
International Scholarly Research Network
ISRN Mathematical Physics
Volume 2012, Article ID 908386, 23 pages
doi:10.5402/2012/908386

Research Article
Oscillating Flows of Fractionalized
Second Grade Fluid

Muhammad Jamil,1, 2 Najeeb Alam Khan,3 and Abdul Rauf1

1 Abdus Salam School of Mathematical Sciences, GC University, Lahore 54600, Pakistan
2 Department of Mathematics, NED University of Engineering & Technology, Karachi 75270, Pakistan
3 Department of Mathematics, University of Karachi, Karachi 75270, Pakistan

Correspondence should be addressed to Muhammad Jamil, jqrza26@yahoo.com

Received 22 October 2011; Accepted 14 November 2011

Academic Editors: F. Ardalan and M. Rasetti

Copyright q 2012 Muhammad Jamil et al. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

New exact solutions for the motion of a fractionalized (this word is suitable when fractional
derivative is used in constitutive or governing equations) second grade fluid due to longitudinal
and torsional oscillations of an infinite circular cylinder are determined by means of Laplace and
finite Hankel transforms. These solutions are presented in series form in term of generalized
Ga,b,c(·, t) functions and satisfy all imposed initial and boundary conditions. In special cases,
solutions for ordinary second grade and Newtonian fluids are obtained. Furthermore, other
equivalent forms of solutions for ordinary second grade and Newtonian fluids are presented
and written as sum of steady-state and transient solutions. The solutions for Newtonian fluid
coincide with the well-known classical solutions. Finally, by means of graphical illustrations, the
influence of pertinent parameters on fluid motion as well as comparison among different models
is discussed.

1. Introduction

In recent years, the non-Newtonian fluids have received considerable attention by scientist
and engineers. Such interest is inspired by practical applications of non-Newtonian fluids in
industry and engineering applications. The shear stress and shear rate in non-Newtonian
fluids are connected by a relation in a nonlinear manner. Because of diverse fluids char-
acteristics in nature, all the non-Newtonian fluids cannot be described by a single constitutive
relation [1–6]. Thus, among the several existing non-Newtonian fluid models, there is
one which is most famous model called second grade fluid [7]. Although the constitutive
equation of second grade fluid is simpler than that for the rate type fluids (those fluids which
encounter viscoelastic and memory effects), it has been shown by Walters [8] that, for many
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types of problems in which the flow is slow enough in the viscoelastic sense, the results given
using Oldroyd fluid will be substantially similar to those obtained for second grade fluid.
Therefore, if we discuss the result in this manner, it is reasonable to use the second grade fluid
to carry out the calculations as compared to other non-Newtonian fluids. This fact seems to be
true, not only for exact analytic solutions but even for numerical solutions. The second grade
fluid is the simplest subclass of non-Newtonian fluids for which one can reasonably hope to
obtain exact analytic solutions. Some recent attempts regarding exact analytic solutions for
the flow of a second grade fluid are present in [9–16].

Linear viscoelasticity is certainly the field of most extensive applications of fractional
calculus, in view of its ability to model hereditary phenomena with long memory. During
the twentieth century, a number of authors have (implicitly or explicitly) used the fractional
calculus as an empirical method of describing the properties of viscoelastic materials [17]. A
motivation for using fractional order operators in viscoelasticity is that a whole spectrum
of viscoelastic mechanisms can be included in a single internal variable [18]. The stress
relaxation spectrum for the fractional order model is continuous with the relaxation constant
as the most probable relaxation time, while the order of the operator plays the role of
a distribution parameter. Note that the spectrum is discrete for the classical model that
is based on integer order derivatives. By a suitable choice of material parameters for the
classical viscoelastic model, it is observed both numerically and analytically that the classical
model with a large number of internal variables (each representing a specific viscoelastic
mechanism) converges to the fractional model with a single internal variable [18, 19]. In
other cases, it has been shown that the governing equations employing fractional derivatives
are also linked to molecular theories [20]. The use of fractional derivatives within the
context of viscoelasticity was firstly proposed by Germant [21]. Later, Bagley and Torvik
[22] demonstrated that the theory of viscoelasticity of coiling polymers predicts constitutive
relations with fractional derivatives, and Makris et al. [23] achieved a very good fit of the
experimental data when the fractional derivative Maxwell model has been used instead of
the Maxwell model for the silicon gel fluid. Some important recent attempts of fractional
derivative approach to non-Newtonian fluids to obtain exact analytic solutions are listed here
[24–30].

The oscillating flow of the viscoelastic fluid in cylindrical pipes has been applied in
many fields, such as industries of petroleum, chemistry, and bioengineering. In the field
of bioengineering, this type of investigation is of particular interest since blood in veins is
forced by a periodic pressure gradient. In the petroleum and chemical industries, there are
also many problems which involve the dynamic response of the fluid to the frequency of
the periodic pressure gradient. An excellent collection of papers on oscillating flow can be
found in the paper by Yin and Zhu [31]. We also include some important studies of non-
Newtonian fluids, where oscillating boundary value problems are used in cylindrical region
[32–40]. Consequently, for completeness and motivated by the above remarks, we solve our
problem for fractionalized second grade fluid. The aim of this paper is to find some new and
closed-form exact solutions for the oscillating flows of fractionalized second grade fluid.More
precisely, our objective is to find the velocity field and the shear stresses corresponding to the
motion of a fractionalized second grade fluid through a cylinder due to longitudinal and
torsional oscillations of an infinite circular cylinder. The general solutions are obtained using
the discrete Laplace and finite Hankel transforms. They are presented in series form in term
of the Ga,b,c(·, t) functions in simpler forms as comparison to known results from literature.
The solutions for similar motion of ordinary second grade and Newtonian fluids are obtained
as spacial cases from general solutions. Equivalent forms of the solutions for ordinary second
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grade and Newtonian fluids are also constructed and presented as a sum between steady-
state and transient solutions. The equivalent forms of general solutions for Newtonian fluid
coincide with the well known classical solutions from the literature. Finally, the influence
of material and fractional parameters on the motion of fractionalized second grade fluid is
underlined by graphical illustrations. The difference among fractionalized, ordinary second
grade and Newtonian fluid models is also spotlighted.

