS complex peaks.

2.2. Band-Pass Filter. In the beginning of the preprocessing
stage, the band-pass filter is used to reduce the influence of
muscle noise, 60 Hz interference, baseline wander, and T-
wave interference. The desirable pass-band to maximize the
QRS energy is approximately 5–15 Hz [49].

The band-pass filter is composed of cascaded low-pass
and high-pass filters. Their difference equations are listed as
(1). The amplitude response of the band-pass filter, which
is composed of the cascade of the low-pass and high-pass
filters, is shown in Figure 4. The center frequency of the pass-
band is at 10 Hz. The amplitude response of this filter is
designed to approximate the spectrum of the average QRS
complex. Thus this filter optimally passes the frequencies

characteristic of a QRS complex while attenuating lower and
higher frequency signals:

y(nT) = 2y(nT − T)− y(nT − 2T) + x(nT)

− 2x(nT − 6T) + x(nT − 12T),

y(nT) = x(nT − 16T)

−
(

1
32

)[
y(nT − T) + x(nT)− x(nT − 32T)

]
.

(1)

2.3. Derivative. After been filtered, the signal is differentiated
to acquire the slope of the QRS complex. This derivative is
implemented with the difference equation (2). The perfor-
mance characteristics of this derivative implementation are
shown in Figure 5. The amplitude response approximates
a true derivative up to about 20 Hz. This is the important
frequency range since all higher frequencies are significantly
attenuated by the band-pass filter:

y(nT) =
(

1
8

)
[2x(nT) + x(nT − T)− x(nT − 3T)

−2x(nT − 4T)].

(2)

2.4. Square. The signal is squared sequentially after differ-
entiation, as shown in (3). All data points become positive,
the output of the derivative is amplified nonlinearly, and the
higher frequencies (QRS complexes) are emphasized:

y(nT) = [x(nT)]2. (3)

2.5. Moving Window Average. The slope of the R wave alone
is not a guaranteed way to detect a QRS event. Many
abnormal QRS complexes that have large amplitudes and
long durations (not very steep slopes) might not be detected
using information about slope of the R wave only. Thus, we
need to extract more information from the signal to detect a
QRS event. Moving window integration extracts features in
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Figure 3: Results of QRS detection steps in Figure 2.
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Figure 4: Amplitude response of band-pass filter composed of low-pass and high-pass filters.

addition to the slope of the R wave. It is implemented with
the following difference equation (4).

Basically, the window should be selected as the width
of the widest possible QRS complex. If the window is too
wide, it merges the QRS and T complexes together. If the
window is too narrow, some QRS complexes will derive
several redundant peaks in the integration waveform. The
width of the window should be determined empirically. For
our sample rate (500 samples/s), the integration window is
64 samples wide (which correspond to 128 ms):

y(nT) =
(

1
N

)
[x(nT − (N − 1)T) + x(nT − (N − 2)T)

+ · · · + x(nT)].
(4)

2.6. Peak Detection. The peak detection stage detects peaks
in the signals after moving window average. Four main tech-
niques introduced in Hamilton and Tompkins’ algorithm
included ripple-ignored, fiducial mark, adaptive detection
threshold, and search back [48]. First three of them were
modified for our design of hardware implementation. Details
of the peak detection flow are described in the following
paragraphs and the flowchart is depicted in Figure 6. Finally,
the corresponding relation between ECG raw data and the
signals after moving window average is shown in Figure 5 of
[48], and the peak detection is shown in Figure 7.

There are three main steps to detect a peak and avoid the
ripples around the tops of the peaks.

(1) Store the value of one point to local max.

(2) If the value of the newer point is larger than
local max, store it to local max.

(3) If the value of the newer point is smaller than half of
local max, a peak is detected. Otherwise go to step 2.

After a peak is detected, it is classified as either a QRS
complex or noise, or it is saved for later classification. This
work uses the peak height and peak location to classify
peaks. The principles of the basic detection rules in the peak
detection stage are listed as follows.

(1) To avoid both prominent T waves and multiple
detection of QRS waves, ignore all peaks that precede
or follow larger peaks by less than a refractory
blanking 200 ms [48].

