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The aim of this paper is to study the properties of approximations to nonlinear terms of the
2D incompressible Navier-Stokes equations in the stream function formulation (time-dependent
biharmonic equation). The nonlinear convective terms are numerically solved by using the
method with internal iterations, compared to the ones which are solved by using explicit and
implicit schemes (operator splitting scheme Christov and Marinova; (2001)). Using schemes and
algorithms, the steady 2D incompressible flow in a lid-driven cavity is solved up to Reynolds
number Re = 5000 with second-order spatial accuracy. The schemes are thoroughly validated
on grids with different resolutions. The result of numerical experiments shows that the finite
difference scheme with internal iterations on nonlinearity is more efficient for the high Reynolds
number.

1. Introduction

There are many finite difference methods for the solution of the Navier-Stokes equations
(NSEs) representing incompressible viscous flows. Some of these are schemes utilizing
primitive variables (velocity-pressure) [1–4], vorticity-stream function [5–9], and stream
function formulation [10, 11]. The practical estimation of any schemes may be different
from the theoretical estimation because of the nonlinearity of the NSEs and the implicit
characteristic of the continuity condition. There is no single methodwhich is most suitable for
all aspects. The solution of the full-nonlinear set of discretized fluid flow equations is usually
obtained by solving a sequence of linear equations. The type of linearization which is used
can significantly affect the rate of convergence of the iterations to the solution.

The primary difficulty in obtaining numerical solutions with primitive variable
formulation is that there is no evolution equation for pressure variable. The pressure function
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can be removed from the equations by means of vorticity-stream function, but an explicit
boundary condition for vorticity function is missing. The simplest way to avoid the case is
to eliminate the vorticity and turn to a single nonlinear biharmonic equation for the stream
function.

The condition of stability of an explicit scheme imposes very restrictive limitations on
the time increment with the artificial time. For the fourth-order derivative, it is τ ≤ 0.24h4.
That is why the problem of constructing an implicit scheme is of great significance. The
straightforward implementation of an implicit scheme results in the very large linear system
whose solution needs very large computer capacity. One of the most efficient approaches
to reduce the computational time without compromising the stability of the scheme is the
method of operator splitting [12]. The application of the splitting method to the NSEs in
stream function formulation is not straightforward because of the fact that they are not a
Cauchy-Kowalevska system and there is no time derivative of the stream function. What is
present in the equation is the term (∇2ψ)t which cannot serve as a basis for splitting [1].

The new scheme combines the computational simplicity of the implicit scheme in
linear terms with semiexplicit approximation of nonlinear terms. The general idea when
treating the nonlinear term is to represent it as implicit approximation and then to linearize it
and to conduct internal iterations. After the inner iterations converge, one obtains, in fact, the
solution for the new time stage. The explicit approximation of nonlinear terms accomplish
severe requirement on time step. A single internal iteration on nonlinear terms induces sense
of implicit approximation and reduce very severe band on time step. To improve stability
properties of explicit approximation of nonlinear terms we require only 3 internal iterations
and call such algorithm as a method with internal iteration.

As to the question of which method to be used, the answer is that it depends
on the type of problems that to be solved. The objective of the present study is to
validate the efficiency and accuracy of numerical implementations for the NSEs in term
of stream function. The content of this paper is organized as follows. Section 2 contains
the mathematical formulation of the problem. Section 3 deals with the discretization of the
equations and detailed description of numerical algorithms. The methods are applied to the
test problem of lid-driven cavity flow up to Re = 5, 000. Results and discussions of numerical
solutions are presented in Section 4, where we make a detailed comparison with available
numerical data.

2. Mathematical Formulation

Consider a closed 2D domain Ω with a piecewise smooth boundary ∂Ω. The NSEs for a
viscous incompressible flow in the terms of stream function ψ are

∂Δψ
∂t

+ Re
(
∂ψ

∂y

∂Δψ
∂x

− ∂ψ

∂x

∂Δψ
∂y

)
−Δ2ψ = 0,

(
x, y

) ∈ Ω, t ∈ [0, T], (2.1)

where Δ = (∂2/∂x2) + (∂2/∂y2).
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Boundary and initial conditions are the following:

ψ = 0,
∂ψ

∂n
= b

(
x, y

)
,

(
x, y

) ∈ ∂Ω,

ψ
(
x, y, 0

)
= ψ0(x, y), (

x, y
) ∈ Ω,

(2.2)

where n is a vector normal to domain boundary, and the Reynolds number is defined as
Re = UL/ν, where U is the characteristic velocity, L is the characteristic length, and ν is the
kinematic viscosity.

