Research Article

Splitting Lemma for 2-Connected Graphs

Y. M. Borse

Department of Mathematics, University of Pune, Pune 411007, India
Correspondence should be addressed to Y. M. Borse, ymborse@math.unipune.ac.in
Received 1 October 2012; Accepted 17 October 2012
Academic Editors: S. Bozapalidis, E. Kranakis, and W. Wang
Copyright © 2012 Y. M. Borse. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Using a splitting operation and a splitting lemma for connected graphs, Fleischner characterized connected Eulerian graphs. In this paper, we obtain a splitting lemma for 2-connected graphs and characterize 2-connected Eulerian graphs. As a consequence, we characterize connected graphic Eulerian matroids.

1. Introduction

Fleischner [1] introduced a splitting operation to characterize Eulerian graphs as follows. Let G be a connected graph and $v \in V(G)$ with $d(v) \geq 3$. If $x=v v_{1}$ and $y=v v_{2}$ are two edges incident with v, then splitting away the pair $\{x, y\}$ of edges from the vertex v results in a new graph $G_{x, y}$ obtained from G by deleting the edges x and y, and adding a new vertex $v_{x, y}$ adjacent to v_{1} and v_{2} (see Figure 1).

The following splitting lemma established by Fleischner [1] has been widely recognized as a useful tool in the graph theory.
Splitting Lemma 1.1 (see [1, page III-29]). Let G be a connected bridgeless graph. Suppose $v \in$ $V(G)$ such that $d(v) \geq 3$ and x, y, z are the edges incident with v. Form the graphs $G_{x, y}$ and $G_{x, z}$ by splitting away the pairs $\{x, y\}$ and $\{x, z\}$, respectively, and assume x and z belong to different blocks if v is a cut vertex of G. Then either $G_{x, y}$ or $G_{x, z}$ is connected and bridgeless.

This lemma is used to obtain the following characterization of Eulerian graphs.
Theorem 1.2 (see [1, page V-6]). A graph G has an Eulerian trail T if and only if G can be transformed into a cycle C through repeated applications of the splitting procedure on vertices of a degree exceeding 2. Moreover, the number of Eulerian trails of G equals the number of different labeled cycles into which G can be transformed this way.

Thus a connected graph G is Eulerian if and only if there exists a sequence $G=G_{0}<$ $G_{1}<\cdots<G_{n}$ of connected graphs such that G_{n} is a cycle and G_{i+1} is obtained from G_{i} by applying splitting operation once.

Figure 1

The splitting operation may not preserve 2-connectedness of the graph. Consider the graph G of Figure 2. It is 2-connected but the graph $G_{x, y}$ is not 2-connected for any two adjacent edges x and y.

We obtain the splitting lemma for 2-connected graphs as follows.
Theorem 1.3. Let G be a 2 -connected graph and let v be a vertex of G with $d(v) \geq 4$. Then either $G_{x, y}$ is 2-connected for some pair $\{x, y\}$ of edges incident with v or for any pair $\left\{x_{1}, y_{1}\right\}$ of edges incident with v; there is another pair $\left\{x_{2}, y_{2}\right\}$ of adjacent edges of G such that $\left(G_{x_{1}, y_{1}}\right)_{x_{2}, y_{2}}$ is 2-connected.

The next theorem is a consequence of the above result.
Theorem 1.4. Let G be a 2-connected graph. Then G is Eulerian if and only if there exists a sequence of 2-connected graphs $G=G_{0}<G_{1}<G_{2}<\cdots<G_{n}$ such that G_{n} is a cycle and G_{i+1} is obtained from G_{i} by applying splitting operation once or twice for $i=0,1,2, \ldots, n-1$.

A matroid M is Eulerian if its ground set can be partitioned into disjoint circuits, and it is connected if any pair of its elements is contained in a circuit. It is clear that an Eulerian matroid may not be connected. A matroid is graphic if it is isomorphic to the cycle matroid of a graph. For matroid concepts and terminology, we refer to Oxley [2]. Raghunathan et al. [3] generalized the splitting operation of graphs to binary matroids and characterized Eulerian matroids in terms of this operation. We characterize connected Eulerian graphic matroids.

In Section 2, we prove Theorems 1.3 and 1.4. The matroid extension is considered in Section 3.