(2) The peak is recognized as a QRS complex instead of
noise if the peak is larger than the adaptive detection
threshold (5). DT means the detection threshold,
where TC is the threshold coefficient. NPL is the
noise peak level and QRSPL is the QRS peak level.
QRSPL is the mean of an 8-point QRS buffer. The
buffer collects 8 records of latest QRS peak value, and
similarly the noise buffer stores 8 records of latest
noise peak value:

DT = NPL + TC∗ (QRSPL−NPL). (5)
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Figure 5: (a) Amplitude response of the derivative, (b) phase response of the derivative.

Mean, median, and iterative estimators were examined
in our reference algorithm [48]. Although the general
performance of the median estimator was best, the mean
estimator was employed for the easy implementation of
hardware design with little loss of performance. After
choosing the mean estimator, a value 0.375 for TC was fine
tuned according to MIT-BIH database.

3. Architecture Design

Measurement of HRV provides a noninvasive method to
obtain reliable information on autonomic modulation of
heart rate and has become an important tool for risk
assessment to millions of patients who suffer from chronic
diseases. A compact, high-accuracy, real-time HRV assess-
ment system could provide a valuable feature for implantable
and portable cardiac monitoring and intervention devices.
The reliable QRS detection is crucial for HRV analysis. This
work focused on the balance among low-power, small area,
and high accuracy.

3.1. Accuracy Simulation. For achieving the high-accuracy,
the word-length of each processing stage needs to be decided
carefully. The word-length of each processing block is shown
in Figure 8, where [x· y] means the word-length is composed
of x bit integer and y bit decimal fraction. The deviation
of each processing stage between the software QRS detector
and the hardware QRS detector is simulated through all the
MIT-BIH Arrhythmia Database. The deviation of detected R
peak between the software QRS detector and the hardware
QRS detector is shown in Figure 9. It can be seen that the
detection results is very close between them. The maximum
deviation is 0.00304 samples, it is just 8.45 µs (0.00304/360 =
8.444, 360 Hz sampling rate) differences. So the accuracy of
the hardware QRS detector is almost the same as the software
QRS detector. The detailed deviation of each record is listed
in Table 1.

The deviation of each processing stage between the
software QRS detector and the hardware QRS detector is

simulated through all the MIT-BIH Arrhythmia Database,
but just first ten minutes data are used to evaluate the
QRS detector performance for simplicity. The deviation
is represented by averaging the differences of each stage
outcomes between the hardware (HDL code in Altera
FPGA design kits, DE2, and TS2) and software (MATLAB)
simulations.

3.2. Hardware Architecture. As mentioned in Section 2, the
QRS detection can be divided into two stages. The prepro-
cessing stage emphasizes the desired components in order to
maximize the signal-to-noise ratio. The peak detection stage
decides if an incoming peak is a true QRS complex based on a
user-specified threshold. It can be seen that the preprocessing
stage of the QRS detection algorithm adopted in this study is
composed of several digital filters.

The systolic array architecture for these digital filters is
adopted in this work [50]. For computing one-dimensional
recursive convolution characterized by the transfer function
shown as (6), where ai (for i = 0 to N) and bi (for i =
1 to N) are real coefficients, the array structure shown in
Figure 10 can be used to achieve an appropriate trade-off
between throughput and the amount of hardware required.
Because these digital filters mentioned in (1) and (2) all can
be represented as (6), they can be implemented by these
continuously connecting array structures.

For reducing the amount of hardware required in the
chip, observing the arrangement of the registers shown in
Figure 10, it can be found that the area closed by the red
rectangular can be used as a basic processing element (PE) in
the array. The basic PE can be reused continuously to update
the different registers and the same result will be obtained.
Observing the difference equations listed in (1) and (2), there
are only five possibilities of coefficients. They are 0, 1, −1,
2, and −2. So the four multiplication operation in the PE
can be simplified to four shifting operation. The proposed PE
reusing architecture is shown in Figure 11 and the final layout
and IC package photo of our design are shown in Figure 12.
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Table 1: The detailed deviation between the hardware and software QRS detector of each record.