3. Difference Schemes

The lid-driven flow occupies the region (the cavity)

Ω =
{
0 � x � 1, 0 � y � 1

}
. (3.1)

No-slip boundary conditions take the following form:

ψ =
∂ψ

∂x
= 0 for x = 0, x = 1,

ψ =
∂ψ

∂y
= 0 for y = 0,

ψ = 0,
∂ψ

∂y
= 1 for y = 1.

(3.2)

For the sake of simplicity, we assume a uniform grid with hx and hy spacing in x- and
y-direction, respectively,

hx =
1
M

, hy =
1
N
,

(
xi, yj

)
=
(
(i − 1.5)hx,

(
j − 1.5

)
hy

)
(3.3)

for i = 1, . . . ,M + 2 and j = 1, . . . ,N + 2.
The mesh is staggered in x-direction on 0.5hx and in y-direction on 0.5hy with respect

domain boundaries. The boundary conditions are approximated on two-point stencils with
the second order of approximation as follows:

ψn2,j − ψn1,j = 0; ψn1,j + ψ
n
2,j = 0 =⇒ ψn1,j = ψ

n
2,j = 0,

ψnM+2,j − ψnM+1,j = 0; ψnM+2,j + ψ
n
M+1,j = 0 =⇒ ψnM+2,j = ψ

n
M+1,j = 0,

ψni,2 − ψni,1 = 0; ψni,1 + ψ
n
i,2 = 0 =⇒ ψni,1 = ψ

n
i,2 = 0,

ψni,N+2 − ψni,N+1 = hy; ψni,N+2 + ψ
n
i,N+1 = 0 =⇒ ψni,N+2 = −ψni,N+1 =

hy

2
,

(3.4)

where ψni,j = ψ(xi, yj , tn) with tn = (n − 1)τ, i = 1, . . . ,M + 2, j = 1, . . . ,N + 2, n = 1, 2, . . ..
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3.1. Explicit Scheme in Nonlinear Terms

The simplest method is explicit in which all nonlinear terms are evaluated using known
values at tn. The biharmonic operator is approximated by the Crank-Nicolson scheme. Thus,
one has linear system to calculate the new value of the unknown at each node. It is clear that
each term in (2.1) can be approximated using central-difference operators for all derivatives.
The explicit finite difference scheme for (2.1) is

Δhψ
n+1
i,j −Δhψ

n
i,j

τ
+ Re

(
δyψ

n
i,j

)(Δhψ
n
i+1,j −Δhψ

n
i−1,j

2hx

)

− Re
(
δxψ

n
i,j

)(Δhψ
n
i,j+1 −Δhψ

n
i,j−1

2hy

)
− 1
2

(
Δ2
hψ

n+1
i,j + Δ2

hψ
n
i,j

)
= 0,

(3.5)

where Δh = δx2 + δy2 and Δ2
h
= δx4 + 2δx2y2 + δy4 . The difference formulas to be used are given

in Table 1.
To combine equation (3.5) as a single linear system with band matrix, we introduce

the new system of index as follows:

m(i,j) = (i − 1)(N + 2) + j, i = 1, . . . ,M + 2, j = 1, . . . ,N + 2. (3.6)

Each node (i, j) of grid Ωh associates with indexm(i,j). It is easy to see that

m(i+1,j) = m(i,j) + (N + 2), m(i,j+1) = m(i,j) + 1,

m(i−1,j) = m(i,j) − (N + 2), m(i,j−1) = m(i,j) − 1.
(3.7)

Now we introduce a new grid function σm, which is defined on the composite grid.
Substituting σm in lieu of ψi,j in (3.5), we recast the algebraic system as follows:

Δhσ
n+1
m −Δhσ

n
m

τ
+ Re

(
δyσ

n
m

)(Δhσ
n
m+(N+2) −Δhσ

n
m−(N+2)

2hx

)

− Re(δxσnm)

(
Δhσ

n
m+1 −Δhσ

n
m−1

2hy

)
− 1
2

(
Δ2
hσ

n+1
m + Δ2

hσ
n
m

)
= 0.

