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A self-tuning vibration control of a rotational flexible arm using neural networks is presented. To the self-tuning control system,
the control scheme consists of gain tuning neural networks and a variable-gain feedback controller. The neural networks are
trained so as to make the root moment zero. In the process, the neural networks learn the optimal gain of the feedback controller.
The feedback controller is designed based on Lyapunov’s direct method. The feedback control of the vibration of the flexible
system is derived by considering the time rate of change of the total energy of the system. This approach has the advantage over
the conventional methods in the respect that it allows one to deal directly with the system’s partial differential equations without
resorting to approximations. Numerical and experimental results for the vibration control of a rotational flexible arm are discussed.
It verifies that the proposed control system is effective at controlling flexible dynamical systems.

1. Introduction

In this paper, a self-tuning vibration control of a rotational
flexible arm using neural networks is presented. In the past
several decades, there has been increasing interest in dynam-
ics and control of flexible structures across a broad spectrum
of engineering disciplines [1–7]. A new and exciting idea has
been attracting increasing attention in many engineering-
related areas. The idea is that the performance of flexible
structures can be greatly improved by the use of active
control. Flexible structures arise in several important areas of
applications, for instance, antenna control, robotics, and
large space structures. Satisfactory control of these systems is
hampered by many difficulties related to sensing and identi-
fication.

Several approaches are possible when using neural net-
works for the control of these kinds of plants [8–10]. Two
distinct approaches have been used to control a plant

adaptively. There are direct control and indirect control. In
direct control, the parameters of the controller are directly
adjusted to reduce some norm of the output error. In indirect
control, the parameters of the plant are estimated as the
elements of a vector at any instant, and the parameter vector
of the controller is chosen assuming that it represents the
true value of the parameter vector. A self-tuning gain control
is one of the indirect approaches for using neural networks.
In indirect control, neural networks are learning to get the
optimal controller gain for tracking a desired trajectory [11].

To the self-tuning control system, the control scheme
consists of gain tuning neural networks and a variable-gain
feedback controller. The neural networks are trained so as to
make the root moment zero. In the process, the neural net-
works learn the optimal gain of the feedback controller. The
feedback controller is designed based on Lyapunov’s direct
method. The feedback control of the vibration of the flexible
system is derived by considering the time rate of change of
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Figure 1: Rotational flexible arm.

the total energy of the system [12–18]. This approach has
the advantage over the conventional methods in the respect
that it allows one to deal directly with the system’s partial
differential equations without resorting to approximations.

Numerical and experimental results for the vibration
control of a rotational flexible arm are presented. It verifies
that the proposed control system is effective at controlling
flexible dynamical systems.

2. Equation of Motions and
Boundary Conditions

The rotational flexible arm depicted in Figure 1 of total
length L, area moment of inertia I , cross-sectional area A,
density ρ, Young’s modulus E, shear modulus G, and shear
coefficient κ is attached at one end to a payload of massm and
inertia Ic and on the other end a hub of inertia Ih, which in
turn is connected to an actuator that supplies a torque u. We
obtain the following equations of motion with the boundary
conditions:
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y(0, t) = 0, (6)

φ(0, t) = 0. (7)

If the shear deformation and rotary inertia can be neglected,
the model of the flexible arm is presented by the Euler-
Bernoulli beam model [5].

Taking the Laplace transform of (1)–(7), we get the fol-
lowing:
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Y(0, s) = 0, (13)

Φ(0, t) = 0. (14)

3. Stabilizing Feedback Control

The problem is to find feedback control u such that the arm’s
total energy given by
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The time rate of change of V is given by
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Substituting (1) into (2) reduces to
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Equation (17) is then integrated by parts, and boundary con-
ditions (3)–(7) are substituted into the resulting equation.
The result is

∂V
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= ∂θ

∂t
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)
. (18)

Taking into consideration of the fact that there is a feedback
control law which gives nonpositive ∂V/∂t is

u = −K1
∂θ

∂t
− K2EI

∂φ(t, 0)
∂x

(K1,K2 > 0). (19)

Substituting (19) into (18) leads to

∂V
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(
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∂t

)2
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which is negative semidefinite. This implies that the closed-
loop system is energy dissipative and, hence, stable. This
control law is elegant. Notice that the rigorous stability proof
does not depend on introducing spatial discretization meth-
ods. Of important practical consequence, notice that con-
trollers based on this law are easy to implement since no
state estimation is required. The bending moment can be
measured by using conventional strain gauges. However, the
tuning of a feedback gain needs to be addressed.

4. Self-Tuning Neural Controller

The controllers are often poorly tuned. The reason is that it is
difficult to tune a parameter by trial and error. We can embed
algorithms inside computers that “learn from experience”
and self-tune the controllers so as to improve closed-loop
performance [16]. Often this learning process builds up a
mathematical model based on experimental input/output
data; this operation is known as system identification or
parameter estimation. The model could be a complete
transfer function or simply the gain and phase of the plant
at a gain input frequency. A full process model is estimated
using system identification methods, and an analytic design
procedure uses the model to self-tune the coefficients of a
fixed control law. A self-tuning gain control is one of the
indirectly approaches for using a neural networks [5]. In
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Figure 2: Block diagram of the proposed control system.