2. Governing Equations for Fractionalized Second Grade Fluid

The Cauchy stress T in an incompressible homogeneous fluid of second grade is related to
the fluid motion in the following manner:

T = −pI + S, S = μA1 + α1A2 + α2A
2
1, (2.1)

where −pI is the indeterminate part of the stress due to the constraint of incompressibility, S
is the extra-stress tensor, μ is the dynamic viscosity, α1 and α2 are the normal stress moduli,
and A1 and A2 are the kinematic tensors defined through

A1 = (∇V ) + (∇V )T , A2 =
dA1

dt
+A1(∇V ) + (∇V )TA1. (2.2)

In the above equations, V is the velocity field, ∇ is the gradient operator, and d/dt denotes
the material time derivative. Since the fluid is incompressible, it can undergo only isochoric
motion, and the equations of motion are

∇ · V = 0, ∇ · T = ρ
dV

dt
+ ρb, (2.3)

where ρ is the constant density of the fluid and b is the body force. If the model (2.1) is
required to be compatible with thermodynamics in the sense that all motions satisfy the
Clausius-Duhem inequality and the assumption that the specific Helmholtz free energy is
a minimum in equilibrium, then the material moduli must meet the following restrictions
[41]:

μ ≥ 0, α1 ≥ 0, α1 + α2 = 0. (2.4)

The sign of the material moduli α1 and α2 has been the subject of much controversy. A
comprehensive discussion on the restrictions given in (2.4) as well as a critical review on
the fluids of differential type can be found in the extensive work by Dunn and Rajagopal
[42].
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For the problem under consideration, we shall assume a velocity field and an extra-
stress of the form

V = V (r, t) = w(r, t)eθ + v(r, t)ez, (2.5)

where eθ and ez are unit vectors in the θ and z-directions of the cylindrical coordinate system
r, θ and z. For such flows the constraint, of incompressibility is automatically satisfied. If the
fluid is at rest up to the moment t = 0, then

V (r, 0) = 0, (2.6)

and (2.1) implies Srr = 0 and the meaningful equations

τ1(r, t) =
(
μ + α1

∂

∂t

)(
∂

∂r
− 1
r

)
w(r, t), τ2(r, t) =

(
μ + α1

∂

∂t

)
∂v(r, t)

∂r
, (2.7)

where τ1 = Srθ and τ2 = Srz are the shear stresses that are different of zero.
The equation of motion (2.3)2, in the absence of a pressure gradient in the axial

direction and neglecting body forces, leads to the relevant equations (∂θp = 0 due to the
rotational symmetry)

ρ
∂w(r, t)

∂t
=
(

∂

∂r
+
2
r

)
τ1(r, t), ρ

∂v(r, t)
∂t

=
(

∂

∂r
+
1
r

)
τ2(r, t). (2.8)

Eliminating τ1 and τ2 between (2.7) and (2.8), we attain the governing equations

∂w(r, t)
∂t

=
(
ν + α

∂

∂t

)(
∂2

∂r2
+
1
r

∂

∂r
− 1
r2

)
w(r, t), r ∈ (0, R), t > 0,

∂v(r, t)
∂t

=
(
ν + α

∂

∂t

)(
∂2

∂r2
+
1
r

∂

∂r

)
v(r, t), r ∈ (0, R), t > 0,

(2.9)

where ν = μ/ρ is the kinematic viscosity and α = α1/ρ is the material parameter of the fluid.
The governing equations corresponding to an incompressible fractionalized second grade
fluid, performing the same motion, are

∂w(r, t)
∂t

=
(
ν + αD

β
t

)( ∂2

∂r2
+
1
r

∂

∂r
− 1
r2

)
w(r, t), r ∈ (0, R), t > 0, (2.10)

∂v(r, t)
∂t

=
(
ν + αD

β
t

)( ∂2

∂r2
+
1
r

∂

∂r

)
v(r, t), r ∈ (0, R), t > 0, (2.11)
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τ1(r, t) =
(
μ + α1D

β
t

)( ∂

∂r
− 1
r

)
w(r, t), (2.12)

τ2(r, t) =
(
μ + α1D

β
t

)∂v(r, t)
∂r

, (2.13)

where 0 < β < 1 is the fractional parameter. Of course, the newmaterial constant α1, although
for simplicity we keep the same notation, tends to the original α1 as β → 1. The fractional
differential operator so-called Caputo fractional operator Dβ

t defined by [43, 44]

D
β
t f(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
Γ
(
1 − β

)
∫ t

0

f ′(τ)

(t − τ)β
dτ, 0 ≤ β < 1,

df(t)
dt

, β = 1,

(2.14)

and Γ(·) is the Gamma function.