Record LP HP DEV SQR MOV R peak

100 0 0.015132 0.002901 0.0231 0.004579 0

101 0 0.015161 0.002899 0.0233 0.004327 0

102 0 0.015143 0.0029 0.0143 0.002455 0

103 0 0.015145 0.002886 0.0362 0.006948 0

104 0 0.015132 0.002903 0.0241 0.00403 0

105 0 0.015143 0.00289 0.0291 0.004022 0

106 0 0.015146 0.002899 0.032 0.005572 0

107 0 0.015091 0.002892 0.0401 0.005895 0

108 0 0.015162 0.002901 0.0152 0.002293 0

109 0 0.015124 0.002899 0.0329 0.003702 0

111 0 0.01511 0.002895 0.0186 0.002974 0.001433

112 0 0.015146 0.002904 0.0225 0.00378 0

113 0 0.015142 0.002897 0.0339 0.006682 0

114 0 0.015136 0.002893 0.0235 0.00404 0

115 0 0.015141 0.002896 0.0355 0.007272 0

116 0 0.015146 0.002901 0.0649 0.011549 0

117 0 0.015141 0.002894 0.0201 0.003554 0

118 0 0.015138 0.002889 0.0426 0.006408 0

119 0 0.015119 0.002898 0.0374 0.006469 0.00304

121 0 0.015107 0.002884 0.0137 0.00199 0.001642

122 0 0.015145 0.002893 0.0353 0.005366 0

123 0 0.015124 0.002899 0.0314 0.005822 0

124 0 0.015092 0.002909 0.0275 0.004132 0.002008

201 0 0.015138 0.00289 0.0176 0.002896 0

202 0 0.015144 0.002894 0.0161 0.002545 0

203 0 0.015131 0.0029 0.0333 0.004784 0.001261

205 0 0.015163 0.002896 0.0237 0.004462 0

207 0 0.015119 0.002896 0.0161 0.00224 0

208 0 0.015162 0.002905 0.0341 0.005769 0

209 0 0.015149 0.002893 0.0385 0.007507 0

210 0 0.015127 0.002893 0.0231 0.003624 0

212 0 0.01513 0.002895 0.0393 0.007167 0

213 0 0.015153 0.002903 0.0763 0.011939 0

214 0 0.015117 0.002899 0.0293 0.004708 0.001339

215 0 0.015147 0.0029 0.042 0.007304 0

217 0 0.015107 0.002888 0.0285 0.004027 0

219 0 0.015129 0.002896 0.0421 0.007012 0

220 0 0.015123 0.002894 0.0396 0.008065 0

221 0 0.01512 0.002897 0.0269 0.004786 0

222 0 0.015149 0.002896 0.0128 0.002546 0

223 0 0.015153 0.002895 0.0315 0.00517 0.001203

228 0 0.015135 0.002888 0.0207 0.003165 0

230 0 0.015131 0.002893 0.0389 0.007318 0

231 0 0.01517 0.002888 0.0253 0.004656 0.002004

232 0 0.015147 0.002891 0.016 0.002957 0

233 0 0.015122 0.002891 0.048 0.007039 0

234 0 0.015128 0.002901 0.0365 0.006479 0
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Figure 12: (a) The proposed QRS detection ASIC layout; (b) The proposed QRS detection ASIC package photo.

The procedure for peak detection was described in
Section 2.6. According to Figure 6, the procedure was imple-
mented in hardware description language (HDL):

H
(
z−1) =

∑N
i=0 aiz

−i

1−∑N
i=1 biz−i

. (6)

4. Discussion

4.1. MIT-BIH Arrhythmia Database Certification. Many
algorithms of HRV analysis, such as heart rate calculation,
PAV detection, and PVC detection, require a very accurate
QRS recognition capability. Several standard ECG database
are available for the evaluation of software QRS detection
algorithms. Tests on these well-annotated and validated
databases provide reproducible and comparable results.
Furthermore, these databases contain many selected signals
representative for the large variety observed but clinically
important. The MIT-BIH Arrhythmia Database is the most
frequently used database. It contains 48 half-hour recordings

of annotated ECG with sampling rate of 360 Hz and 11-bit
resolution over a 10 mV range. The sampling rate of our 3-
channel portable device (MSI E3-80, FDA proven) is 500 Hz.
Both kinds of data can be processed by adjusting the system
clock of our proposed ASIC. Twenty-five recordings with
less common arrhythmias were selected from over 4000 24-
hour ambulatory ECG recordings, and the rest was chosen
randomly. While some records contain clear R-peaks and
few artifacts (e.g., records 100–107), for some records the
detection of QRS complexes is very difficult due to abnormal
shapes, noise, and artifacts (e.g., records 108 and 207).

