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The velocity field and the adequate shear stress corresponding to the first problem of Stokes for
generalized Burgers’ fluids are determined in simple forms by means of integral transforms. The
solutions that have been obtained, presented as a sum of steady and transient solutions, satisfy all
imposed initial and boundary conditions. They can be easily reduced to the similar solutions for
Burgers, Oldroyd-B, Maxwell, and second-grade and Newtonian fluids. Furthermore, as a check of
our calculi, for small values of the corresponding material parameters, their diagrams are almost
identical to those corresponding to the known solutions for Newtonian and Oldroyd-B fluids.
Finally, the influence of the rheological parameters on the fluid motions, as well as a comparison
between models, is graphically illustrated. The non-Newtonian effects disappear in time, and the
required time to reach steady-state is the lowest for Newtonian fluids.

1. Introduction

There is evidence that the interest of the workers in non-Newtonian fluids is on the leading
edge during the last few years. Many researchers have the opinion that flows of such fluids
are important in industry and technology. Several investigations in the field cite a wide
variety of applications in rheological problems in biological sciences, geophysics, and chem-
ical and petroleum industries [1]. It is an established fact that unlike the Newtonian fluids,
the flows of non-Newtonian fluids cannot be analyzed by a single constitutive equation. This
is due to the rheological properties of non-Newtonian fluids. The understanding of flows
of such fluids has progressed via a number of theoretical, computational, and experimental
efforts. The resulting equations of such fluids are in general of higher order than the Navier-
Stokes equation and one needs additional conditions for a unique solution [2, 3]. Specifically
to obtain an analytic solution for such flows is not an easy task. In spite of several challenges,
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many investigations regarding the analytic solutions for flows of non-Newtonian fluids have
been performed [4–19].

Many models are accorded to describe the rheological behavior of non-Newtonian
fluids [20, 21]. They are usually classified as fluids of differential, rate and integral type.
Amongst the non-Newtonian fluids, the rate-type fluids are those which take into account
the elastic and memory effects. The simplest subclasses of rate type fluids are those of
Maxwell and Oldroyd-B fluids. But these fluid models do not exhibit rheological properties
of many real fluids such as asphalt in geomechanics and cheese in food products. Recently,
a thermodynamic framework has been put into place to develop the one-dimensional rate
type model known as Burgers’ model [22] to the frame-indifferent three-dimensional form
by Murali Krishnan and Rajagopal [23]. This model has been successfully used to describe
the motion of the earth’s mantle. The Burgers’ model is the preferred model to describe the
response of asphalt and asphalt concrete [24]. This model is mostly used to model other
geological structures, such as Olivine rocks [25] and the propagation of seismic waves in
the interior of the earth [26]. In the literature, the vast majority of the flows of the rate-type
models has been discussed using Maxwell and Oldroyd-B models. However, the Burgers’
model has not received much attention in spite of its diverse applications. We here mention
some of the studies [27–33] made by using Burgers’ model.

The purpose of this work is to established exact solutions corresponding to the first
problem of Stokes for generalized Burgers’ fluids. Actually, we determine the velocity and the
adequate shear stress corresponding to the motion of such a fluid over a plane wall, which
initially is at rest and is suddenly moved in its own plane withe a constant velocity. The
general solutions, obtained by means of Fourier sine and Laplace transforms, are presented
under integral form in terms of the elementary functions and can be reduced to the similar
solutions for Burgers fluids. As a check of their correctness, we also showed that for small
values of the rheological parameters λ1, λ2, λ3, and λ4 or λ2 and λ4 only, the diagrams of
the general solutions are almost identical to those corresponding to the known solutions for
Newtonian, respectively, Oldroyd-B fluids. The influence of the material parameters on the
fluid motion, as well as a comparison between some models, is also underlined by graphical
illustrations. The non-Newtonian effects disappear in time and the Newtonian fluid flows
faster.