3. Oscillating Flows of Fractionalized Second Grade Fluids

Let us consider an incompressible fractionalized second grade fluid at rest, in an infinitely
long cylinder of radius R as shown in Figure 1. At time t = 0+, the cylinder starts to oscillate
according to

V(R, t) = [W1H(t) cos(ω1t) +W2 sin(ω1t)]eθ + [V1H(t) cos(ω2t) + V2 sin(ω2t)]ez, (3.1)

where ω1 and ω2 are the frequencies of the velocity of the cylinder and V1, V2, W1, and W2

are constant amplitudes. Owing to the shear, the fluid in cylinder is gradually moved, its
velocity being of the form (2.5). The governing equations are given by (2.10)–(2.13)while the
associated initial and boundary conditions are

w(r, 0) = v(r, 0) = 0, r ∈ (0, R), (3.2)

respectively, and

w(R, t) = W1H(t) cos(ω1t) +W2 sin(ω1t), v(R, t) = V1H(t) cos(ω2t) + V2 sin(ω2t), t ≥ 0,
(3.3)

where H(t) is the Heaviside function [45]. In the following, the system of fractional partial
differential equations (2.10)–(2.13), with appropriate initial and boundary conditions, will
be solved by means of Laplace and finite Hankel transforms. In order to avoid lengthy
calculations of residues and contour integrals, the discrete inverse Laplace transformmethod
will be used [24–30].
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r

R

z
0

θ

w(R, t) = W1H(t)cos(w1t) +W2sin(w1t)

v(R, t) = V1H(t)cos(w2t) + V2sin(w2t)

Figure 1: Geometry of the problem for oscillating flows of fractionalized second grade fluid through a
cylinder.

3.1. Calculation of the Velocity Field

Applying the Laplace transform to (2.10) and (2.11) and having in mind the initial and
boundary conditions (3.2) and (3.4), we find that

qw
(
r, q
)
=
(
ν + αqβ

)( ∂2

∂r2
+
1
r

∂

∂r
− 1
r2

)
w
(
r, q
)
, r ∈ (0, R), (3.4)

qv
(
r, q
)
=
(
ν + αqβ

)( ∂2

∂r2
+
1
r

∂

∂r

)
v
(
r, q
)
, r ∈ (0, R), (3.5)

where the image functions w(r, q) and v(r, q) of w(r, t) and v(r, t) have to satisfy the
conditions

w
(
R, q
)
=

W1q +W2ω1

q2 +ω2
1

, v
(
R, q
)
=

V1q + V2ω2

q2 +ω2
2

. (3.6)
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Multiplying now both sides of (3.4) and (3.5) by rJ1(rrm) and rJ0(rrn), respectively,
integrating them with respect to r from 0 to R and taking into account the conditions (3.6)
and the known relations [46, 47]

∫R

0
r

(
∂2w

∂r2
+
1
r

∂w

∂r
− w

r2

)
J1(rrm)dr = RrmJ2(Rrm)w(R, t) − r2mwH(rm, t),

∫R

0
r

(
∂2v

∂r2
+
1
r

∂v

∂r

)
J0(rrn)dr = RrnJ1(Rrn)v(R, t) − r2nvH(rn, t),

(3.7)

we find that

wH

(
rm, q

)
= RrmJ2(Rrm)

W1q +W2ω1

q2 +ω2
1

ν + αqβ

q + αr2mqβ + νr2m
,

vH

(
rn, q

)
= RrnJ1(Rrm)

V1q + V2ω2

q2 +ω2
2

ν + αqβ

q + αr2nqβ + νr2n
,

(3.8)

where [46, 47]

wH

(
rm, q

)
=
∫R

0
rw
(
r, q
)
J1(rrm)dr, vH

(
rn, q

)
=
∫R

0
rv
(
r, q
)
J0(rrn)dr, m, n = 1, 2, 3, . . .

(3.9)

are the Hankel transforms of w(r, q) and v(r, q), while rm and rn are the positive roots of
the transcendental equations J1(Rr) = 0 and J0(Rr) = 0, respectively. In order to determine
w(r, q) and v(r, q), we must apply the inverse Hankel transforms. However, for a more
suitable presentation of final results, we firstly rewrite in (3.8), in the equivalent forms:

wH

(
rm, q

)
=

RJ2(Rrm)
rm

W1q +W2ω1

q2 +ω2
1

− RJ2(Rrm)
rn

W1q +W2ω1

q2 +ω2
1

q

q + αr2mqβ + νr2m
,

vH

(
rn, q

)
=

RJ1(Rrn)
rn

V1q + V2ω1

q2 +ω2
1

− RJ1(Rrn)
rn

V1q + V2ω2

q2 +ω2
1

q

q + αr2nqβ + νr2n
,

(3.10)

and apply the inverse Hankel transform formulae [46, 47]

w
(
r, q
)
=

2
R2

∞∑
m=1

wH

(
rm, q

) J1(rrm)
J22 (Rrm)

, v
(
r, q
)
=

2
R2

∞∑
n=1

vH

(
rn, q

) J0(rrn)
J21 (Rrn)

. (3.11)

Taking into account the following results [47]:

∫R

0
r2J1(rrm)dr =

R2

rm
J2(Rrm),

∫R

0
rJ0(rrn)dr =

R

rn
J1(Rrn), (3.12)
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we find that

w
(
r, q
)
=

R

r

W1q +W2ω1

q2 +ω2
1

− 2
R

∞∑
m=1

J1(rrm)
rmJ2(Rrm)

W1q +W2ω1

q2 +ω2
1

q

q + αr2mqβ + νr2m
,

v
(
r, q
)
=

V1q + V2ω2

q2 +ω2
2

− 2
R

∞∑
n=1

J0(rrn)
rnJ2(Rrn)

V1q + V2ω2

q2 +ω2
2

q

q + αr2nqβ + νr2n
.