(3.8)

According to this idea, (3.4) can be rewritten as follows:

σnm = σnm+(N+2) = 0, i = 1, j = 1, . . . ,N + 2,

σnm = σnm−(N+2) = 0, i =M + 2, j = 1, . . . ,N + 2,

σnm = σnm+1 = 0, i = 1, . . . ,M + 2, j = 1,

σnm = −σnm−1 =
hy

2
, i = 1, . . . ,M + 2, j =N + 2.

(3.9)
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Table 1: Second-order central difference approximations.

δxψi,j
(
ψi+1,j − ψi−1,j

)
/2hx

δyψi,j
(
ψi,j+1 − ψi,j−1

)
/2hy

δx2ψi,j
(
ψi+1,j − 2ψi,j + ψi−1,j

)
/h2x

δy2ψi,j
(
ψi,j+1 − 2ψi,j + ψi,j−1

)
/h2y

δx3ψi,j
(
ψi+2,j − 2ψi+1,j + 2ψi−1,j − ψi−2,j

)
/2h3x

δy3ψi,j
(
ψi,j+2 − 2ψi,j+1 + 2ψi,j−1 − ψi,j−2

)
/2h3y

δx2yψi,j
((
ψi+1,j+1 − ψi+1,j−1

) − 2
(
ψi,j+1 − ψi,j−1

)
+
(
ψi−1,j+1 − ψi−1,j−1

))
/2hyh2x

δxy2ψi,j
((
ψi+1,j+1 − ψi−1,j+1

) − 2
(
ψi+1,j − ψi−1,j

)
+
(
ψi+1,j−1 − ψi−1,j−1

))
/2hxh2y

δx4ψi,j
(
ψi+2,j − 4ψi+1,j + 6ψi,j − 4ψi−1,j + ψi−2,j

)
/h4x

δy4ψi,j
(
ψi,j+2 − 4ψi,j+1 + 6ψi,j − 4ψi,j−1 + ψi,j−2

)
/h4y

δx2y2ψi,j
((
ψi+1,j+1 − 2ψi+1,j + ψi+1,j−1

) − 2
(
ψi,j+1 − 2ψi,j + ψi,j−1

)
+
(
ψi−1,j+1 − 2ψi−1,j + ψi−1,j−1

))
/h2xh

2
y

The general sequence of the algorithm is as follows:

(i) Set the values of Re, τ, ε,M,N and choose an initial guess σ0
m = 0.

(ii) Consider σnm as known entities and calculate σn+1m from the system of the algebraic
equation (3.8) by the direct method to the solution-banded linear system. We used
standard subroutines DGBSV and DGBSVX of LAPACK.

(iii) If the following criterion is satisfied

max
m

∣∣∣σn+1m − σnm
∣∣∣ � ε, (3.10)

then the calculations are terminated. Otherwise the index of iterations is stepped
up, n := n + 1 and the computation is returned to step (ii).

A disadvantage of explicit method is that convergence can be very slow if a small nonlinear
residual is required.

3.2. An Operator Splitting Scheme

We use the operator splitting scheme developed in [12, 13]. In the paper [13], a new fully
implicit unconditionally stable iterative scheme for the unsteady NSEs in terms of stream
function has been developed.

3.3. The Method with Internal Iteration in Nonlinear Terms

The general idea when treating the nonlinear term is to represent it as implicit approximation
and then to linearize it and to conduct internal iterations. After the inner iterations converge,
one obtains, in fact, the solution for the new time stage. The explicit approximation of
nonlinear terms accomplished severe requirement on time step. A single internal iteration
on nonlinear terms induced sense of implicit approximation and reduced very severe band
on time step. An improvement in accuracy is achieved at small additional expense. The
internal iteration schememay be viewed as amodification of the explicit scheme (3.5). For the
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beginning, the internal iteration scheme used only 3 iterations. The reason behind our choices
is that a single iteration is equivalent to one step of explicit scheme so, in order to take the
economies of the explicit scheme, it is desirable not to perform to many iteration (we choose
3 internal iteration). The method with internal iteration of nonlinear terms can be recasted in
the following form:

Δhψ
n+1,k
i,j −Δhψ

n
i,j

τ
+ Re

(
δyψ̃i,j

)(Δhψ̃i+1,j −Δhψ̃i−1,j
2hx

)

− Re
(
δxψ̃i,j

)(Δhψ̃i,j+1 −Δhψ̃i,j−1
2hy

)
− 1
2

(
Δ2
hψ

n+1,k
i,j + Δ2

hψ
n
i,j

)
= 0.