2. Basic Governing Equations

The Cauchy stress tensor T for an incompressible generalized Burgers’ fluid is characterized
by the following constitutive equations [30–33]:

T = −pI + S, S + λ1
δS
δt

+ λ2
δ2S
δt2

= μ

[
A + λ3

δA
δt

+ λ4
δ2A
δt2

]
, (2.1)

where −pI denotes the indeterminate spherical stress, S is the extra-stress tensor, A = L + LT

is the first Rivlin-Ericksen tensor (L being the velocity gradient), μ is the dynamic viscosity,
λ1 and λ3 (< λ1) are relaxation and retardation times, λ2 and λ4 are new material parameters
of the generalized Burgers’ fluid (having the dimension of t2), and δ/δt denotes the upper
convected derivative defined in [30–33].
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This model includes as special cases the Burgers’ model (for λ4 = 0), Oldroyd-B model
(for λ2 = λ4 = 0), Maxwell model (for λ2 = λ3 = λ4 = 0), and the Newtonian fluid model
when λ1 = λ2 = λ3 = λ4 = 0. In some special flows, like those to be here considered, the gov-
erning equations corresponding to generalized Burgers’ fluids resemble those for second-
grade fluids.

For the problem under consideration, we assume a velocity field V and an extra-stress
tensor S of the form

V = V
(
y, t

)
= u

(
y, t

)
i, S = S

(
y, t

)
, (2.2)

where i is the unit vector along the x-coordinate direction. For these flows, the constraint of
incompressibility is automatically satisfied. If the fluid is at rest up to the moment t = 0, then

V
(
y, 0

)
= 0, S

(
y, 0

)
=

∂S
(
y, 0

)
∂t

= 0. (2.3)

Equations (2.1) and (2.3) imply Syy = Syz = Szz = Sxz = 0, and the meaningful equation

(
1 + λ1

∂

∂t
+ λ2

∂2

∂t2

)
τ
(
y, t

)
= μ

(
1 + λ3

∂

∂t
+ λ4

∂2

∂t2

)
∂u

(
y, t

)
∂y

, (2.4)

where τ(y, t) = Sxy(y, t) is the nonzero shear stress. In the absence of body forces, the balance
of linear momentum reduces to

∂τ
(
y, t

)
∂y

− ∂p

∂x
= ρ

∂u
(
y, t

)
∂t

,
∂p

∂y
=

∂p

∂z
= 0. (2.5)

Eliminating τ between (2.4) and (2.5) and assuming that there is no pressure gradient in the
flow direction, we find the governing equation under the form

(
1 + λ1

∂

∂t
+ λ2

∂2

∂t2

)
∂u

(
y, t

)
∂t

= ν

(
1 + λ3

∂

∂t
+ λ4

∂2

∂t2

)
∂2u

(
y, t

)
∂y2

; y, t > 0. (2.6)

Consider an incompressible generalized Burgers’ fluid occupying the space above a
flat plate perpendicular to the y-axis. Initially, the fluid is at rest and at the moment t = 0+ the
plate is impulsively brought to the constant velocity U in its plane. Due to the shear, the fluid
above the plate is gradually moved. Its velocity is of the form (2.3)1, while the governing
equations are given by (2.6) and (2.4). The relevant problem under initial and boundary
conditions [34–36] is

u
(
y, 0

)
=

∂u
(
y, 0

)
∂t

=
∂2u

(
y, 0

)
∂t2

= 0, y > 0, (2.7)

u(0, t) = UH(t), t ≥ 0, (2.8)
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where H(t) is the Heaviside function. Moreover, the natural conditions

u
(
y, t

)
,
∂u

(
y, t

)
∂y

−→ 0 as y −→ ∞, t > 0 (2.9)

have to be also satisfied. They are consequences of the fact that the fluid is at rest at infinity
and there is no shear in the free stream.

3. Solution of the Problem

In order to determine the exact solution, we shall use the Fourier sine transforms [37].
Multiplying both sides of (2.6) by

√
2/π sin(yξ), integrating the result with respect to y from

0 to infinity, and taking into account the boundary conditions (2.8) and (2.9), we find that

(
1 + λ1

∂

∂t
+ λ2

∂2

∂t2

)
∂us

∂t
+ νξ2

(
1 + λ3

∂

∂t
+ λ4

∂2

∂t2

)
us = νξU

√
2
π

[
H(t) + λ3δ(t) + λ4δ

′(t)
]
,

(3.1)

where δ(t) and δ′(t) are delta function and its derivative and the Fourier sine transform us =
us(ξ, t) of u(y, t) defined by

us(ξ, t) =

√
2
π

∫∞

0
u
(
y, t

)
sin

(
yξ

)
dy, (3.2)

has to satisfy the initial conditions

us(ξ, 0) =
∂us(ξ, 0)