(3.13)

Finally, in order to obtain w(r, t) = L−1{w(r, q)} and v(r, t) = L−1{v(r, q)} and to avoid the
lengthy calculations of residues and contour integrals, we will apply the discrete inverse
Laplace transform method [24–30]. For this, we firstly write (3.13) in series form

w
(
r, q
)
=

R

r

W1q +W2ω1

q2 +ω2
1

− 2
R

∞∑
m=1

J1(rrm)
rmJ2(Rrm)

∞∑
j=0

(
−ω2

1

)j ∞∑
k=0

(
−αr2m

)k

×
[
W1

∞∑
i=0

(−k)i(−ν/α)i
i!

1
q(i−k)β+k+2j+1

+W2ω1

∞∑
i=0

(−k)i(−ν/α)i
i!

1
q(i−k)β+k+2j+2

]
,

v
(
r, q
)
=

V1q + V2ω2

q2 +ω2
2

− 2
R

∞∑
n=1

J0(rrn)
rnJ1(Rrn)

∞∑
j=0

(
−ω2

2

)j ∞∑
k=0

(
−αr2n

)k

×
[
V1

∞∑
i=0

(−k)i(−ν/α)i
i!

1
q(i−k)β+k+2j+1

+ V2ω2

∞∑
i=0

(−k)i(−ν/α)i
i!

1
q(i−k)β+k+2j+2

]
,

(3.14)

where we used the fact that

(
k
i

)
=

(−1)i(−k)i
i!

, (3.15)

and (−k)i is the Pochhammer symbol

(k)i =

{
1, i = 0,
k(k + 1) · · · (k + i − 1), i ∈ N.

(3.16)

In particular (0)0 = 1, (k)0 = 1 and (0)i = 0, for i ∈ N. Applying the discrete inverse Laplace
transform, we get

w
(
r, q
)
=

r

R
[W1H(t) cos(ω1t) +W2 sin(ω1t)] − 2

R

∞∑
m=1

J1(rrm)
rmJ2(Rrm)

∞∑
j=0

(
−ω2

1

)j ∞∑
k=0

(
−αr2m

)k

×
[
W1H(t)

∞∑
i=0

(−k)i(−ν/α)it(i−k)β+k+2j
i!Γ
(
(i − k)β + k + 2j + 1

) +W2ω1

∞∑
i=0

(−k)i(−ν/α)it(i−k)β+k+2j+1
i!Γ
(
(i − k)β + k + 2j + 2

)
]
,
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v
(
r, q
)
= V1H(t) cos(ω2t) + V2 sin(ω2t) − 2

R

∞∑
n=1

J0(rrn)
rnJ1(Rrn)

∞∑
j=0

(
−ω2

2

)j ∞∑
k=0

(
−αr2n

)k

×
[
V1H(t)

∞∑
i=0

(−k)i(−ν/α)itk((i−k)β+k+2j)
i!Γ
(
(i − k)β + k + 2j + 1

) + V2ω2

∞∑
i=0

(−k)i(−ν/α)it(i−k)β+k+2j+1
i!Γ
(
(i − k)β + k + 2j + 2

)
]
.

(3.17)

In terms of the generalizedGa,b,c(·, t) functions [48], we rewrite the above equations in simple
forms:

w
(
r, q
)
=

r

R
[W1H(t) cos(ω1t) +W2 sin(ω1t)] − 2

R

∞∑
m=1

J1(rrm)
rmJ2(Rrm)

∞∑
j=0

(
−ω2

1

)j ∞∑
k=0

(
−αr2m

)k

×
[
W1H(t)Gβ,−k−2j−1,−k

(
−ν
α
, t
)
+W2ω1Gβ,−k−2j−2,−k

(
−ν
α
, t
)]

,

(3.18)

v
(
r, q
)
= V1H(t) cos(ω2t) + V2 sin(ω2t) − 2

R

∞∑
n=1

J0(rrn)
rnJ1(Rrn)

∞∑
j=0

(
−ω2

2

)j ∞∑
k=0

(
−αr2n

)k

×
[
V1H(t)Gβ,−k−2j−1,−k

(
−ν
α
, t
)
+ V2ω2Gβ,−k−2j−2,−k

(
−ν
α
, t
)]

,

(3.19)

where the generalized Ga,b,c(·, t) function is defined by [48]

Ga,b,c(d, t) =
∞∑
j=0

(c)j d
j

j!
t(c+j)a−b−1

Γ
[(
c + j

)
a − b

] , Re(ac − b) > 0, Re
(
q
)
> 0,

∣∣∣∣ dqa
∣∣∣∣ < 1.

