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While univariate instances of binomial data are readily handled with generalized linear models,
cases of multivariate or repeated measure binomial data are complicated by the possibility of
correlated responses. Likelihood-based estimation can be applied by using mixture distribution
models, though this approach can present computational challenges. The logistic transformation
can be used to bypass these concerns and allow for alternative estimating procedures. One popular
alternative is the generalized estimating equation (GEE) method, though systematic errors can
lead to infeasible correlation estimates or nonconvergence problems. Our approach is the coupling
of quasileast squares (QLSs) method with a rarely used matrix factorization, which achieves a
simplified estimation platform—as compared to the mixture model approach—and does not suffer
from the convergence problems in GEE method. A noncontrived example is provided that shows
the mechanical breakdown of GEE using several statistical software packages and highlights the
usefulness of the QLS approach.

1. Introduction

Binomial data occur when observations on a given subject consist of a fixed series of Ber-
noulli trials, resulting in a proportional outcome. Maximum likelihood estimation is readily
available in a generalized linear modeling framework when subjects consist of univariate
measures (i.e., one Bernoulli or binomial trial per subject). However, estimation becomes
more complicated when several Bernoulli or binomial trials are observed for each subject. In
this case subject responses could be multivariate (consisting of several series of separately
defined trials) or repeated measure (where the set of trials are defined similarly), and in both
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Table 1: The proportion (pij) of successful outcomes for the ith subject during the jth repetition.

Rep. 1 Rep. 2 · · · Rep. t

Sub. 1 p11 p12 · · · p1t

Sub. 2 p21 p22 · · · p2t

Sub. 3 p31 p32 · · · p3t
...

...
... · · · ...

Sub.m pm1 pm2 · · · pmt

instances there is the possibility that the intrasubject responses are correlated. Here we use
the term “subject” for convenience but it could be an item, store, location, plot in agriculture
experiments, and so on. For example, real-life data situations where we encounter correlated
proportions include (1) bankers interested in the proportion of customers making the ith type
of transaction at the jth bank branch; (2) the proportion of CD deposits at the ith branch in the
jth month of a year; (3) retail managers interested in the proportion of customers purchasing
the ith item at the jth store; (4)marketers interested in the proportion of subjects viewing the
ith advertisement type on the jth website; (5) information technology specialists interested
in the proportion of students who use the ith computer program in the jth computer lab;
(6) biologists interested in the proportion of hatched English sole eggs kept in solutions at
different temperatures and salinity levels. We will discuss the last example later in this paper.
Other examples where correlated binomial data occur are seed testing experiments described
in Gilliland et al. [1].

Data layout of the aforementioned examples is presented in Table 1. In all of these
examples the proportions within each row are correlated but the rows can be assumed to be
independent. The within-row correlation, while complicating matters, must be accounted for
in order to obtain proper variance estimates and inference for any regression parameters
representing the associations between the vector of proportions and covariates. Thus, the
problem is to estimate the parameters of interest within the ensemble of all parameters. In
this context one could use a likelihood-based approach utilizingmixture-distributionmodels.

In the case of binomial data the mixture model would consist of both binomial and
logit-normal components. However, parameter estimation in the mixture model could ex-
perience convergence problems due to the multitude of marginal means, regression, and
correlation parameters. A simplified alternative approachwould be to transform the variable-
specific proportions for each subject in a way that would simplify the assumed probability
distribution. The logit of the proportions would transform the outcome scale from [0, 1]
to (−∞,∞), which could make appropriate a multivariate normal-based methodology. One
such procedure could be the generalized estimating equations (GEEs) proposed by Liang
and Zeger [2]. Though a popular methodology for estimating regression parameters in
cases of longitudinal or repeated measure data, this procedure suffers problems estimating
correlations. As will be seen in subsequent sections, the GEEmethod can fail to converge even
for cases of continuous data, which is the case if the logit transformation is used on binomial
data.

Coull and Agresti [3] discussed random effects models for logit-transformed corre-
lated binomial data. Here we suggest the method of quasileast squares (QLSs), developed by
Chaganty [4] and Chaganty and Shults [5]. While generally seen as an alternative method
to solving the maximum likelihood score equation for correlation parameters in the case of
Gaussian data (Sabo and Chaganty [6]), the estimation of correlation in the QLS procedure
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can also be supplemented with a little-known matrix factorization that makes it distinct from
the maximum likelihoodmethod. In this sense the QLS procedure is applicable for estimating
correlated continuous data, which is appropriate for logit-transformed binomial proportions.