(3.11)

Substituting σm in lieu of ψi,j in (3.11), we recast the algebraic system as the following:

Δhσ
n+1,k
m −Δhσ

n
m

τ
+ Re

(
δyσ̃m

)(Δhσ̃m+(N+2) −Δhσ̃m−(N+2)

2hx

)

− Re(δxσ̃m)

(
Δhσ̃m+1 −Δhσ̃m−1

2hy

)
− 1
2

(
Δ2
hσ

n+1,k
m + Δ2

hσ
n
m

)
= 0.

(3.12)

The general sequence of the algorithm is as follows:

(i) Set the values of Re, τ, ε,M,N and choose an initial guess σ0
m = 0.

(ii) Let

(a) σ̃m = σnm then calculate σn+1,1m from the system of the algebraic equation (3.12)
by the direct method to solution-banded linear system. We used standard
subroutines DGBSV and DGBSVX of LAPACK,

(b) σ̃m = (σn+1,1m + σnm)/2 then calculate σn+1,2m from the system of the algebraic
equation (3.12),

(c) σ̃m = (σn+1,2m + σnm)/2 then calculate σn+1,3m from the system of the algebraic
equation (3.12).

(iii) If the following criterion is satisfied

max
m

∣∣∣σn+1,3m − σnm
∣∣∣ � ε, (3.13)

then the calculations are terminated. Otherwise the index of iterations is stepped
up, n := n + 1 or σnm = σn+1,3m and the computation is returned to step (ii).
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Note that the linear system for the problem can be written as the following multidiagonal
system for the composite grid function σ:

Bm−2N−4σ
n+1,k
m−2N−4 + Bm−N−2σ

n+1,k
m−N−2 + Bm−2σ

n+1,k
m−2

+ Bm−1σ
n+1,k
m−1 + Bmσ

n+1,k
m

+ Bm+1σ
n+1,k
m+1 + Bm+2σ

n+1,k
m+2 + Bm+N+2σ

n+1,k
m+N+2

+ Bm+2N+4σ
n+1,k
m+2N+4 = Fm,

(3.14)

wherem = 1, . . . , (M+2)(N+2). The matrix of the algebraic system equation (3.14) is banded
with 2N + 4 lower and upper diagonals.

4. Results and Discussion

The results from numerical simulations of the 2D lid-driven cavity flow are presented and
compared with published observations. The standard benchmark problem for testing 2D
plane NSEs is the driven cavity flow. The fluid contained inside a square cavity is set
into motion by the upper wall which is sliding at constant velocity from left to right. The
domain is the unit square cavity, and the viscous incompressible flow is governed by the
2D time-dependent incompressible NSEs and driven by the upper wall as seen in Figure 1.
An unexpected balance of viscous and pressure forces makes the fluid turn into the square
cavity. The properties of these forces depend upon the Reynolds number, a hierarchy of
eddies develops, the large clockwise-rotating primary, whose location occurs toward the
geometric center of the square cavity, and several small eddies: the counter-clockwise rotating
secondary eddies, the clockwise rotating tertiary eddies, whose locations occur at the three
relevant corners of the square cavity: bottom left, bottom right, and top left.

4.1. Convergence

To evaluate grid dependence on spatial variables the solution is obtained on a sequence of
grids with 32× 32, 62× 62, and 122× 122 nodes. The finest grid is used as a reference solution.
The rate of convergence is computed using two grids according to the formula

rate = log2

∣∣ψ32×32 − ψ122×122∣∣∣∣ψ62×62 − ψ122×122∣∣ . (4.1)

In Tables 2 and 3 ψmin (appeared at the center of primary eddy) and ψmax (appeared at the
center of bottom right-hand side eddy) are computed as minimum and maximum values
of stream function, respectively. Parameters ratemin and ratemax correspond to the rate of
convergence received from (4.1). Table 2 represents steady state. The solutions are qualified
as steadywhen the absolute error between two time steps is less than 10−8. As shown in Tables
2 and 3 on particular choice of the parameters, the estimated rate is close to the theoretically
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Figure 1: Sketch of the basic features in the 2D flow problem.
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Figure 2: Convergence history: (a) Re = 100 on 122 × 122 grid, (b) Re = 2000 on 102 × 102 grid.