2. Eulerian 2-Connected Graphs

A block of a connected graph G is a pendant block if it contains exactly one cut vertex of G. For an edge $e \in E(G)$, we denote the set of end vertices of e by $V(e)$. For a vertex v of G, let $E_{G}(v)$ denote the set of edges of G which are incident with v, that is, $E_{G}(v)=\{e \in E(G) \mid v \in V(e)\}$. Raghunathan et al. [3] characterized the circuits of the graph $G_{x, y}$ in terms of circuits of G as follows.

Lemma 2.1 (see [3]). Let G be a graph and let $\{x, y\}$ be a pair of adjacent edges of G. Then a subset C of edges of the graph $G_{x, y}$ is a circuit in $G_{x, y}$ if and only if C satisfies one of the following conditions:
(i) C is a circuit in G containing x and y;
(ii) C is a circuit in G containing neither x nor y;
(iii) $C=C_{1} \cup C_{2}$, where C_{1} and C_{2} are edge disjoint circuits of G with $x \in C_{1}, y \in C_{2}$, and $C_{1} \cup C_{2}$ does not contain a circuit in G satisfying either (i) or (ii) above.

Figure 2

Lemma 2.2. Let G be a 2-connected graph and v be a vertex of G with $d(v) \geq 3$ and $\{x, y\} \subseteq E_{G}(v)$ such that the graph $G_{x, y}$ is not 2-connected. Then $G_{x, y}$ is connected and has exactly two pendant blocks. Further, one pendant block contains $\{x, y\}$, and the other pendant block contains $E_{G}(v)-$ $\{x, y\}$.

Proof. The proof is straightforward (see Figure 3).

Lemma 2.3. Let G be a 2 -connected graph and let v be a vertex of G with $d(v) \geq 4$ such that $G_{x, y}$ is not 2 -connected for all $\{x, y\} \subseteq E_{G}(v)$. Then, for a given $\{x, y\} \subseteq E_{G}(v)$, the graph $G_{x, y}$ is connected and has one cut vertex and two blocks.

Proof. Let $\{x, y\}$ be a pair of edges incident with v. By Lemma 2.2, $G_{x, y}$ is connected and has exactly two pendant blocks, say B_{1} and B_{2}. We may assume that B_{1} contains $\{x, y\}$ and B_{2} contains $E_{G}(v)-\{x, y\}$. As $d(v) \geq 4$, we can choose two edges z, w from $E_{G}(v)-\{x, y\}$. Let P_{1} and P_{2} be paths in $G_{x, y}$ from v to $v_{x, y}$ with $\{x, z\} \subset E\left(P_{1}\right),\{y, w\} \cap E\left(P_{1}\right)=\phi,\{y, w\} \subset$ $E\left(P_{2}\right)$ and $\{x, z\} \cap E\left(P_{2}\right)=\phi$. Each of P_{1} and P_{2} corresponds to a cycle in G. By Lemma 2.1, these cycles are preserved in the graph $G_{y, w}$. Therefore P_{i} is contained in a block of $G_{y, w}$ for $i=1,2$. By Lemma 2.2, $G_{y, w}$ has two pendant blocks one containing edges y, w and the other containing $E_{G}(v)-\{y, w\}$. Hence P_{1} and P_{2} belong to different pendant blocks of $G_{y, w}$. Hence P_{1} and P_{2} share at most one vertex of $G_{y, w}$. However, P_{1} and P_{2} share all cut vertices of $G_{x, y}$. This implies that $G_{x, y}$ has exactly one cut vertex. Therefore, by Lemma 2.2, $G_{x, y}$ is connected and has exactly two blocks.

Lemma 2.4. Let G and v be as stated in Lemma 2.3. Then there exists a vertex u in G such that u is the cut vertex of $G_{x, y}$ for all $\{x, y\} \subseteq E_{G}(v)$.