(3.20)

3.2. Calculation of the Shear Stress

Applying the Laplace transform to (2.12) and (2.13), we find that

τ1
(
r, q
)
=
(
μ + α1q

β
)( ∂

∂r
− 1
r

)
w
(
r, q
)
,

τ2
(
r, q
)
=
(
μ + α1q

β
)∂v(r, q)

∂r
,

(3.21)

where
∂w
(
r, q
)

∂r
− 1
r
w
(
r, q
)
=

2
R

∞∑
m=1

J2(rrm)
J2(Rrm)

W1q +W2ω1

q2 +ω2
1

q

q + αr2mqβ + νr2m
,

∂v
(
r, q
)

∂r
=

2
R

∞∑
m=1

J1(rrm)
J1(Rrm)

V1q + V2ω2

q2 +ω2
2

q

q + αr2nqβ + νr2n
,

(3.22)

have been obtained form (3.13), using the identities

rrmJ
′
1(rrm) − J1(rrm) = −rrmJ2(rrm), J ′0(rrn) = −rnJ1(rrn). (3.23)
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Figure 2: Profiles of the velocity components w(r, t) and v(r, t) given by (3.18) and (3.19), for R = 3, W1 =
W2 = V1 = V2 = 1, w1 = w2 = 1, ν = 0.5566, μ = 33, α = 0.5, β = 0.5, and different values of t.

Substituting (3.22) into (3.21), respectively, and applying again the discrete inverse
Laplace transform method, we find that the shear stresses τ1(r, t) and τ2(r, t) have the
following forms:

τ1(r, t) =
2αρ
R

∞∑
m=1

J2(rrm)
J2(Rrm)

∞∑
j=0

(
−ω2

1

)j ∞∑
k=0

(
−αr2m

)k[
W1H(t)Gβ,−k−2j−1,−k−1

(
−ν
α
, t
)

+W2ω1Gβ,−k−2j−2,−k−1
(
−ν
α
, t
)]

,

τ2(r, t) =
2αρ
R

∞∑
n=1

J1(rrn)
J1(Rrn)

∞∑
j=0

(
−ω2

2

)j ∞∑
k=0

(
−αr2n

)k[
V1H(t)Gβ,−k−2j−1,−k−1

(
−ν
α
, t
)

+V2ω2Gβ,−k−2j−2,−k−1
(
−ν
α
, t
)]

.

(3.24)

4. Limiting Cases

4.1. Ordinary Second Grade Fluid (β → 1)

Making β → 1 into (3.18), (3.19), (3.24), we obtain the solutions

wOSG
(
r, q
)
=

r

R
[W1H(t) cos(ω1t) +W2 sin(ω1t)] − 2

R

∞∑
m=1

J1(rrm)
rmJ2(Rrm)

∞∑
j=0

(
−ω2

1

)j ∞∑
k=0

(
−αr2m

)k

×
[
W1H(t)G1,−k−2j−1,−k

(
−ν
α
, t
)
+W2ω1G1,−k−2j−2,−k

(
−ν
α
, t
)]

,

vOSG
(
r, q
)
= V1H(t) cos(ω2t) + V2 sin(ω2t) − 2

R

∞∑
n=1

J0(rrn)
rnJ1(Rrn)

∞∑
j=0

(
−ω2

2

)j ∞∑
k=0

(
−αr2n

)k

×
[
V1H(t)G1,−k−2j−1,−k

(
−ν
α
, t
)
+ V2ω2G1,−k−2j−2,−k

(
−ν
α
, t
)]

,
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τ1OSG(r, t) =
2αρ
R

∞∑
m=1

J2(rrm)
J2(Rrm)

∞∑
j=0

(
−ω2

1

)j ∞∑
k=0

(
−αr2m

)k

×
[
W1H(t)G1,−k−2j−1,−k−1

(
−ν
α
, t
)
+W2ω1G1,−k−2j−2,−k−1

(
−ν
α
, t
)]

,

τ2OSG(r, t) =
2αρ
R

∞∑
n=1

J1(rrn)
J1(Rrn)

∞∑
j=0

(
−ω2

2

)j ∞∑
k=0

(
−αr2n

)k

×
[
V1H(t)G1,−k−2j−1,−k−1

(
−ν
α
, t
)
+ V2ω2G1,−k−2j−2,−k−1

(
−ν
α
, t
)]

,

(4.1)

corresponding to an ordinary second grade fluid, performing the same motion. Other
equivalent forms of solutions for ordinary second grade fluids can be directly obtained from
(3.10) by substituting β = 1, and performing the inverse Laplace transform. The expressions
for velocity field are given by

wOSG(r, t) = wOSS(r, t) +wOST(r, t), vS(r, t) = vOSS(r, t) + vOST(r, t), (4.2)

where

wOSS =
r

R
[W1H(t) cos(ω1t) +W2 sin(ω1t)] − 2ω1

R

∞∑
m=1

J1(rrm)
rmJ2(Rrm)

×
⎡
⎣W1H(t)

[
ω1
(
1 + αr2m

)
cos(ω1t) − νr2m sin(ω1t)

]
ν2r4m +ω2

1

(
1 + αr2m

)2

+
W2
[
νr2m cos(ω1t) +ω1

(
1 + αr2m

)
sin(ω1t)

]
ν2r4m +ω2

1

(
1 + αr2m

)2
⎤
⎦,

wOST = −2ν
R

∞∑
m=1

rmJ1(rrm)
J2(Rrm)