predicted second rate of convergence. Figure 2 shows the absolute error εn versus the number
of iterations when the largest value of time-step is used and

εn = max
i,j

∣∣∣ψni,j − ψn−1i,j

∣∣∣. (4.2)

It shows that the rate of convergence to solution of the method of internal decreased faster
than that of explicit and the operator splitting method.
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Figure 3: Largest value of time-step on 52 × 52 grid.

Table 2: Convergence rate at Re = 100 and τ = 2 × 10−4.

Reference Grid ψmin ψmax ratemin ratemax

32 × 32 −0.1015785 3.787565 × 10−6

Explicit scheme 62 × 62 −0.1030120 1.041364 × 10−5 2.284 2.265
122 × 122 −0.1033825 1.215392 × 10−5

32 × 32 −0.1024849 4.245849 × 10−6

Operator splitting 62 × 62 −0.1032607 1.068302 × 10−5 2.384 2.372
122 × 122 −0.1034445 1.222466 × 10−5

32 × 32 −0.1015785 3.787567 × 10−6

Internal iteration 62 × 62 −0.1030120 1.041365 × 10−5 2.285 2.265
122 × 122 −0.1033822 1.215392 × 10−5

4.2. Time-Step Independence

For fixed values of hx, hy, and Re, the number of iterations is needed for convergence to
steady state depends on τ . For definiteness, we select for presentation a genuinely moderate
Re = 100 and Re = 1000. The results for the number of iterations to steady state are shown
in Tables 4 and 5 where the minimal number of iteration for each resolution is shown in bold
face. In the case of Re = 1000, we minimal numbers of iterations on 52 × 52 grid are 5276
iterations, 3581 iterations, and 1588 iterations for case explicit, operator splitting, and internal
iteration schemes, respectively. We see that the minimal number of iterations of the method
of internal iteration is less than other methods.

Figures 3 and 4 show the largest value of time-step for which it is possible to reach
a steady solution which corresponds to other investigators. Figure 3 shows that the present
schemes converge to correct solutions in all cases of Re ≤ 3000 considered. If the grid spacing
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Table 3: Convergence rate at Re = 100, τ = h2 and t = 0.1.

Reference Grid ψmin ψmax ratemin ratemax

32 × 32 −0.1014032 3.669264 × 10−6

Explicit scheme 62 × 62 −0.1028318 1.041314 × 10−5 2.251 2.498
122 × 122 −0.1032119 1.186333 × 10−5

32 × 32 −0.1022921 4.128720 × 10−6

Operator splitting 62 × 62 −0.1030805 1.014134 × 10−5 2.343 2.122
122 × 122 −0.1032741 1.193415 × 10−5

32 × 32 −0.1014053 3.673905 × 10−6

Internal iteration 62 × 62 −0.1028323 1.014581 × 10−5 2.250 2.253
122 × 122 −0.1032120 1.186404 × 10−5

Table 4: The number of iterations to steady solution at Re = 100 on 52 × 52 grid.

τ Explicit scheme Operator splitting Internal iteration

0.0030 — — 108

0.0010 243 — 243
0.0005 458 458 458
0.0001 1986 1985 1986

Table 5: The number of iterations to steady solution at Re = 1000 on 52 × 52 grid.

τ Explicit scheme Operator splitting Internal iteration

0.00008 — — 1588

0.00005 — — 2404
0.00003 — 3581 3757
0.00002 5276 5082 5340
0.00001 9606 9174 9667
0.000005 17251 16365 17312

Table 6: Comparison of the three schemes on the primary vortex at Re = 1000: minimum of the stream
function and location.