∂t
=

∂2us(ξ, 0)
∂t2

= 0, ξ > 0. (3.3)

By applying the Laplace transform to (3.1) and having in mind the initial conditions (2.7), we
find that

us

(
ξ, q

)
= νξU

√
2
π

λ4q
2 + λ3q + 1

q
[
λ2q3 + {λ1 + λ4νξ2}q2 + {1 + λ3νξ2}q + νξ2

] . (3.4)

Now, for a more suitable presentation of the final results, we rewrite (3.4) in the following
equivalent form:

us

(
ξ, q

)
= U

√
2
π

1
ξ

[
1
q
− λ2q

2 + λ1q + 1
λ2q3 + {λ1 + λ4νξ2}q2 + {1 + λ3νξ2}q + νξ2

]
. (3.5)
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Inverting (3.5) by means of the Fourier sine formula, we can write u(y, q) as

u
(
y, q

)
=

2U
π

∫∞

0

sin
(
yξ

)
ξ

[
1
q
− λ2q

2 + λ1q + 1
λ2q3 + {λ1 + λ4νξ2}q2 + {1 + λ3νξ2}q + νξ2

]
dξ. (3.6)

Finally, in order to obtain the velocity field u(y, t) = L−1{u(y, q)}, we apply the inverse
Laplace transform to (3.6) and use (A.1) from the Appendix. As a result, we find for the
velocity field, the following simple expression:

u
(
y, t

)
= UH(t) − 2UH(t)

πλ2

∫∞

0

sin
(
yξ

)
ξ

×
[(

λ2q
2
1 + λ1q1 + 1

)
eq1t(

q1 − q2
)(
q1 − q3

) +

(
λ2q

2
2 + λ1q2 + 1

)
eq2t(

q2 − q1
)(
q2 − q3

) +

(
λ2q

2
3 + λ1q3 + 1

)
eq3t(

q3 − q1
)(
q3 − q2

)
]
dξ,

(3.7)

where

qi = si − λ1 + λ4νξ
2

3λ2
, i = 1, 2, 3, (3.8)

are the roots of the algebraic equation λ2q
3 + (λ1 + λ4νξ

2)q2 + (1 + λ3νξ
2)q + νξ2 = 0. In above

relations (see the Cardano’s formulae [38]),

s1 =
3

√√√√−β1

2
+

√
β2

1

4
+
α3

1

27
+

3

√√√√−β1

2
−
√

β2
1

4
+
α3

1

27
,

s2 = Z
3

√√√√−β1

2
+

√
β2

1

4
+
α3

1

27
+ Z2

3

√√√√−β1

2
−
√

β2
1

4
+
α3

1

27
,

s3 = Z2
3

√√√√−β1

2
+

√
β2

1

4
+
α3

1

27
+ Z

3

√√√√−β1

2
−
√

β2
1

4
+
α3

1

27

(3.9)

are the roots of the algebraic equation X3 + α1X + β1 = 0, where

α1 =
1 + λ3νξ

2

λ2
−
(
λ1 + λ4νξ

2)2

3λ2
2

,

β1 =
νξ2

λ2
+

2
(
λ1 + λ4νξ

2)3

27λ3
2

−
(
λ1 + λ4νξ

2)(1 + λ3νξ
2)

3λ2
2

,

Z =
−1 + i

√
3

2
.

(3.10)
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From Routh-Hurwitz’s principle [39], we get Re(qi) < 0 if λ1λ3−λ2+λ4 > −2
√
λ1λ3λ4, provided

λ1, λ2, λ3, λ4 > 0. The corresponding shear stress (see also (A.2))

τ
(
y, t

)
= −2μUH(t)

πλ2

∫∞

0
cos

(
yξ

)

×
[(

λ4q
2
1 + λ3q1 + 1

)
eq1t(

q1 − q2
)(
q1 − q3

) +

(
λ4q

2
2 + λ3q2 + 1

)
eq2t(

q2 − q1
)(
q2 − q3

) +

(
λ4q

2
3 + λ3q3 + 1

)
eq3t(

q3 − q1
)(
q3 − q2

)
]
dξ,

(3.11)

is obtained in the same way from (2.4).