Proof. Let $\{x, y\} \subseteq E_{G}(v)$. By Lemma 2.3, $G_{x, y}$ is connected and has one cut vertex, say u. Let $\{z, w\} \subseteq E_{G}(v)$. Then, by Lemma 2.3, $G_{z, w}$ is also connected and has two blocks and one cut vertex. It suffices to prove that u is the cut vertex of $G_{z, w}$. If $\{x, y\}=\{z, w\}$, then there is nothing to prove. Suppose $\{x, y\} \neq\{z, w\}$. We may assume that $x \notin\{z, w\}$ and $y \neq w$. By Lemma 2.3, $G_{x, w}$ is connected and has two blocks, say B_{1} and B_{2}. By Lemma 2.2, we may assume that B_{1} contains $\{x, w\}$ and B_{2} contains $E_{G}(v)-\{x, w\}$. Let e be an edge of G incident with v such that $e \notin\{x, y, w\}$. Let P_{1} and P_{2} be paths in $G_{x, y}$ from the vertex $v_{x, y}$ to v such that $\{x, w\} \subset E\left(P_{1}\right),\{y, e\} \subset E\left(P_{2}\right)$, and $\{x, w\} \cap E\left(P_{2}\right)=\phi,\{y, e\} \cap E\left(P_{1}\right)=\phi$. Then each of P_{1} and P_{2} contains all cut vertices of $G_{x, y}$. Therefore u is a common vertex of P_{1} and P_{2}. Further, each of P_{1} and P_{2} corresponds to a cycle in G. By Lemma 2.1, these cycles are preserved in the graph

Figure 3
$G_{x, w}$ and hence are contained in blocks of $G_{x, w}$. Therefore B_{i} contains P_{i} for $i=1,2$. Thus u is a common vertex of B_{1} and B_{2}. This implies that u is a cut vertex of $G_{x, w}$. By Lemma 2.3, u is the only cut vertex of $G_{x, w}$. Let Q_{1} and Q_{2} be paths in $G_{x, w}$ from v to $v_{x, w}$ such that $\{z, w\} \subseteq E\left(Q_{1}\right)$ and $x \in E\left(Q_{2}\right)-E\left(Q_{1}\right)$. Then Q_{i} contains the cut vertex u and, further, it corresponds to a cycle in G for $i=1,2$. By Lemma 2.1, Q_{i} corresponds to a cycle of the graph $G_{z, w}$ and hence is contained in a block of $G_{z, w}$ for $i=1,2$. These cycles are contained in different blocks of $G_{z, w}$. By Lemma 2.2, one block of $G_{z, w}$ contains the edges z, w and the other block contains the remaining edges of G that are incident with v. Hence Q_{1} and Q_{2} belong to different blocks of $G_{z, w}$. As u is a common vertex of Q_{1} and Q_{2}, it is a cut vertex of $G_{z, w}$. Thus u is the cut vertex of $G_{z, w}$.

Lemma 2.5. Let G be a 2-connected graph and v be a vertex of G with the set of neighbours $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$, where $k \geq 4$. Suppose $G_{x, y}$ is not 2 -connected for all $\{x, y\} \subseteq E_{G}(v)$. Then there exists a vertex u in G such that $V(P) \cap V(Q)=\{u\}$ for any $u v_{i}$-path P and $u v_{j}$-path Q in $G-v$ with $i \neq j$.

Proof. By Lemma 2.4, there exists a vertex u in G such that it is the cut vertex of $G_{x, y}$ for all $\{x, y\} \subseteq E_{G}(v)$. Let P be a $u v_{i}$-path and Q be a $u v_{j}$-path in $G-v$ with $i \neq j$. We prove that $V(P) \cap V(Q)=\{u\}$. If P or Q is a trivial graph, then there is nothing to prove. Assume that $|E(P)| \geq 1$ and $|E(Q)| \geq 1$. Without loss of generality, we may assume that $v_{i}=v_{1}$ and $v_{j}=v_{2}$. Let $e_{1}=v v_{1}$ and $e_{2}=v v_{2}$. Then $G_{e_{1}, e_{2}}$ is connected and has two blocks, say B_{1} and B_{2} (see Figure 4). By Lemma 2.2, we may assume that B_{1} contains $\left\{e_{1}, e_{2}\right\}$ and B_{2} contains $E_{G}(v)-\left\{e_{1}, e_{2}\right\}$. Since u is the cut vertex of $G_{e_{1}, e_{2}}$, the paths P, Q are contained in B_{1}. Let $e_{3}=v v_{3}$ and $e_{4}=v v_{4}$. Let P_{1} be a $u v$-path in B_{2} containing the edge e_{3} but avoiding e_{4}. Let P_{2} be an $u v$-path in B_{2} containing e_{4} and avoiding e_{3}. Then $V\left(P_{k}\right) \cap V(P)=V\left(P_{k}\right) \cap V(Q)=\{u\}$ for $k=1,2$. Let $C_{1}=P_{1} \cup P \cup e_{1}$ and $C_{2}=P_{2} \cup Q \cup e_{2}$. Then each of C_{1} and C_{2} corresponds to a cycle in G. Further, C_{1} contains e_{1}, e_{3} and C_{2} contains e_{2}, e_{4}. Therefore, by Lemma 2.1, C_{1} and C_{2} correspond to cycles in $G_{e_{1}, e_{3}}$. By Lemmas 2.2 and $2.3, G_{e_{1}, e_{3}}$ has exactly two blocks one of them contains C_{1} and the other contain C_{2}. Hence C_{1} and C_{2} can share at most one vertex. This implies that P and Q can share at most one vertex. Thus $V(P) \cap V(Q)=\{u\}$.