The MIT-BIH Arrhythmia Database is acquired from the
PhysioNet which offers free access via the web to large collec-
tions of recorded physiologic signals and related open-source
software. There are forty-eight recordings in this database.
Each recording includes annotations that indicate the times
of occurrence and types of each individual heart beat (“beat-
by-beat annotations”). The standard set of annotation codes
includes both beat annotations and nonbeat annotations.
According to [51], essentially three parameters should be
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used to evaluate the QRS detection algorithm. They are
formulated as (7) where TP denotes the number of true
positive detection, FN denotes the number of false negatives,
and FP denotes the number of false positives. Therefore, TP
represents the QRS detector successfully detects the beats
which are coded by beat annotations, FN represents the
QRS detector misses the beats which are coded by beat
annotations and FP means the QRS detector detects the
beats which are coded by nonbeat annotations or nonexisted
actually.

In this study, all the forty-eight recordings in the
MIT-BIH Arrhythmia Database are used to evaluate the
QRS detector algorithm. Each recording records half-hour
annotated ECG, but just first ten minutes data are used to
evaluate the QRS detector performance for simplicity. The
evaluation result of each recording is listed in Table 2. For
the performance measures of the modified algorithm, the
sensitivity (Se) is 95.65%, and the positive predictivity (+P)
is 99.36%. The average time error is 5.33 ms.

Sensitivity (%) = TP
TP + FN

(%),

Positive predictivity (%) = TP
TP + FP

(%),

Average time error (ms)

=
∑|Detected QRS time− Actual QRS time|

TP

(7)

4.2. CHIP Comparison. Thirteen QRS detection chip papers
were collected in the literature review [26–38], and Table 3
shows the comparison details. There existed two types for
these solutions, one is system on chip (SoC) [26–28, 30, 31,
33, 35–37], the other is ASIC [29, 32, 34, 38]. Although
dedicated for ECG signal processing, the consideration of
these two kinds of design is different. One main target of SoC
solutions is flexible, hence the area and power consumption
are not the first priority. The area range distribution of SoC
is between 1.11 mm2 and 13 mm2, which are larger than our
0.68 mm2 design. Hence we compare our ASIC design with
our main competitors (the ASIC solutions) first, with SoC
solutions followed.

The four ASIC solutions are the major competitors
[29, 32, 34, 38]. The performance of a chip depends
both on process and design. Smaller chip size and lower
power consumption are derived from the advanced process.
However, it is reasonable to compare the circuit design
in the same process. The state-of-the-art QRS detector
[34] employed advanced 65 nm technology, which derived
the smallest area 0.02 mm2 among all QRS chips [26–38].
Besides, the database performance is very good (Se: 99.7%,
+P: 99.9%). However, the advantage of size came from the
65 nm technology instead of the circuit design, if its previous
version [52] was considered. The area [52] is 1 mm2 using
0.13 µm UMC process, which is larger than our 0.68 mm2

using 0.18 µm tsmc process. The next competitor [32], using
0.35 µm process, has larger area and power consumption
(5.74 mm2, 9.6 µW) than ours. The most important point is