4. Special Cases

4.1. Burgers’ Fluid

Making λ4 → 0 into (3.7) and (3.11), we obtain the velocity field and the associated shear
stress corresponding to a Burgers’ fluid performing the same motion.

4.2. Oldroyd-B Fluid

Making λ2 and λ4 = 0 into (3.6) and following the same way as before, we get the velocity
field (see also (A.3))

uOB
(
y, t

)
= UH(t) − 2UH(t)

πλ1

∫∞

0

sin
(
yξ

)
ξ

[(
λ1q8 + 1

)
eq8t − (

λ1q7 + 1
)
eq7t

q8 − q7

]
dξ, (4.1)

and the shear stress

τOB
(
y, t

)
= −2μUH(t)

πλ1

∫∞

0
cos

(
yξ

)[(λ3q8 + 1
)
eq8t − (

λ3q7 + 1
)
eq7t

q8 − q7

]
dξ, (4.2)

corresponding to an Oldroyd-B fluid. In the above relations,

q7, q8 =
−{1 + λ3νξ

2} ±√
{1 + λ3νξ2}2 − 4νλ1ξ2

2λ1
(4.3)

and (4.1) is identical to (15) from [40].



ISRN Mathematical Physics 7

4.3. Maxwell Fluid

Making the limit of (4.1) and (4.2) as λ3 → 0, we obtain the solutions

uM

(
y, t

)
= UH(t) − 2UH(t)

πλ1

∫∞

0

sin
(
yξ

)
ξ

[(
λ1q10 + 1

)
eq10t − (

λ1q9 + 1
)
eq9t

q10 − q9

]
dξ,

τM
(
y, t

)
= −2μUH(t)

πλ1

∫∞

0
cos

(
yξ

)[eq10t − eq9t

q10 − q9

]
dξ,

(4.4)

corresponding to a Maxwell fluid. The new roots q9 and q10 are given by

q9, q10 =
−1 ±

√
1 − 4νλ1ξ2

2λ1
. (4.5)

4.4. Second-Grade Fluid

It is worthwhile pointing out that the similar solutions for second-grade fluids can be also
obtained as limiting case of our solutions. Indeed, if we do not take into consideration the
restriction λ ≥ λr and make λ1 → 0 into (4.1) and (4.2), we recover the expressions

uSG
(
y, t

)
= UH(t)

[
1 − 2

π

∫∞

0

sin
(
yξ

)
ξ(1 + λ3νξ2)

exp

(
−νξ2t

1 + λ3νξ2

)
dξ

]
, (4.6)

τSG
(
y, t

)
= −2μUH(t)

π

∫∞

0

cos
(
yξ

)
1 + λ3νξ2

exp

(
−νξ2t

1 + λ3νξ2

)
dξ, (4.7)

corresponding to a second-grade fluid. The solution (4.6) is identical to that from [40,
equation (16)] or [36, equation (14)].

4.5. Newtonian Fluid

Finally, making λ1 → 0 into (4.4) or λ3 → 0 into (4.6) and (4.7), the solutions for a Newtonian
fluid

uN

(
y, t

)
= UH(t)

[
1 − 2

π

∫∞

0

sin
(
yξ

)
ξ

e−νξ
2tdξ

]
, (4.8)

τN
(
y, t

)
= −2μUH(t)

π

∫∞

0
cos

(
yξ

)
e−νξ

2tdξ, (4.9)
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Figure 1: Profiles of the velocity field u(y, t) and the shear stress and τ(y, t) given by (3.7) and (3.11), for
λ1 = 3, λ2 = 4, λ3 = 2, λ4 = 8, and different values of t.

are achieved. The above equations for uN(y, t) and τN(y, t) can be written under classical
forms

uN

(
y, t

)
= Uerfc

(
y

2
√
νt

)
, τN

(
y, t

)
= − μU√

πνt
exp

(
− y2

4νt

)
, (4.10)

corresponding to the first problem of Stokes.