W1H(t)νr2m −W2ω1
(
1 + αr2m

)
(
1 + αr2m

)[
ν2r4m +ω2

1

(
1 + αr2m

)2] exp
(
− νr2mt

1 + αr2m

)
,

vOSS = V1H(t) cos(ω2t) + V2 sin(ω2t) − 2ω2

R

∞∑
n=1

J0(rrn)
rnJ1(Rrn)

×
⎡
⎣V1H(t)

[
ω2
(
1 + αr2n

)
cos(ω2t) − νr2n sin(ω2t)

]
ν2r4n +ω2

2

(
1 + αr2n

)2

+
V2
[
νr2n cos(ω2t) +ω2

(
1 + αr2n

)
sin(ω2t)

]
ν2r4n +ω2

2

(
1 + αr2n

)2
⎤
⎦,

wOST = −2ν
R

∞∑
n=1

rnJ0(rrn)
J1(Rrn)

V1H(t)νr2n − V2ω2
(
1 + αr2n

)
(
1 + αr2n

)[
ν2r4n +ω2

2

(
1 + αr2n

)2] exp
(
− νr2nt

1 + αr2n

)
,

(4.3)
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Figure 3: Profiles of the velocity components w(r, t) and v(r, t) given by (3.18) and (3.19), for R = 3, W1 =
W2 = V1 = V2 = 1, ν = 0.5566, μ = 33, α = 0.5, β = 0.5, and different values of w1 and w2, respectively.
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Figure 4: Profiles of the velocity components w(r, t) and v(r, t) given by (3.18) and (3.19), for R = 3, W1 =
W2 = V1 = V2 = 1, w1 = w2 = 1, ν = 0.5566, μ = 33, β = 0.5, t = 2.5 s, and different values of α.

are the steady-state and transient solutions. Introducing (4.2) into (2.7), we find that

τ1OSG(r, t) = τ1OSS(r, t) + τ1OST(r, t), τ2OSG(r, t) = τ2OSS(r, t) + τ2OST(r, t), (4.4)
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Figure 5: Profiles of the velocity components w(r, t) and v(r, t) given by (3.18) and (3.19), for R = 3, W1 =
W2 = V1 = V2 = 1, w1 = w2 = 1, ν = 0.5566, μ = 33, α = 0.5, t = 2.5 s, and different values of β.

where the steady-state and transient components are given by

τ1OSS =
2ρω1

R

∞∑
m=1

J2(rrm)
J2(Rrm)

1

ν2r4m +ω2
1

(
1 + αr2m

)2
×
[
W1H(t)

{
νω1 cos(ω1t) −

[
ν2r2m + αω2

1

(
1 + αr2m

)]
sin(ω1t)

}

+W2

{[
ν2r2m + αω2

1

(
1 + αr2m

)]
cos(ω1t) + νω1 sin(ω1t)

}]
,

(4.5)

τ1OST =
2ρν2

R

∞∑
m=1

r2mJ2(rrm)
J2(Rrm)

W1H(t)νr2m −W2ω1
(
1 + αr2m

)
(
1 + αr2m

)2[
ν2r4m +ω2

1

(
1 + αr2m

)2] exp
(
− νr2mt

1 + αr2m

)
, (4.6)

τ2OSS =
2ρω2

R

∞∑
n=1

J1(rrn)
J1(Rrm)

1

ν2r4n +ω2
2

(
1 + αr2n

)2
×
[
V1H(t)

{
νω2 cos(ω2t) −

[
ν2r2n + αω2

2

(
1 + αr2n

)]
sin(ω2t)

}

+V2

{[
ν2r2n + αω2

2

(
1 + αr2n

)]
cos(ω2t) + νω2 sin(ω2t)

}]
,

(4.7)

τ2OST =
2ρν2

R

∞∑
m=1

r2nJ1(rrm)
J1(Rrn)

V1H(t)νr2n − V2ω2
(
1 + αr2n

)
(
1 + αr2n

)2[
ν2r4n +ω2

2

(
1 + αr2n

)2] exp
(
− νr2nt

1 + αr2n

)
. (4.8)
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Figure 6: Profiles of the velocity components w(r, t) and v(r, t) given by (3.18) and (3.19), for R = 3, W1 =
W2 = V1 = V2 = 1, w1 = w2 = 1, ρ = 59.289, α = 0.1, β = 0.8, t = 2.5 s, and different values of ν.

In practice, the steady-state solutions for unsteady motions of Newtonian or non-
Newtonian fluids are important for those who need to eliminate transients from their
rheological measurements. Consequently, an important problem regarding the technical
relevance of these solutions is to find the approximate time after which the fluid is moving
according to the steady-state. More exactly, in practice it is necessary to know the required
time to reach the steady-state.