The rest of this paper is outlined as follows. The likelihood-based mixed-model
approach is discussed in Section 2, while the logit transformation of binomial data and the
GEEmethodology are discussed in Section 3.We briefly outline the QLS estimating procedure
in Section 4, while also highlighting the matrix factorization for use in estimating correlation.
A noncontrived example is given in Section 5 that shows the usefulness of the QLS approach,
as well as the convergence problems experienced by several statistical software packages in
implementing the GEE method. A brief conclusion follows in Section 6.

2. Maximum Likelihood Estimation Using Mixture
Distribution Models

For i = 1, . . . , m subjects, let yi = (yi1, . . . , yit)
′ be a vector of t possibly dependent binomial

random variables, where yij is the number of successes out of nij trials with success
probability pij for the jth variable of the ith subject. Also assume that xij = (xi1, . . . , xik)
is the vector of k covariates corresponding to the jth variable in the ith subject, such that
Xi = (x′i1, . . . , x

′
it)

′ is the t × k matrix of all covariates for the ith subject.
The general mixture distribution model for binomial data is given by

f(yi) =
∫
[0, 1]t

t∏
j=1

(
nij

yij

)
p
yij

ij

(
1 − pij

)nij−yij G(dpi), (2.1)

where G is a multivariate cumulative distribution function with support in [0, 1]t and pi =
(pi1, . . . , pit). Basically, we assume that pi is distributed as G(·), and, given pi, the vector yi
consists of t independent binomial variables. Then the marginal distribution of yi is given
by (2.1). A popular choice for G is the multivariate logit-normal distribution; that is, the
distribution obtained under the assumption logit(pi) = (log(pi1/(1 − pi1)), . . . , log(pit/(1 −
pit))) is multivariate normal with mean μi = (μi1, . . . , μit) and covariance matrix Σ. Here
μij = x′ijβ represents the mean as a function of the covariates and a k-dimensional regression
parameter vector β. To make model (2.1) identifiable we make the common assumption that
Σ = φR, where R is a correlation matrix and φ is a scale parameter (Joe [7], page 219).
This condition is necessary for model identification as the following simple example shows.
Suppose t = 2 and that the vector p is multivariate logit-normal distributed with mean μ = 0

and covariance matrix Σ =
(

σ2
1 0.3σ1σ2

0.3σ1σ2 σ2
2

)
. It is easy to verify that two sets of choices for the

variances σ2
1 and σ2

2 can result in identical binary distribution for y as shown in Table 2.
If β,R, φ are the only parameters of interest, we can obtain maximum likelihood esti-

mates by maximizing the likelihood L(β,R, φ) =
∏m

i=1f(yi). However, if the E(yij/nij) = pij ’s
are also of interest, we can obtain estimates of these parameters using either the empirical
Bayes (EB) method or the EM algorithm considering the full likelihood

L
(
pi,β,R, φ

)
=

m∏
i=1

t∏
j=1

(
nij

yij

)
p
yij

ij

(
1 − pij

)nij−yij h
(
pi,β,R, φ

)
. (2.2)
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Table 2: Identical distribution for y with two different choices for Σ.

(y1, y2)
Joint probability of y

σ1 = 3.0, σ2 = 2.9 σ1 = 3.8, σ2 = 4.0

(1, 1) 0.2877 0.2877
(1, 0) 0.2123 0.2123
(0, 1) 0.2877 0.2877
(0, 0) 0.2123 0.2123

Equation (2.2) is the full specification of (2.1) with covariates, regression parameters, cor-
relation, and variance described in h(·), the multivariate logit-normal density function. One
quickly notices that the likelihood (2.2) has parameters that increase with m, and solutions
to the maximization of (2.2) will require roots of complex nonlinear equations. These
considerations may make the full likelihood approach subject to computational difficulties
and convergence problems. Further, such specific definitions for the components in the
mixture model may affect estimator robustness.