no database verification had been reported in this paper. An
excellent QRS detection algorithm (Se: 99.81%, +P: 99.80%)
[44] was modified for this ASIC design [32]. However, it did
not guarantee the ASIC performed as well as the algorithm.
The authors did not provide enough evidence in their
paper. It is a pity that even the brief QRS detection circuit
design was not mentioned also. [29] is an ideal competitor
candidate, since it used the same 0.18 µm technology with
our design. The other benefit is that it employed similar
wavelet QRS detection method with [34]. Both of these
two wavelet-based ASIC adapted Mallat’s algorithm [53,
54], which gave us an indirect chance to compare the
performance of circuit design of [34] with ours. The database
performance (Se: 99.63%, +P: 99.89%) of [29] is better than
our design (Se: 95.65%, +P: 99.36%). However, based on
the same 0.18 µm technology, the area 1.1 mm2 is 161%
of our area 0.68 mm2 and the power consumption 176 µW
is 7964% of our power consumption 2.21 µW. This leaves
improvement space for its circuit design beyond advanced
process technology for an ambulatory device. Finally, a
recently proposed QRS detection ASIC [38] integrated in an
ECG SoC is compared. This ASIC has very good database
performance (Se: 99.80%, +P: 99.86%). However, based on
the same 0.18 µm technology, the area and power (1.2 mm2,
9 µW) are worse than our design.

There were three earlier SoC solutions [26–28], two of
them [26, 28] are based on 0.18 µm technology, the same
with ours. However, the area and power (13 mm2, N/A;
6.25 mm2, 155 µW) is larger than ours (0.68 mm2, 2.21 µW).
The other 0.5 µm technology SoC solution [27] has 1.5 µW,
small power consumption. However, all of them [26–28] lack
any medical database certification. Some technique details
are briefly described as follows. The first one presents the
design which incorporates an ARh4922T hard macrocell as
its processor core [26]. The second one categorizes and stores
HRV measures in an internal memory. The chip detects all R
peaks with millisecond accuracy after the initial 2 seconds of
data, and stores up to 2 minutes of continuous ECG data and
up to 4 minutes of HRV histogram [27]. The third one stores
the difference between every two adjacent R-R intervals in a
single-port synchronous, high-performance SRAM, up to 24
hours of continuous ECG data can be stored on chip with a
fixed resolution of 1 ms [28].

The technology used by ECG SoC solutions [30, 31,
33, 35–37] evolved from 0.35 µm [37] to 0.18 µm [33],
0.13 µm [30, 36], and 0.09 µm [31, 35] in recent years.
The function is powerful, even the EEG signal processing
function was included [31, 36]. However, with advanced
technology (0.13 µm and 0.09 µm) than ours (0.18 µm),
the area distribution (3.97 mm2 to 12 mm2) is still larger
than ours (0.68 mm2). Three of them [30, 33, 35] were
not seriously tested by any medical database. The other
two performed well [31, 36]. A recent QRS SoC design
[37] that used quadratic spline wavelet transform has good
performance, although the 0.35 µm technology is not very
advanced. The sensitivity (Se: 99.31%) and the predictivity
(+P: 99.70%) are high and the power consumption is very
low (0.83 µW). Although the chip size (1.11 mm2) is lager
than ours (0.68 mm2), it is smaller than most other works.
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Table 2: The evaluation results of the simplified QRS detector.

Record Total peaks Total normal peaks TP FP FN

100 759 753 753 0 0

101 653 645 638 5 2

102 732 728 728 0 0

103 703 703 703 0 0

104 812 725 488 27 210

105 850 832 832 0 0

106 664 646 577 0 69

107 705 705 705 0 0

108 580 561 540 2 19

109 856 856 788 1 67

111 701 701 701 0 0

112 853 853 853 0 0

113 580 580 580 0 0

114 559 556 555 0 0

115 634 634 634 0 0

116 796 796 792 0 4

117 504 504 504 0 0

118 774 768 768 0 0

119 692 659 657 0 2

121 610 608 608 0 0

122 838 836 836 0 0

123 505 504 504 0 0

124 529 523 497 0 26

201 783 760 745 0 15

202 534 534 738 0 7

203 1038 998 790 4 204

205 927 927 920 0 7

207 831 656 574 10 72

208 510 510 354 156 0

209 1032 1022 1021 0 1

210 889 822 773 2 47

212 932 932 923 0 9

213 1112 1098 1042 0 56

214 783 763 744 1 18

215 1138 1130 1114 1 15

217 746 727 725 0 2

219 763 759 726 1 32

220 711 700 700 0 0

221 836 826 691 0 135

222 750 737 727 0 10

223 845 838 800 0 8

228 740 697 245 3 449

230 819 729 729 0 0

231 680 506 500 0 6

232 625 603 595 3 5

233 1046 1022 1012 0 10

234 924 920 910 0 10

Sum 33339 216 1517



VLSI Design 11

Table 3: Comparison of fourteen chips.

