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We examine the interaction between an open-shell chlorine atom and a para-H2 molecule in the region of configuration space
that corresponds to a weakly bound Cl–para-H2 van der Waals dimer. By constructing and diagonalizing the Hamiltonian matrix
that represents the coupled Cl atom electronic and H2 rotational degrees of freedom, we obtain one-dimensional energy curves
for the Cl–para-H2 system in this region of configuration space. We find that the dimer exhibits fairly strong electronic-rotational
coupling when the Cl–H2 distance R is close to R = 5.5a0; however, this coupling does not modify substantially the positions
and depths of the van der Waals wells in the dimer’s E(R) curves. An approximation in which the para-H2 fragment is treated in
the strict j = 0 limit thus appears to yield an accurate representation of those states of the weakly bound Cl–para-H2 dimer that
correlate with j = 0 H2 in the R → ∞ limit.

1. Introduction

Experimental studies [1] of the infrared absorption spectra
of solid para-H2 matrices that contain chlorine atoms as
substitutional impurities indicate that Cl–H2 interactions
raise the transition energy associated with the 2P1/2← 2P3/2

spin-orbit (SO) transitions of the Cl impurities. In these
systems, the H2 molecules in the Cl atom’s first “solvation
shell” reside in the van der Waals region of the Cl–H2

potential energy surface [2]. A detailed analysis of the
matrix-induced blue shift of the SO transition for Cl atoms
embedded in solid para-H2 would thus provide insight into
the shape of the Cl–H2 potential energy surface in this
region of configuration space. This in turn could help us
better understand the dynamics of the Cl + H2 → HCl +
H reaction, which has long been considered a benchmark
system in chemical reaction dynamics [3]. For example,
theoretical studies [4] of the HCl/DCl product branching
ratio of the Cl + HD reaction suggest that the van der Waals
region of the potential energy surface plays a key role in
controlling the reaction’s dynamics at low collision energies.

In the para-H2 matrix, the Cl atom’s SO transition is blue
shifted by about 60 cm−1 by Cl–H2 interactions [1], which

amounts to a shift of about 5 cm−1 for each of the twelve H2

molecules in the Cl atom’s first solvation shell. The matrix-
induced blue shift of the Cl SO transition can be qualitatively
understood as arising from subtle differences in the van der
Waals interactions of the ground and excited SO states of
the Cl atom with nearby H2 molecules. For a simulation to
reproduce quantitatively the observed blue shift, we might
therefore anticipate that the potential energy surfaces used
in the simulation should be accurate to better than 1 cm−1.
Theoretical studies of the matrix-induced shift would thus
represent a fairly stringent test of the Cl–H2 potential energy
surfaces involving both the ground and excited SO states of
the Cl atom.

Previous simulations [5, 6] of open-shell atomic impuri-
ties in para-H2 matrices have employed a simplified model
for the para-H2 matrix, a model in which the H2 molecules
are treated as spherical particles. This is equivalent to
assuming that the H2 molecules in the matrix remain in the
pure j = 0 ground rotational state, with their orientational
degrees of freedom completely unperturbed by anisotropic
interactions with the open-shell impurity. However, a careful
study of the B-H2 and Al-H2 van der Waals dimers [7]
indicated that the binding energies of these dimers increased
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by 15% to 20% (or several cm−1) when the j = 0 restriction
for the H2 monomer was relaxed and j > 0 rotational
states were allowed to mix into the H2 molecule’s rotational
wave function. Similar behavior in the Cl–H2 dimer might
raise concerns that the effective Cl–H2 potential energy
functions obtained from a pure j = 0 approximation
for the H2 molecule would be insufficiently accurate for a
quantitative study of the matrix-induced blue shift of the Cl
SO transition. In such a case, more sophisticated treatments
[8] of the H2 molecules’ rotational degrees of freedom might
be needed.

In this work, we examine electronic-rotational coupling
in the Cl–para-H2 van der Waals dimer, using the potential
energy surfaces for the dimer presented in [9] as the
foundation for our study. We find some evidence for moder-
ately strong electronic-rotational coupling in the low-energy
repulsive region of the Cl–H2 potential energy surface.
This coupling does not, however, substantially change the
positions or depths of the van der Waals minima for dimers
composed of a Cl atom and a para-H2 molecule. This
suggests that treating the H2 molecules in Cl-doped solid
para-H2 as pure j = 0 molecules should be a reasonably good
approximation.