3. Alternatives to Likelihood-Based Estimation

For reasons outlined earlier it makes sense to consider the vector of logit-transformed pro-
portions ûi = (ûi1, . . . , ûit), where ûij = logit(p̂ij) = log[p̂ij/(1 − p̂ij)] and p̂ij = yij/nij . Note
that ûi is distributed as multivariate normal with parameters E(ûi) = μi = Xiβ and Cov(ûi) =
φR. The focus on these normally distributed random variables, rather than the mixture-
distribution-based binomial random variables, can allow us to relax distributional assump-
tions and utilize distribution-free methodologies for parameter estimation such as the
generalized estimating equations (GEEs). This methodology is a two-stage process, in which
the estimate of the regression parameter β is updated by a residual-based moment estimate
of R. Specifically, estimation is iterated between the two equations

m∑
i=1

(
∂μi

∂β

)′
R̂−1(ûi − μi

)
= 0, R̂ =

Z

φ̂
, (3.1)

until convergence. Here Z =
∑m

i=1 ziz
′
i, φ̂ =

∑m
i=1(z

′
izi)/(mt − k), where zi = ûi − μi( β̂ ). The

problem with this methodology is that the diagonal elements of Z are not necessarily equal
to φ̂, implying that the diagonal elements of R̂ = Z/φ̂ are not necessarily unity. However, the
GEE methodology, as implemented in software packages, forces the diagonal elements of R̂
to unity (i.e., it changes the values from whatever they are to 1), and thus matrix R̂ is not
guaranteed to be positive definite. This can lead to (most harmlessly) convergence problems,
but it can also lead to artificially deflated estimator variances for the regression parameters
and is thus subject to improper or incorrect inference.

4. Quasileast Squares

The quasileast squares (QLSs) approach, on the other hand, provides an alternative estimate
of R and does not experience the convergence problems exhibited by GEE. A further benefit
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of this method is that it does not require the assumption of normality for the joint distribution
of each response or among their marginal distributions. The initial step for estimation of R is
to minimize tr(R−1Z) over the set of correlation matrices. Since the diagonal elements of R are
restricted to be one, introducing a diagonal matrix of lagrange multipliers Λ, we can verify
that the point of minimum R̃ factors the matrix Z as

Z = R̃Λ R̃. (4.1)

Whittle [8] has shown that for a positive definite matrix Z the factorization (4.1) is unique.
Further R̃ = Λ−1/2(Λ1/2ZΛ1/2)Λ−1/2, and the diagonal matrixΛ satisfies the fixed-point equa-

tionΛ = diag (Λ1/2ZΛ1/2)
1/2

, which can be solved using a simple fixed-point iterative scheme
(Olkin and Pratt [9], Chaganty [4]). Next, using the first step correlation estimate R̃, we can
then obtain a consistent correlation estimate as

R̂ = R̃Δ R̃, (4.2)

where Δ = diag(ν), ν = (R̃ ◦ R̃)−1e, e is a vector of ones, and ◦ denotes the Hadamard pro-
duct. It is possible that the correlation matrix (4.2)may not be positive definite in which case
Chaganty and Shults [5] have recommended the estimate

R̂ = diag(Z)−1/2Z diag(Z)−1/2. (4.3)

See equation (3.2) in Chaganty and Shults [5]. The quasi-least squares method uses the esti-
mate (4.2) of R if it is positive definite and otherwise uses (4.3), which is clearly a positive
definite correlation matrix, to update the estimate of β until convergence. Code for fitting this
model using the R statistical software is provided in the Appendix.

5. Example

We now provide an example from Alderdice and Forrester [10], who modeled the effects of
salinity and temperature on the proportion of hatched English sole eggs. In this study, the
number of hatched eggs was recorded at seven salinity and five temperature levels. Meas-
urements were taken in four separate tanks for each combination of salinity and temperature,
and for each tank we have recordings of the number of fish eggs and the number hatched.
Thus, the tanks represent the repeated measure component for this binomial data set. The
data, as given on page 6 of Lindsey [11], is reproduced in Table 3.

The goal of the analysis is to study the dependence of the proportion of eggs hatched
on the temperature and salinity. After calculating ûij = logit(yij/nij), where yij is the number
of eggs hatched out of the total nij in the jth tank at the ith combination of temperature and
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Table 3: Number of hatched and total eggs of English sole at different salinity and temperature levels in
sea water.

Tank 1 Tank 2 Tank 3 Tank 4

Temp. Salinity Hatch Total Hatch Total Hatch Total Hatch Total

15 4 236 666 203 724 183 764 212 723
15 8 600 656 697 747 615 746 641 703
15 12 407 566 343 603 365 560 302 394
25 4 203 717 177 782 155 852 138 590
25 8 591 621 564 640 714 754 532 570
25 12 475 622 465 645 506 608 415 532
35 4 1 738 3 655 10 742 3 763
35 8 526 616 419 467 410 484 374 606
35 12 272 362 352 478 392 590 382 459
10 10 303 681 329 710 262 611 301 700
10 6 277 757 234 681 263 647 287 801
40 10 387 450 389 553 388 564 318 604
40 6 276 662 247 542 248 527 149 591
20 10 351 391 559 650 527 603 476 548
20 6 585 643 620 671 437 497 667 771
30 10 447 491 462 530 475 545 499 556
30 10 522 573 615 680 539 581 517 561
30 6 563 666 600 704 562 656 615 723