5. Numerical Results and Discussion

In order to reveal some relevant physical aspects of the obtained results, several graphs are
sketched in this section. A series of diagrams of the velocity u(y, t) and the shear stress τ(y, t)
against y were performed for different situations with typical values. For example, we chose
U = 1, ρ = 1, and ν = 1 for simplicity, and different values for λ1, λ2, λ3, and λ4 were chosen
to illustrate their effects on the fluid motion. From Figure 1, it is clear that the velocity is an
increasing function with respect to t, while the shear stress in absolute value decreases with
regard to t. Both are decreasing functions with respect to y. Figure 2 shows the variations of
the two physical entities with respect to the kinematic viscosity ν. As it was to be expected,
both the velocity and the shear stress (of course, in absolute value) are increasing functions
with respect to ν.

The influence of the relaxation and retardation times λ1 and λ3 on the fluid motion is
underlined by Figures 3 and 4. Their effects, as expected, are opposite. More exactly, both the
velocity and the shear stress are decreasing functions with respect to λ1 and increasing ones
with regard to λ3. Figures 5 and 6 show the influence of the other two material parameters
on the fluid motion. From these figures, it is clear that λ2 and λ4 have opposite effects upon
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Figure 2: Profiles of the velocity field u(y, t) and the shear stress and τ(y, t) given by (3.7) and (3.11), for
λ1 = 3, λ2 = 4, λ3 = 2, λ4 = 8, t = 2 s, and different values of ν.
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Figure 3: Profiles of the velocity field u(y, t) and the shear stress and τ(y, t) given by (3.7) and (3.11), for
λ2 = 4, λ3 = 2, λ4 = 8, t = 2 s, and different values of λ1.

velocity on the whole domain and shear stress on a part only. More exactly, the velocity of
the fluid is everywhere a decreasing function with respect to λ2 and an increasing one with
regard to λ4 exist. The shear stress is a decreasing function of λ2 on the whole domain and of
λ4 near the plate. The effects of λ1 and λ2 on the fluid motion and of λ3 and λ4 upon velocity
are qualitatively the same.



10 ISRN Mathematical Physics

0 0.8 1.5 2.3 3
0.03

0.3533

0.6767

1

u
(y

)

y

λ3 = 3

λ3 = 7
λ3 = 5

(a)

0 0.8 1.5 2.3 3
−0.29

−0.21

−0.13

−0.05

τ
(y

)

y

λ3 = 3

λ3 = 7
λ3 = 5

(b)

Figure 4: Profiles of the velocity field u(y, t) and the shear stress and τ(y, t) given by (3.7) and (3.11), for
λ1 = 8, λ2 = 2, λ4 = 8, t = 2 s, and different values of λ3.

0 0.8 1.5 2.3 3
0

0.3

0.7

1

u
(y

)

y

λ2 = 2

λ2 = 8
λ2 = 5.5

(a)

0 0.8 1.5 2.3 3
−0.23

−0.17

−0.11

−0.05

τ
(y

)

y

λ2 = 2

λ2 = 8
λ2 = 5.5

(b)

Figure 5: Profiles of the velocity field u(y, t) and the shear stress and τ(y, t) given by (3.7) and (3.11), for
λ1 = 5.5, λ3 = 2, λ4 = 6, t = 2 s, and different values of λ2.

Finally, for comparison, the profiles of the velocity u(y, t) and the shear stress
τ(y, t) corresponding to three models (Newtonian, Oldroyd-B, and generalized Burgers’) are
together depicted in Figure 7 for the same values of t and the common material constants. It
is clearly seen from these figures that the Newtonian fluid is the swiftest and the generalized
Burgers’ fluid is the slowest. Furthermore, the non-Newtonian effects disappear in time and
the behavior of Oldroyd-B and generalized Burgers’ fluids, as it results from Figure 8, can
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Figure 6: Profiles of the velocity field u(y, t) and the shear stress and τ(y, t) given by (3.7) and (3.11), for
λ1 = 3, λ2 = 4, λ3 = 2, t = 2 s, and different values of λ4.