Proof of Theorem 1.3. Let G be a 2-connected graph and let v be a vertex of G with $d(v) \geq$ 4. Suppose $G_{x, y}$ is not 2-connected for every pair $\{x, y\}$ of edges incident with v. Let $\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}$ be the set of neighbours of v. Let x_{1} and y_{1} be any two edges of G incident with v. We may assume that $x_{1}=v v_{1}$ and $y_{1}=v v_{2}$. By Lemma 2.5 , there exists a vertex u in G such that $V\left(P_{i}\right) \cap V\left(P_{j}\right)=\{u\}$ for any i, j with $i \neq j$, where P_{i} is a $u v_{i}$-path and P_{j} is a $u v_{j}$-path in $G-v$ (see Figure 5). It is easy to see that $d(u) \geq d(v) \geq 4$. If $u=v_{i}$ for some i,

Figure 4
then P_{i} is the trivial graph containing only the vertex u. If $v_{2}=u$, then set $x_{2}=y_{1}=u v$. If $v_{3}=u$, then set $y_{2}=v u$. In other cases, P_{2} and P_{3} are nontrivial graphs and hence we can take $x_{2}=u u_{2} \in E\left(P_{2}\right)$ and $y_{2}=u u_{3} \in E\left(P_{3}\right)$. It is easy to see that $\left(G_{x_{1}, y_{1}}\right)_{x_{2}, y_{2}}$ is 2-connected.

Now, we prove Theorem 1.4. Let $d_{H}(v)$ denotes the degree of a vertex v in a graph H.

Proof of Theorem 1.4. Let $G=G_{0}$ be an Eulerian 2-connected graph. Suppose G is not a cycle. Then G has a vertex v of a degree of at least 4 . By Theorem 1.3, we get a pair $\left\{x_{1}, y_{1}\right\}$ of edges incident with v such that either $G_{x_{1}, y_{1}}$ is 2-connected or $\left(G_{x_{1}, y_{1}}\right)_{x_{2}, y_{2}}$ is 2-connected for some pair $\left\{x_{2}, y_{2}\right\}$ of edges of G having a common vertex other than v. Denote this new 2connected graph by G_{1}. If $G_{1}=G_{x_{1}, y_{1}}$, then $d_{G_{1}}(v)=d_{G}(v)-2$ and $d_{G_{1}}(w)=d_{G}(w)$ for any $w \in V(G)-\{v\}$. If $G_{1}=\left(G_{x_{1}, y_{1}}\right)_{x_{2}, y_{2}}$, then $d_{G_{1}}(v)=d_{G}(v)-2, d_{G_{1}}(u)=d_{G}(u)-2$, and $d_{G_{1}}(w)=d_{G}(w)$ for any $w \in V(G)-\{u, v\}$, where u is the common vertex of x_{2} and y_{2} other than v. Further, the new vertices of G_{1} that are created in the splitting procedure have degree two. Obviously, G_{1} is Eulerian. If G_{1} is not a cycle, then we obtain a 2-connected Eulerian graph G_{2} from G_{1} by applying splitting operation once (or twice) which results in reducing the degree of a vertex (or two vertices) of G_{1} by 2 . By repeating the same procedure and through a sequence of once or twice splitting operations performed in such a way that at each step the resulting graph is still 2-connected one finally arrives at a cycle which corresponds to an Eulerian trail of G. The converse is obvious.

3. Eulerian 2-Connected Matroids

In this section, we extend Theorem 1.4 to connected Eulerian matroids. Raghunathan et al. [3] generalized the splitting operation of graphs to binary matroids and characterized Eulerian matroids in terms of this operation. In this section, we characterize connected Eulerian graphic matroids.