salinity, the Shapiro-Wilk test for normality was performed on the transformed responses
for each replicate. The results (P -values < 0.05) indicate a departure from normality, so that
maximum likelihood methods for continuous data are not applicable. The data was analyzed
using GEE in several statistical software packages using an unstructured working correlation
matrix to account for the correlation between the four replications of the solution in the
four tanks. The results using PROC GENMOD in SAS version 9.2, gee.fit module in TIBCO
Spotfire S+ version 8.2, and xtgee procedure in STATA version 11, are shown in parts (i), (ii),
and (iii) of Table 4. The warning message from PROC GENMOD read “WARNING: Iteration
limit exceeded.” Here we see that in each case the estimates failed to converge. The 0.999
correlation estimates in part (i) represent model breakdown in that programmers often use
this value to indicate nonconvergence.

The warning message from TIBCO Spotfire S+ software read (sic) “Warning messages:
1: at convergence at the correlation estimate 1 is outside of the range [−1, 1] in cgeefit
(gee.model) 2: correlation matrix is not full rank, 2 < 4 in: cgeefit (gee.model).” Note that the
correlation between the first and second tanks in part (ii) is greater than one, clearly violating
themost liberal of correlation boundaries. The warningmessage from xtgee in STATA version
11 read “convergence not achieved.” Also, the fourth eigenvalue in part (iii) is negative,
indicating that the estimated correlation matrix is not positive definite. The results of the QLS
analysis are given in part (iv) of Table 4, which show that the estimated correlation matrix is
positive definite.
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Table 4: Analysis of English sole eggs data: (i) GEE parameter estimates and working correlation matrix
using the SAS system GENMOD procedure. (ii) GEE parameter estimates and working correlation matrix
using the TIBCO Spotfire S+. (iii) GEE parameter estimates and eigenvalues of the working correlation
matrix using STATA version 11. (iv) QLS parameter estimates and correlation estimates using an R
program given in the Appendix.

(i) GEE estimates using SAS GENMOD procedure Working correlation

Parm. Est. SE 95% C.I. Z Pr > |Z| 1.000 0.999 0.999 0.999

Int. −1.983 1.149 −4.235 0.270 −1.73 0.085 1.000 0.999 0.999

Sal. −0.017 0.038 −0.091 0.058 −0.43 0.664 1.000 0.999

Temp. 0.378 0.163 0.059 0.697 2.32 0.020 1.000
(ii) GEE estimates using TIBCO Spotfire S+ Working correlation

Parm. Est. SE 95% C.I. Z Pr > |Z| 1.000 1.049 0.890 0.978
Int. −2.096 1.562 −5.157 0.965 −1.34 0.180 1.000 0.820 0.874
Sal. −0.010 0.040 −0.089 0.069 −0.25 0.799 1.000 0.754
Temp. 0.379 0.141 0.103 0.656 2.69 0.007 1.000
(iii) GEE estimates using STATA 11 Eigenvalues

Parm. Est. SE 95% C.I. Z Pr > |Z| 3.664 0.259 0.114 −0.038
Int. −2.096 1.562 −5.157 0.965 −1.34 0.180
Sal. −0.010 0.040 −0.089 0.069 −0.25 0.799
Temp. 0.379 0.141 0.103 0.656 2.69 0.007
(iv) QLS estimates using R 2.14.1 Working correlation

Parm. Est. SE 95% C.I. Z Pr > |Z| 1.000 0.968 0.920 0.940
Int. −1.936 1.623 −5.117 1.244 −1.19 0.233 1.000 0.931 0.912
Sal. −0.018 0.042 −0.100 0.064 −0.42 0.672 1.000 0.874
Temp. 0.370 0.147 0.083 0.657 2.53 0.012 1.000

6. Discussion

The logit transformation was originally applied on mortality rates in univariate bioassays
(Berkson, [12]), though the idea also generalizes nicely into the cases of correlated repeated-
measure, longitudinal, or multivariate binomial data discussed here. Doing so allows the data
analyst to bypass complicated, parametrically saturated mixture distributions and utilize
methods for correlated continuous data. Interestingly, even after the logit transformation
is applied, the GEE method still experiences convergence difficulties and problems with
correlation parameter estimation. Potential causes for these problems are explained in
Section 3. The QLS method, on the other hand, does not experience these difficulties and
handles the simultaneous estimation of both regression and correlation parameters with
relative ease. This was made possible by incorporating the little-known and rarely used
matrix factorization given in (4.1).