Ref Year Tech. (µm) Area (mm2) Power (µW) Freq. (KHz) Accu. (ms) Database Se (%) +P (%) Type

This
work

0.180 0.68 2.21 0.5 ±6 M 95.65 99.36 ASIC

[38] 2012 0.180 1.20 9.00 32 N/A M 99.80 99.86 ASIC

[37] 2012 0.350 1.11 0.83 0.3 N/A M 99.31 99.70 SoC

[36] 2011 0.130 12.00 N/A 16.4 uJ/pb 15 K∼45 K N/A M 99.65 99.77 SoC

[35] 2011 0.090 7.03 N/A 13 pJ/pc 1 K∼100 K N/A N/A N/A N/A SoC

[34] 2010 0.065 0.02 N/A 0.88 pJ/ps 20 N/A E 99.7 99.9 ASIC

[33] 2010 0.180 2.25 1.26∼6 0.25∼1 N/A N/A 100 100 SoC

[32] 2010 0.350 5.74 9.60 1 K N/A N/A N/A N/A ASIC

[31] 2010 0.090 3.97 10.00 32∼100 K N/A N/A 99.65 99.79 SoC

[30] 2009 0.130 5.98 2.60 475 ±8 M 100 N/A SoC

[29] 2009 0.180 1.10 176.00 1 K N/A N/A 99.63 99.89 ASIC

[28] 2006 0.180 6.25 155.00 N/A N/A P N/A N/A SoC

[27] 2005 0.500 9.00 1.50 1 ±7 N/A N/A N/A SoC

[26] 2004 0.800 13.00 N/A 112 K N/A N/A N/A N/A SoC

Note. (M) MIT-BIH, (P) PhysioNet, (E) EGM.

To sum up, SoC is a good try for general physiological
measurement, but ASIC is a better solution for ambulatory
device if the die size is really cared.

5. Conclusions

HRV is a measure of variations in the heart rate and very
useful for understanding many diseases, while QRS detection
is the first step of HRV analysis. The low cost ASIC proposed
in this paper can be embedded into many daily life systems
for both health and clinical purposes. Our proposed ASIC
has smaller core area and very low-power consumption,
compared with the main competitive target [29] based on the
same 0.18 µm technology. One important spec is accuracy,
the ability of real time. It was provided by only three papers,
our design (±6 ms) and the other two (±7 ms, ±8 ms) [27,
30]. The sensibility (99.69%) and predictivity (99.77%) of
the algorithm [48] we used are very high. However, to achieve
the accuracy, the simplification of decision circuit derives a
side effect, the lower sensibility (95.65%) and predictivity
(99.36%). To improve the performance of peak detection,
especially in sensitivity, the search back technique [48] will
be implemented in the future design.
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[31] B. Büsze, F. Bouwens, M. Konijnenburg et al., “Ultra low
power programmable biomedical SoC for on-body ECG and
EEG processing,” in Proceedings of the 6th IEEE Asian Solid-
State Circuits Conference (A-SSCC ’10), pp. 1–4, November
2010.

[32] C. J. Deepu, X. Y. Xu, X. D. Zou, L. B. Yao, and Y. Lian,
“An ECG-on-chip for wearable cardiac monitoring devices,”
in Proceedings of the 5th IEEE International Symposium on
Electronic Design, Test and Applications (DELTA ’10), pp. 225–
228, January 2010.

[33] H. Kim, R. F. Yazicioglu, T. Torfs, P. Merken, Y. Hoi-Jun,
and C. Van Hoof, “A low power ECG signal processor for
ambulatory arrhythmia monitoring system,” in Proceedings of
the 24th Symposium on VLSI Circuits (VLSIC ’10), pp. 19–20,
June 2010.

[34] J. N. Rodrigues, O. C. Akgun, and V. Öwall, “A <1 pJ sub-
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