indirectly control as shown in Figure 2, neural network is
learning to get the optimal controller gain for suppressing
vibration of the flexible arm. The control scheme consists of
a gain tuning neural network and a variable-gain feedback
controller. In the process, the neural network learns the
optimal gain of the feedback controller. The backpropagation
method is a gradient descent method that establishes the
weight in a multilayer, feedforward adaptive neural network.
Learning is accomplished by successively adjusting the weight
based on a set of input patterns and a corresponding set
of desired output patterns. During this iterative process, an
input pattern is presented to the network and propagated
forward to determine the resulting signal at the output units.
The differences between the actual resulting output signal
and the predetermined desired output signal in each output
unit represents an error that is backpropagated through the
network in order to adjust the weights. The learning process
continues until the network responds with an output signal
the sum of whose root-mean square errors from the desired
output signals are less than a preset value. The training
process using backpropagation is a difficult process. It is nec-
essary to find an appropriate architecture, adequate size and
quality of training data, satisfactory initialization, learning
parameter values, and to avoid overtraining effects. To speed
up the convergence behavior, the selection of parameters
such as the learning rates is done by using the utilization
of a momentum factor. The learning rule utilized consists
of a weight update using momentum αc with the exception
that each weight has its own learning rate parameter ηc. To
minimize the cost function, the updating equation of the
weights is defined by

Δwr
pq(t) = −ηc ∂E

∂wr
pq(t)

+ αcΔw
r
pq(t − 1), (21)

where wr
pq is the weight value at rth layer located between

nodes p and q, t is the present iteration, and wpq(t) is the
weight increment which is equal to the product of ηc and the
partial derivative of the objective function with respect to the
weight, that is,

wr
pq(t + 1) = wr

pq(t)− Δwr
pq(t), (22)
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Table 1: System parameters.

Parameter Nomenclature Values Unit

Length of the arm L 1.0 m

Arm cross-sectional area A 6.0× 10−4 m2

Volume mass density ρ 2.7667 Kg/m3

Young’s modulus E 6.8944× 1010 Pa

Internal structural
damping

C 0.0 Kg/sec

Payload moment of
inertia

Ic 0.0 Kg·m2

Payload mass m 0.0 Kg

Shear correction factor κ 5/6 —

Shear modulus G 2.6517× 1010 Pa

where

E = 1
2
ax(t)2 +

1
2
be(t)2,

e(t) = u(t)− Kx(t),
(23)

where x(t) is the output moment, u(t) is the control input,
and a and b are the weighting coefficients.

According to the generalized δ-rule, neural network
learning is performed for each sampling using (21) to
minimize the cost function E. The momentum αc is changed
dynamically, because each problem has a range of optimal αc
values to avoid oscillations.

5. Numerical Simulation and Experimental
Results and Discussion

The physical parameters of the system are presented in
Table 1. A multilayer feedforward network, consisting of
three layers with no inner feedback loop, was used for
the self-tuning feedback controller. The size of the neural-
network is defined as the minimum size in which the weights
between the neurons are such that the neural-network’s
output matches with the optimal feedback gain; however, it
is hard to define that analytically. In this study, the input
layer has 6 neurons, the hidden layer has 6 neurons, and
the output layer has 1 neurons. Neurons in the input layer
represent the reference signals u(t) and u(t − 1), the control
signals e(t) and e(t − 1), the feedback gain K , and the plant
outputs x(t) and x(t − 1). The neuron in the output layer
represents the feedback gain. The input neuron activation
function was assumed to be the linear function f (x) = x,
and all the thresholds were assumed to be zero. To allow for
the nonlinear effect, the sigmoid function f (x) = 1/{1 +
exp(−x)} was used to the hidden layer neurons. The output
neuron activation function was assumed to be a function
f (x) = ln{1 + exp(x)}. The neural network controller
design has been carried out on the MATLAB platform. The
desired tip acceleration is widely accepted that bang-bang
acceleration profiles lead to time optimal trajectories for the
case of rigid body arm. We set the desired rise time and
displacement from initial point to the desired end-point to
1.0 [sec] and 1.15 [m]. Figure 3 shows the gain variation of
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Figure 3: Gain variations of the self-tuning controller.
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Figure 4: Time response of the tip displacement.

the self-tuning controller. Figure 4 shows the time response
of the system. Figure 5 shows the learning curve of the self-
tuning control system. Figure 6 shows the time response of
the self-tuning control system for the flexible arm with best
parameter values of αc and ηc. The best parameter value of
αc is 0.6 and ηc is 0.8. The weighting constants a and b are
fixed to 1 and 2.6, respectively. It can be clearly seen that the
vibration suppressing performance of the self-tuning control
system using neural networks is better than that without
control.

In the experiment, same neural network is used as the
numerical simulation. For the implementation of fast con-
trollers, we routinely use the TMS320C31-based digital sig-
nal processing system (DSP-CIT) along with a set of design
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and implementation software tools, including an automatic
code generator. The design in the analogue domain was car-
ried out, and the controller was discretized, after checking for
the effects of discretization, computational delays, AD- and
DA quantization, the signal processor code was generated
and downloaded. The sampling period was 10 [ms]. Figure 7
is the experimental setup for implementation and assessment
of the neural network control system. Figure 8 shows the
experimental results of the root moment. Figure 9 shows the
input voltage of the motor. This control system can suppress
the vibrations of the flexible arm within a short time in
comparison with no moment feedback. From these results it
is concluded that using the neural network may be possible in
some cases to tune an optimal gain of the feedback controller.
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Figure 7: Experimental setup.
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6. Conclusions

A self-tuning control system of a rotational flexible arm using
neural networks was presented. The neural networks using
new cost function learned optimal feedback gain to avoid
excessive control input. Numerical and experimental results
show that the proposed controller is useful for vibration
control of the rotational flexible arm.

Appendix

In the case of the rotational Timoshenko arm, the resulting
solution to (8), (9), and (10) is given by

Y(x, s) = Δk1
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