Reference Grid ψmin ω xmin ymin

Explicit 52 × 52 −0.1096 −1.911 0.540 0.560
Operator 52 × 52 −0.1163 −2.077 0.520 0.580
Internal 52 × 52 −0.1096 −1.911 0.540 0.560
Explicit 102 × 102 −0.1162 −2.022 0.530 0.560
Operator 102 × 102 −0.1186 −2.074 0.530 0.560
Internal 102 × 102 −0.1162 −2.022 0.530 0.560
Ref. [14] 160 −0.1189366 −2.067753 0.5308 0.5652
Ref. [4] 128 × 128 −0.11796 −2.0508 0.53125 0.5625
Ref. [4] 1024 × 1024 −0.11892 −2.0674 0.53125 0.56543
Ref. [1] 512 × 512 −0.116269 — 0.5316 0.5660
Ref. [15] 41 × 41 −0.117240 −2.05332 0.5250 0.5750
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Figure 4: Largest value of time-step on 102 × 102 grid.

Table 7: Comparison of the three schemes on the primary vortex at Re = 5000: minimum of the stream
function and location.

Reference Grid ψmin ω xmin ymin

Explicit 52 × 52 −0.09299 −1.422 0.540 0.520
Operator 52 × 52 — — — —
Internal 52 × 52 −0.09315 −1.431 0.540 0.520
Explicit 102 × 102 −0.10920 −1.714 0.520 0.540
Operator 102 × 102 −0.11490 −1.848 0.520 0.550
Internal 102 × 102 −0.10950 −1.727 0.520 0.540
Ref. [4] 128 × 128 −0.11731 −1.8595 0.53125 0.5625
Ref. [4] 1024 × 1024 −0.12193 −1.9322 0.53125 0.56543
Ref. [1] 512 × 512 −0.116120 — 0.5160 0.5357

is too coarse, then the operator splitting scheme will not compute a correct solution for Re >
3000. Moreover, the internal iteration method requires slightly larger time-step. An important
feature of the internal iteration method is that it allows coarsening of the grid depending on
the flow solution and this feature is extremely useful for accuracy in predicting flow fields in
region with high Reynolds number and it is compared with the operator splitting scheme.

The following Figure 5 shows that the modification of explicit scheme can reduce the
number of iterations for the higher Reynolds number. Figure 6 shows CPU time needed
to find solution at instant of time t = 0.42 with the largest value of parameter τ . From
comparison, it is observed that the internal iteration method seems to be performing better
than the other two methods. Computation was carried out on a personal computer with
2.4GHz CPU and the CPU time per one time step (/one iteration) on the 52 × 52 grid
was about 2.22031, 2.20781, and 6.61875 sec for case explicit, operator splitting, and internal
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Figure 7: Secondary vortex at the bottom right corner of the cavity at Re = 1000 predicted on 52 × 52 grid:
(a) explicit scheme, (b) operator splitting, and (c) internal iteration.
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Figure 8: Secondary vortex at the bottom right corner of the cavity at Re = 1000 predicted on 102×102 grid:
(a) explicit scheme, (b) operator splitting, and (c) internal iteration.

iteration scheme, respectively. The numerical results are demonstrating that the internal
iteration is one method to compute the characteristic of flow for the high Reynolds number.
We found that the largest time increment of 3 internal iterations gives convergence to solution
roughly 3 times as explicit scheme.

4.3. Grid Independence

Figures 7 and 8 show the steady state at the secondary vortex at the bottom right corner of the
cavity at Re = 1000. Figures 3–8 clearly illustrate the grid independence of the computational
solution. The minimum and maximum of stream functions are listed in Tables 6–9 which
includes a comparison to the high-accuracy solution of previous literatures. Tables 6 and 7
show the values of ψmin, ω and the space location of the primary vortex. As can be seen
from Table 6, three finite-difference schemes give very similar quantities on the 102 × 102
grid. The values of ψmin, ω, and their locations are in accordance with results observed in
the literature [1, 4, 14, 15]. Table 7 shows the values of ψmin, ω and the space location of the
primary eddy for Re = 5000. On the grid for 52 × 52, the method of operator splitting reaches
steady solution, but this solution does not agree with the numerical solutions obtained by
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Figure 9: Streamline contours for Re = 100: (a) explicit scheme, (b) operator splitting, and (c) internal
iteration.
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Figure 10: Streamline contours for Re = 2000: (a) explicit scheme, (b) operator splitting, and (c) internal
iteration.

other authors ([1, 4, 14, 15]). At the same time, explicit and internal iteration schemes reach
“correct” solution. For the primary eddy, results of operator splitting scheme with the 102 ×
102 grid agree within 5% with those obtained in [4] with the 128 × 128 grid and [1], but the
two other schemes differ significantly up to 10%.