Definition 3.1 (see [3]). Let $M=M[A]$ be a binary matroid and suppose $x, y \in E(M)$. Let $A_{x, y}$ be the matrix obtained from A by adjoining the row that is zero everywhere except for the entries of 1 in the columns labeled by x and y. The splitting matroid $M_{x, y}$ is defined to be the vector matroid of the matrix $A_{x, y}$. The transition from M to $M_{x, y}$ is called a splitting operation. The splitting operation for binary matroids is also studied in [3-6].

Figure 5

We need the following three results.
Lemma 3.2 (see [3]). If $M(G)$ denotes the circuit matroid of a graph G , then for a pair $\{x, y\}$ of adjacent edges in a graph $G, M\left(G_{x, y}\right)=(M(G))_{x, y}$.

Lemma 3.3 (see [3]). Let M be a binary matroid and $x, y \in E(M)$. Then M is Eulerian if and only if $M_{x, y}$ is Eulerian.

Theorem 3.4 (see [2, page 127]). Let G be a loopless graph without isolated vertices. If G has at least three vertices, then $M(G)$ is a connected matroid if and only if G is a 2 -connected graph.

We obtain the following characterization of connected Eulerian graphic matroids.
Theorem 3.5. Let M be a connected graphic matroid. Then M is Eulerian if and only if it can be transformed into a circuit C through a sequence $M=M_{0}<M_{1}<\cdots<M_{n}=C$ of connected graphic matroids such that M_{i+1} is obtained from M_{i} by applying splitting operation once or twice.

Proof. Let M be a connected graphic matroid. Then M is isomorphic to a cycle matroid $M(G)$ of some graph G. In view of Theorem 3.4, we may assume that G is 2 -connected. Suppose M is Eulerian. Then the graph G is Eulerian. By Theorem 1.4, there is a sequence of 2-connected graphs $G=G_{0}<G_{1}<G_{2}<\cdots<G_{n}$ such that G_{n} is a cycle, and G_{i+1} is obtained from G_{i} by applying splitting operation once or twice for $i=0,1,2, \ldots, n-1$. Let $M_{i}=M\left(G_{i}\right)$ for $i=0,1, \ldots, n$. By Theorem 3.4, each M_{i} is connected. It follows from Lemma 3.2 that if G_{i+1} is obtained from G_{i} by applying splitting operation once or twice then M_{i+1} is obtained from M_{i} by applying splitting operation once or twice, respectively. Further, by Lemma 3.3, M_{i} is Eulerian for $i=1,2, \ldots, n$.

Conversely, suppose there exists a sequence of connected graphic matroids $M=M_{0}<$ $M_{1}<\cdots<M_{n}=C$, where M_{i+1} is obtained from M_{i} by applying splitting operation once or twice for $i=0,1,2, \ldots, n-1$. Since $M_{n}=C$ is Eulerian, by Lemma 3.3, M_{n-1} is Eulerian. By repeated applications of Lemma 3.3, we see that M_{i} is Eulerian for each i. Thus $M=M_{0}$ is Eulerian.

Acknowledgment

The author would like to thank the referees for their valuable suggestions. The paper is supported by University of Pune under BCUD project scheme.

References

[1] H. Fleischner, Eulerian Graphs and Related Topics, vol. 1, part 1, North Holland, Amsterdam, The Netherlands, 1990.
[2] J. G. Oxley, Matroid Theory, Oxford University Press, Oxford, UK, 1992.
[3] T. T. Raghunathan, M. M. Shikare, and B. N. Waphare, "Splitting in a binary matroid," Discrete Mathematics, vol. 184, no. 1-3, pp. 267-271, 1998.
[4] Y. M. Borse and S. B. Dhotre, "On connectivity of splitting matroids," Southeast Asian Bulletin of Mathematics, vol. 36, no. 1, pp. 17-21, 2012.
[5] A. D. Mills, "On the cocircuits of a splitting matroid," Ars Combinatoria, vol. 89, pp. 243-253, 2008.
[6] M. M. Shikare and G. Azadi, "Determination of the bases of a splitting matroid," European Journal of Combinatorics, vol. 24, no. 1, pp. 45-52, 2003.

Advances in
Operations Research $=-$

The Scientific World Journal

Journal of
Applied Mathematics
$\xrightarrow{\square}$
Algebra
$\xlongequal{=}$

Journal of Probability and Statistics
\qquad

International Journal of Differential Equations