4.2. Newtonian Fluids (α1 → 0)

Making the limit α1 and then α → 0 into (3.13), (3.22), and proceeding as in the last section,
the solutions for a Newtonian fluid

wN

(
r, q
)
=

r

R
[W1H(t) cos(ω1t) +W2 sin(ω1t)] − 2

R

∞∑
m=1

J1(rrm)
rmJ2(Rrm)

∞∑
j=0

(
−ω2

1

)j

×
[
W1H(t)G1,−2j,1

(
−νr2m, t

)
+W2ω2G1,−2j−1,1

(
−νr2m, t

)]
,

vN

(
r, q
)
= V1H(t) cos(ω2t) + V2 sin(ω2t) − 2

R

∞∑
n=1

J0(rrn)
rnJ1(Rrn)

∞∑
j=0

(
−ω2

1

)j

×
[
V1H(t)G1,−2j,1

(
−νr2n, t

)
+ V2ω2G1,−2j−1,1

(
−νr2n, t

)]
,

τ1N(r, t) =
2μ
R

∞∑
m=1

J2(rrm)
J2(Rrm)

×
∞∑
j=0

(
−ω2

1

)j[
W1H(t)G1,−2j,1

(
−νr2m, t

)
+W2ω1G1,−2j−1,1

(
−νr2m, t

)]
,
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τ2N(r, t) =
2μ
R

∞∑
n=1

J1(rrn)
J1(Rrn)

×
∞∑
j=0

(
−ω2

2

)j[
V1H(t)G1,−2j,1

(
−νr2n, t

)
+ V2ω2G1,−2j−1,1

(
−νr2n, t

)]
,

(4.9)

are obtained. Similarly by making α1 and then α → 0 into (4.2)–(4.8), the corresponding
solutions

wN(r, t) = wNS(r, t) +wNT (r, t), vN(r, t) = vNS(r, t) + vNT (r, t), (4.10)

τ1N(r, t) = τ1NS(r, t) + τ1NT (r, t), τ2N(r, t) = τ2NS(r, t) + τ2NT (r, t), (4.11)

where

wNS =
r

R
[W1H(t) cos(ω1t) +W2 sin(ω1t)] − 2ω1

R

∞∑
m=1

J1(rrm)
rmJ2(Rrm)

×
[
W1H(t)

[
ω1 cos(ω1t) − νr2m sin(ω1t)

]
+W2

[
νr2m cos(ω1t) +ω1 sin(ω1t)

]
ν2r4m +ω2

1

]
,

(4.12)

wNT = −2ν
R

∞∑
m=1

rmJ1(rrm)
J2(Rrm)

W1H(t)νr2m −W2ω1

ν2r4m +ω2
1

e−νr
2
mt, (4.13)

vNS = V1H(t) cos(ω2t) + V2 sin(ω2t) − 2ω2

R

∞∑
n=1

J0(rrn)
rnJ1(Rrn)

×
[
V1H(t)

[
ω2 cos(ω2t) − νr2n sin(ω2t)

]
+ V2

[
νr2n cos(ω2t) +ω2 sin(ω2t)

]
ν2r4n +ω2

2

]
,

(4.14)

vNT = −2ν
R

∞∑
n=1

rnJ0(rrn)
J1(Rrn)

V1H(t)νr2n − V2ω2

ν2r4n +ω2
2

e−νr
2
mt, (4.15)

τ1NS =
2ρω1

R

∞∑
m=1

J2(rrm)
J2(Rrm)

1
ν2r4m +ω2

1

×
[
W1H(t)

{
νω1 cos(ω1t) − ν2r2m sin(ω1t)

}
+W2

{
ν2r2m cos(ω1t) + νω1 sin(ω1t)

}]
,

(4.16)

τ1NT =
2ρν2

R

∞∑
m=1

r2mJ2(rrm)
J2(Rrm)

W1H(t)νr2m −W2ω1

ν2r4m +ω2
1

e−νr
2
mt, (4.17)
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τ2NS =
2ρω2

R

∞∑
n=1

J1(rrn)
J1(Rrm)

1
ν2r4n +ω2

2

×
[
V1H(t)

{
νω2 cos(ω2t) − ν2r2n sin(ω2t)

}
+ V2

{
ν2r2n cos(ω2t) + νω2 sin(ω2t)

}]
,

(4.18)

τ2NT =
2ρν2

R

∞∑
m=1

r2nJ1(rrm)
J1(Rrn)

V1H(t)νr2n − V2ω2

ν2r4n +ω2
2

e−νr
2
nt (4.19)

for Newtonian fluids are obtained. Substituting W1 = RΩ, W2 = 0, V1 = U, V2 = 0, ω1 = 0,
and ω2 = 0 in (4.9) and using the definition of generalized Ga,b,c(·, t) functions, the solutions

wN(r, t) = rΩ − 2Ω
∞∑

m=1

J1(rrm)
rmJ2(Rrm)

e−νr
2
mt,

vN(r, t) = U − 2U
R

∞∑
n=1

J0(rrn)
rnJ1(Rrn)

e−νr
2
nt,

τ1N(r, t) = 2μΩ
∞∑

m=1

J2(rrm)
J2(Rrm)

e−νr
2
mt,

τ2N(r, t) =
2μU
R

∞∑
n=1

J1(rrn)
J1(Rrn)

e−νr
2
nt,

(4.20)

obtained in [49, equations (36)–(39)] by a different technique are recovered. Of course the
above expressions can also be obtained form (4.10)–(4.19).