Tables 8 and 9 report ψmax, ω and the space location of the bottom right secondary
eddy. As can be seen from Table 8, the quantities of ψmax agree with those obtained by the
other authors. For the bottom right secondary eddy, our results on the 102 × 102 grid agree
within 5% with those obtained by the other authors and in the case of 52 × 52 grid they differ
significantly up to 25% from those obtained in [15]. Table 7 shows the values of ψmax, ω and
the space location of the bottom right secondary eddy for Re = 5000. For the bottom right
secondary eddy, the quantities ψmax with the 102 × 102 grid agree within 10% with those
obtained in [4] with the 128 × 128 grid and [1] and differ significantly up to 15% from those
obtained [4]with the 1024 × 1024 mesh.

At the high Reynolds number the flow becomes more complicated, and significantly
finer grids are needed in the vicinity of the walls where the dynamics of the flow is dominated
by viscosity. Coarse grid in general will not resolve the viscous layer near the boundary. For
example, as can be seen on the 52 × 52 grid, operator splitting method cannot get correct
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Figure 11: Streamline contours for Re = 5000: (a) explicit scheme, (b) operator splitting, and (c) internal
iteration.
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Figure 12: u-velocity along vertical line through the cavity: (a) explicit scheme, (b) operator splitting, and
(c) internal iteration.

Table 8: Comparison of the three schemes on the bottom right secondary vortex at Re = 1000: maximum
of the stream function and location.

Reference Grid ψmax ω xmax ymax

Explicit 52 × 52 1.301 × 10−3 0.9891 0.880 0.120
Operator 52 × 52 1.597 × 10−3 0.9802 0.860 0.120
Internal 52 × 52 1.302 × 10−3 0.9891 0.880 0.120
Explicit 102 × 102 1.611 × 10−3 1.005 0.870 0.110
Operator 102 × 102 1.699 × 10−3 1.079 0.860 0.110
Internal 102 × 102 1.611 × 10−3 1.006 0.870 0.110
Ref. [14] 160 1.729717 × 10−3 1.109789 0.8640 0.1118
Ref. [4] 128 × 128 1.7322 × 10−3 1.1304 0.85937 0.10938
Ref. [4] 1024 × 1024 1.7297 × 10−3 1.1120 0.86426 0.11230
Ref. [1] 512 × 512 1.640 × 10−3 — 0.8651 0.1118
Ref. [15] 41 × 41 1.731 × 10−3 0.9847 0.8500 0.1250
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Figure 13: v-velocity along horizontal line through the cavity: (a) explicit scheme, (b) operator splitting,
and (c) internal iteration.

Table 9: Comparison of the three schemes on the bottom right secondary vortex at Re = 5000: maximum
of the stream function and location.

Reference Grid ψmax ω xmax ymax

Explicit 52 × 52 1.006 × 10−3 1.485 0.90 0.06
Operator 52 × 52 — — — —
Internal 52 × 52 1.006 × 10−3 1.483 0.90 0.06
Explicit 102 × 102 2.622 × 10−3 2.359 0.83 0.07
Operator 102 × 102 2.576 × 10−3 2.207 0.80 0.08
Internal 102 × 102 2.624 × 10−3 2.357 0.83 0.07
Ref. [4] 128 × 128 2.9313 × 10−3 2.7718 0.80469 0.070313
Ref. [4] 1024 × 1024 3.0694 × 10−3 2.7245 0.80566 0.073242
Ref. [1] 512 × 512 2.890 × 10−3 — 0.8077 0.0736

solution. Moreover, the other two have value of ψmax differing significantly up to 67% from
those obtained [4] with the 1024 × 1024 mesh.