Note that the probit transformation had an earlier origin and similar function to the
logit transformation (Bliss, [13]) and can also be used in place of the logit transformation
shown here. However, likelihood estimation of correlated binomial data using a latent
multivariate distribution has already been established for the probit link function (Ashford
and Sowden, [14]) and has been compared favorably to the GEE method when analyzed on
real data (Sabo and Chaganty [15]).
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#########################################################################
# R (ver 2.14.1) program to compute QLS estimates for the mixture model #
#########################################################################

# Function to estimate the correlation matrix
# between the repeated measurements

correlation.est <- function(residuals, tol=1e-10)
{

t <- ncol(residuals)
Z <- t(residuals)% ∗%residuals
# start the decomposition algorithm with an identity matrix
Lambda0 <- diag(t)
ev <- eigen(Z)
Lambdak <- diag(diag(ev$vec% ∗%diag(sqrt(ev$val))% ∗%t(ev$vec)))
Diff <- diag(Lambdak -Lambda0)
while(sum(Diff∧2) > tol)
{

Lambda0 <- Lambdak
ev <- eigen(sqrt(Lambda0)% ∗% Z % ∗%sqrt(Lambda0))
M <- ev$vec% ∗% diag(sqrt(ev$val)) % ∗%t(ev$vec)
Lambdak <- diag(diag(M))
Diff <- diag(Lambdak - Lambda0)

}
Rtilde <- solve(sqrt(Lambdak))% ∗% M % ∗%solve(sqrt(Lambdak))
Rhat <- Rtilde% ∗%diag(as.vector(solve(Rtilde∗Rtilde)% ∗%rep(1,t)))%∗
%Rtilde
ev <- eigen(Rhat)
if (any(ev$val<0))

Rhat <- solve(sqrt(diag(diag(Z))))% ∗% Z % ∗% solve
(sqrt(diag(diag(Z)))) return(Rhat)

}
# Function to calculate the regression parameter beta.

regression.est <- function(x, y, t, Rhat)
{

mt <- nrow(x)
Sigma <- solve(kronecker(diag(mt/t), Rhat))
XRinvX <- t(x)% ∗%Sigma% ∗%x
XRinvY <- t(x)% ∗%Sigma% ∗%y
betahat <- solve(XRinvX)% ∗%XRinvY
return(betahat)

}
# The main program starts here

d <- read.table("c:/hatch-eggs.txt", header=TRUE)
proportion <- d$Hatch/d$Total
y <- log(proportion/(1-proportion))
x <- model.matrix(∼Salinity+Temperature, data=d)
tol <- 1e-10
t <- length(d$ID)/length(unique(d$ID))
mt <- nrow(x)
m <- mt/t
k <- ncol(x)
Rhatinit <- diag(t)
betahat <- regression.est(x, y, t, Rhatinit)

Algorithm 1: Continued.
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residuals <- matrix(y-x% ∗%betahat, ncol=t, byrow=TRUE)
Rhat <- correlation.est(residuals)
betanew <- regression.est(x, y, t, Rhat)

while(sum((betanew-betahat)∧2)>tol)
{

betahat <- betanew
residuals <- matrix(y-x% ∗%betahat, ncol=t, byrow=TRUE)
Rhat <- correlation.est(residuals)
betanew <- regression.est(x, y, t, Rhat)

}
# Calculate the scale parameter

residuals <- matrix(y-x% ∗%betahat, ncol=t, byrow=TRUE)
Z <- t(residuals)% ∗% residuals
Rhat <- correlation.est(residuals)
scale <- sum(diag(solve(Rhat)% ∗%Z))/(mt-k)

# Calculate model based standard errors and z-scores for betas

Sigma <- solve(kronecker(diag(m), Rhat))
Covbeta <- scale∗solve(t(x)% ∗%Sigma% ∗%x)
stderrbeta <- sqrt(diag(Covbeta))
zstat <- betanew/stderrbeta

# Prepare and print the output

output <- cbind(betanew, stderrbeta, zstat, 2∗(1-pnorm(abs(zstat))))
colnames(output) <- c("Estimate", "Std. Error", "z value", "P-value")
list(scale = scale, Rhat=Rhat, beta = output)

Algorithm 1

Appendix

For more details see Algorithm 1.
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