0 0.7 1.5 2.2 3
0.1

0.4

0.7

1

Generalized Burgers’
Oldroyd-B
Newtonian

y

u
(y

)

t = 3 s

(a)

0 0.7 1.5 2.2 3
−0.36

−0.27

−0.18

−0.09

τ
(y

)

y

Generalized Burgers’
Oldroyd-B
Newtonian

t = 3 s

(b)

Figure 7: Profiles of the velocity u(y, t) and the shear stress τ(y, t) for generalized Burgers’, Oldroyd-B and
Newtonian fluids, for λ1 = 4, λ2 = 2, λ3 = 3, λ4 = 3, and t = 3 s.

be well enough approximated by that of the Newtonian fluids. From the expressions (4.6)
and (4.8) of the velocity field u(y, t), it results that the required time to reach the steady state
is lower for Newtonian fluids in comparison with second-grade fluids. A comparison with
other types of fluids has been also realized by graphical illustrations.
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Figure 9: Profiles of the velocity u(y, t) and the shear stress τ(y, t) for generalized Burgers’ and Oldroyd-B
fluids, for λ1 = 3, λ2 = 0.00001, λ3 = 2.5, λ4 = 0.00001, and different values of t.

6. Concluding Remarks

In this paper, the velocity field u(y, t) and the adequate shear stress τ(y, t) corresponding to
the first problem of Stokes for generalized Burgers’ fluids are determined using the Fourier
sine and Laplace transforms. The solutions that have been obtained are presented under
integral form in terms of the elementary functions sin(•), cos(•), and exp(•) and satisfy all
imposed initial and boundary conditions. They are written as a sum of steady and transient
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Figure 10: Profiles of the velocity u(y, t) and the shear stress τ(y, t) for generalized Burgers’ and Newtonian
fluids, for λ1 = 0.00001, λ2 = 0.00001, λ3 = 0.00001, λ4 = 0.00001, and different values of t.

solutions and can be easily reduced to give the similar solutions for Burgers’ fluids. The
steady solutions

uS

(
y
)
= uS

(
y,∞)

= U, τS
(
y
)
= τ

(
y,∞)

= 0 (6.1)

are the same for both types of fluids if the conditions λ1λ3−λ2+λ4 > −2
√
λ1λ3λ4 and λ1λ3−λ2 >

0 are satisfied. Furthermore, they are also identical to the steady solutions corresponding to
Oldroyd-B, Maxwell, and second-grade and Newtonian fluids. The required time to reach the
steady-state can be easily determined by graphical illustrations. It depends of the material
constants and differs from a fluid to another one.

The general solutions (3.7) and (3.11) presented in the simplest forms, and their
correctness has been graphically verified by comparison with the known solutions for
Oldroyd-B and Newtonian fluids. More exactly, from Figures 9 and 10, it clearly results
that for small values of the material constants λ2 and λ4 or λ1, λ2, λ3, and λ4, as expected,
the diagrams of these solutions are almost identical to those corresponding to Oldroyd-B
and Newtonian fluids, respectively. Finally, in order to bring light on some relevant physical
aspects of the obtained results, the influence of the material parameters on the fluid motion is
underlined by graphical illustrations. A comparison between the Newtonian, Oldrotd-B, and
generalized Burgers’ fluid is also realized. The main outcomes of this study are as follows.

(i) The general solutions (3.7) and (3.11) are presented under simple forms as a sum of
steady and transient solutions. They have been immediately particularized to give
the similar solutions for Burgers’ fluids.

(ii) As a check of our calculi, we showed that for small values of the material constants
λ2 and λ4 or λ1, λ2, λ3, and λ4 the diagrams of these solutions as it was to be
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expected, are almost identical to those corresponding to Oldroyd-B and Newtonian
fluids.

(iii) The velocity u(y, t) and the shear stress τ(y, t) (in absolute value) are increasing
functions with respect to ν.

(iv) The relaxation and retardation times, λ1 and λ3, as expected, have opposite effects
on the fluid motion. Both the velocity and the shear stress (in absolute value) are
decreasing functions with respect to λ1 and increasing ones with regard to λ3.

(v) The other two material constants λ2 and λ4 have opposite effects on the velocity
on the whole flow domain. Their effect on the shear stress is qualitatively the same
near the plate and different in rest. Roughly speaking, the effects of λ2 and λ4 on
the fluid velocity are qualitatively the same as those of λ1 and λ3.

(vi) The Newtonian fluid is the swiftest, and the generalized Burgers’ fluid is the
slowest. The non-Newtonian effects disappear in time, and the required time to
reach the steady-state is the lowest for Newtonian fluid.

Appendix
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