Figures 9, 10, and 11 show well-known stream function contours for Re = 100, 2000,
and 5000 on the 102 × 102 grid. Whole three algorithms give the similar stream function that
cannot be distinguished on the stream line patterns. All of these show secondary vortices at
the bottom corners of the cavity as well as at the top left of the cavity for case Re = 2000
and 5000. The bottom right tertiary vortices become quite visible for Re = 5000. Figures
12 and 13 present comparisons of the u-velocity profiles along a vertical line and the v-
velocity profiles along a horizontal line passing through the geometric center of the cavity
for Reynolds numbers ranging from 100 to 5000. These profiles are in good agreement with
that of [5]. While the data of [5] was obtained using that on the 129 × 129 grid, our data is
obtained using that on the 102 × 102 grid.
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5. Conclusions

In this paper, we introduce the finite difference scheme to treat nonlinear convective terms
in the stream function formulation. After special renumbering of the grid points, the coupled
system is formulated as a single system and solved by a LAPACK algorithm. The numerical
model is applied to the flow in lid-driven cavity. This study shows that the internal iteration
technique performs robustly and allows one to accurately follow the flow patterns. The
results are quantitative in good agreement with [1, 4, 14, 15] in common ranges of the main
parameters.

Acknowledgments

This research is supported by the Centre of Excellence in Mathematics and the Commission
on Higher Education, Thailand.

References

[1] C. I. Christov and R. S. Marinova, “Implicit vectorial operator splitting for incompressible Navier-
Stokes equations in primitive variables,” Computational Technologies, vol. 6, no. 4, pp. 92–119, 2001.

[2] S. Abdallah, “Numerical solutions for the incompressible Navier-Stokes equations in primitive
variables using a non-staggered grid, II,” Journal of Computational Physics, vol. 70, no. 1, pp. 193–202,
1987.

[3] C. H. Bruneau and C. Jouron, “An efficient scheme for solving steady incompressible Navier-Stokes
equations,” Journal of Computational Physics, vol. 89, no. 2, pp. 389–413, 1990.

[4] C. H. Bruneau and M. Saad, “The 2D lid-driven cavity problem revisited,” Computers and Fluids, vol.
35, no. 3, pp. 326–348, 2006.

[5] U. Ghia, K. N. Ghia, and C. T. Shin, “High-Re solutions for incompressible flow using the Navier-
Stokes equations and a multigrid method,” Journal of Computational Physics, vol. 48, no. 3, pp. 387–411,
1982.

[6] S. Smagulov and C. I. Christov, “Iterationless numerical implementation of the boundary conditions
in vorticity-stream function formulation of Navier-Stokes equations,” Institute of Theoretical and
Applied Mechanics, Russian Academy of Science, Novosibirsk, Russia, 1980.

[7] P. N. Vabishchevich, “Implicit finite-difference schemes for the nonstationaryNavier-Stokes equations
with the stream function and vorticity as variables,” Differential Equations, vol. 20, pp. 820–827, 1984.

[8] M. Napolitano, G. Pascazio, and L. Quartapelle, “A review of vorticity conditions in the numerical
solution of the ζ-ψ equations,” Computers & Fluids, vol. 28, no. 2, pp. 139–185, 1999.

[9] M. Li, T. Tang, and B. Fornberg, “A compact fourth-order finite difference scheme for the steady
incompressible Navier-Stokes equations,” International Journal for Numerical Methods in Fluids, vol. 20,
no. 10, pp. 1137–1151, 1995.

[10] C. I. Christov and A. Ridha, “Splitting scheme for iterative solution of bi-harmonic equation,
Application to 2D Navier-Stokes problems,” Advances in Numerical Methods and Applications, pp. 341–
352, 1994.

[11] C. I. Christov and A. Ridha, “Splitting scheme for the stream-function formulation of 2D unsteady
Navier-Stokes equations,” Comptes Rendus Academie des Sciences, Serie II, vol. 320, no. 9, pp. 441–446,
1995.

[12] G. I. Marchuk,Methods of Numerical Mathematics, Springer, New York, NY, USA, 1975.
[13] C. I. Christov and X.-H. Tang, “An operator splitting scheme for the stream-function formulation of

unsteady Navier-Stokes equations,” International Journal for Numerical Methods in Fluids, vol. 53, no. 3,
pp. 417–442, 2007.

[14] O. Botella and R. Peyret, “Benchmark spectral results on the lid-driven cavity flow,” Computers and
Fluids, vol. 27, no. 4, pp. 421–433, 1998.

[15] W. F. Spotz, “Accuracy and performance of numerical wall boundary conditions for steady, 2D,
incompressible streamfunction vorticity,” International Journal for Numerical Methods in Fluids, vol. 28,
no. 4, pp. 737–757, 1998.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