5. Numerical Results and Conclusions

The velocity fields and the adequate shear stresses corresponding to the unsteady motions
of an incompressible fractionalized second grade fluid due to longitudinal and torsional
oscillations of an infinite circular cylinder have been determined by means of the Laplace
and finite Hankel transforms. The general solutions are written in series form in term of
generalized Ga,b,c(·, t) functions and satisfy all imposed initial and boundary conditions. The
solutions for ordinary second grade and Newtonian fluids performing the same motion are
obtain as special cases of general solutions. Furthermore, another equivalent solutions for
ordinary second grade and Newtonian fluids are presented, in terms of steady-state and
transient solutions. They describe the motion of the fluid sometime after its initiation. After
that time, when the transients disappear, they tend to the steady-state solutions, which are
periodic in time and independent of the initial conditions. It is also shown that for W1 = RΩ,
W2 = 0, V1 = U, V2 = 0, ω1 = 0 and ω2 = 0, (4.9) reduce to the well-known classical
solutions [49, equations (36)–(39)]. The similar solutions corresponding to the sine and cosine
oscillations of the boundary are immediately obtained by making V2 = W2 = 0, respectively,
V1 = W1 = 0 into general solutions.

Now, in order to reveal some relevant physical aspects of the obtained results, the
diagrams of the velocity components w(r, t) and v(r, t) are depicted against r for different
values of t and the pertinent parameters. Figure 2 contains the diagrams of the velocity
components for four different times t; it is obvious to see the impact of rigid boundary of
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Figure 7: Profiles of the velocity components w(r, t) and v(r, t) given by (3.18) and (3.19), for R = 3, W1 =
W2 = V1 = V2 = 1, w1 = w2 = 1, ν = 0.5566, μ = 33, α = 0.5, β = 0.5, and different values of r.
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Figure 8: Profiles of the velocity components w(r, t) given by (3.18), for R = 3, w1 = 1, ν = 0.5566, μ =
33, α = 0.5, β = 0.5, t = 2.5 s, and different values ofW1 and W2.

the cylinder on the motion of the fluid. Further, the amplitude of oscillations for the two
components of the velocity decreases with increasing values of t. However, this conclusion
cannot be generalized. The influence of the frequency of oscillations ω1 and ω2, on fluid
motion is shown in Figure 3. The amplitudes of both components of velocity are decreasing
functions of frequency of oscillations ω1 andω2 respectively. The effect of material parameter
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Figure 9: Profiles of the velocity components v(r, t) given by (3.19), for R = 3, w2 = 1, ν = 0.5566, μ =
33, α = 0.5, β = 0.5, t = 2.5 s, and different values of V1 and V2.

α on fluid motion is discussed in Figure 4. The influence of material parameter α is quite
similar to that of Figures 2 and 3. Nowadays fractional derivative approach in viscoelastic
fluid plays an important role to describe the behavior of complex fluid. Therefore, it is
important to see the effect of fractional parameter on oscillating fluid. Figure 5 depict the
influence of fractional parameter β on fluidmotion. It is again clear that the amplitude of fluid
oscillations decreases with respect to fractional parameter β. The viscosity is an important
property of the fluid. It is observed that the amplitude of oscillations is an increasing function
of kinematic viscosity ν in this geometry as shown in Figure 6. The influence of radius r
against time t is shown in Figure 7. The oscillating behavior of fluid motion clearly results
from these figures. As expected, the amplitude of oscillations increases with the increasing
values of r. The influence of W1 and W2 on rotational component w(r, t) and the effect
of V1 and V2 on longitudinal component v(r, t) are presented in Figures 8 and 9. The
influence of W1 and W2 on w(r, t) is quite opposite. For instance, w(r, t) is a decreasing
function with respect to W1 and an increasing one of W2. The longitudinal component v(r, t)
is an increasing function of V1 near the center of cylinder and of V2 on the whole flow
domain.

Finally, for comparison, the diagrams of w(r, t) and v(r, t) corresponding to the three
models, fractionalized second grade (β = 0.3 and β = 0.6), ordinary second grade (β = 1),
and Newtonian fluids (α = 0 and β = 1) are presented in Figures 10–13. It is clearly seen
from Figure 10 that the fractionalized second grade fluid is the swiftest and the Newtonian
one is the slowest. However, the behavior of these models is quite opposite at time t = 4 s
as shown by Figure 11. The large time effect on oscillating fluid is shown in Figures 12 and
13. It is observed that for large time the non-Newtonian effects can be neglected for rotational
component of velocityw(r, t). This seems to be not true for the longitudinal component v(r, t)
of the velocity. The units of the material constants in Figures 2–13 are SI units and the roots
rm and rn have been approximated by (4m + 1)π/4R and (4n − 1)π/4R, respectively.
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Figure 10: Profiles of the velocity components w(r, t) and v(r, t) for fractionalized second grade, ordinary
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Figure 11: Profiles of the velocity components w(r, t) and v(r, t) for fractionalized second grade, ordinary
second grade, and Newtonian fluids, for R = 3, W1 = W2 = V1 = V2 = 1, w1 = w2 = 1, ν = 0.5566, μ =
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Figure 12: Profiles of the velocity components w(r, t) and v(r, t) for fractionalized second grade, ordinary
second grade, and Newtonian fluids, for R = 3, W1 = W2 = V1 = V2 = 1, w1 = w2 = 1, ν = 0.5566, μ =
33, α = 0.9, β = 0.3 and 0.6 and for large time t.
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Figure 13: Profiles of the velocity components w(r, t) and v(r, t) for fractionalized second grade, ordinary
second grade, and Newtonian fluids, for R = 3, W1 = W2 = V1 = V2 = 1, w1 = w2 = 1, ν = 0.5566, μ =
33, α = 0.9, β = 0.3 and 0.6 and for large time t.
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