2. Spin-Orbit States of an Isolated Cl Atom

We begin our investigation by reviewing the effects of SO
coupling in an isolated chlorine atom. We first construct
a basis set of antisymmetrized many-electron functions for
the atom’s 3p subshell; we will use this basis set to evaluate
the matrix elements of the atom’s effective SO operator. For
future convenience, we choose these antisymmetrized many-
electron functions to be Slater determinants of Cartesian 3p
spin-orbitals in a space-fixed coordinate system. We use px
and px, respectively, to represent a one-electron Cartesian px
orbital paired with either the spin-up or spin-down electron
spin function. For specificity, we note that the px function
is positive along the positive x axis. The six many-electron
functions that span the subspace of interest are these Slater
determinants:
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The Cl atom’s SO operator is written as

V̂SO =
(
CSO

�2

)

× L̂ · Ŝ, (7)

where L̂ and Ŝ are the total orbital and spin angular
momentum operators for the five electrons in the 3p subshell

and the constant CSO is two-thirds of the energy gap between
the lower and upper SO energy levels of the Cl atom; this
energy gap is ΔESO = 882.35 cm−1 [10]. In a basis set
consisting of these six Slater determinants, V̂SO has the
matrix representation
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where the basis set is ordered {Px,Py ,Pz,Px,Py ,Pz} from
left to right (and top to bottom). In the same basis set, the
operator corresponding to the z-axis projection of the total
angular momentum of the 3p subshell,

Ĵz = L̂z + Ŝz, (9)

has the matrix representation
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Because V̂SO and Ĵz commute with one another, we can
simultaneously diagonalize the VSO and Jz matrices. The
normalized many-electron functions that do this are
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(
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)
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(11)
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The four functions labeled with the subscript g are degen-
erate, with energy E = −CSO/2. They represent the four
components of the Cl atom’s 2P3/2 lower SO energy level; the
fraction listed in each function’s subscript, when multiplied
by �, gives that function’s Ĵz eigenvalue. The two functions
labeled with the subscript e are degenerate components of the
Cl atom’s 2P1/2 upper SO energy level and have energy E =
CSO; these functions have Ĵz eigenvalues of±�/2, as indicated
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by their respective subscripts. Later, we will use the symbol jz
to represent the subscripts attached to the six many-electron
SO wave functions listed above; the Ĵz eigenvalue for each
function is thus � jz.

Next we examine the charge densities associated with
the Cl atom’s lower and upper SO energy levels. The charge
density ρ associated with one of the six electronic wave
functions ψ listed above is obtained by forming the product
|ψ|2 = ψ∗ψ, integrating over the five electrons’ spin
coordinates and the spatial coordinates of four of the five
electrons, and multiplying by five. The final multiplication
by five accounts for the fact that the many-electron function
ψ is normalized so that integrating |ψ|2 over all five electrons’
spatial coordinates gives the value one, while integrating the
charge density ρ over all space should give the value five.

To emphasize the shapes of these charge densities, we
note that the charge density associated with the Slater
determinant Pq, which corresponds to a singly occupied p
orbital aligned with the space-fixed q Cartesian axis and
doubly occupied p orbitals aligned with the other two space-
fixed Cartesian axes, can be pictured as a |pq|2 charge density
“hole” superimposed on the isotropic charge density func-
tion associated with a filled six-electron 3p subshell. We will
represent this hole-plus-filled-subshell charge distribution
using the symbol H(pq).

After computing the charge densities associated with the
six SO wave functions listed above and writing them in terms
of this symbol, we obtain

ρg,±3/2 =
[

H
(
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)
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(
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3
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This shows that the Cl atom’s upper SO energy level has
an isotropic charge density distribution, while the charge
densities associated with the lower SO energy level are
anisotropic. The ψg,±3/2 wave functions have higher levels
of electron density along the space-fixed Cartesian z-axis
and lower levels of electron density in the (x, y) plane; the
situation is reversed for the ψg,±1/2 wave functions.

3. Cl–H2 without Spin-Orbit Coupling

Now we consider a Cl–H2 dimer in which the Cl atom is
located at the origin of the space-fixed (x, y, z) coordinate
system and the H2 center of mass is located on the positive
space-fixed z axis. We use α and β to represent the polar and
azimuthal angles, respectively, of the H–H covalent bond in
the space-fixed (x, y, z) coordinate system. The H–H covalent
bond length is denoted r, and R is the Cl–H2 distance. In this
section, we neglect the effect of SO coupling in the Cl atom.

3.1. Characteristics of the Cl–H2 Potential Energy Surface.
First we set the azimuthal angle to β = 0, so that the H2

molecule resides in the (x, z) plane. If we neglect effects
related to SO coupling, then there are three Cl–H2 adiabatic
electronic states, each of which is doubly degenerate because
of the spin-1/2 nature of the Cl–H2 dimer [2, 9, 11]. Two
of these states have A′ spatial symmetry with respect to the
(x, z) plane; these are states in which the p-orbital “hole” of
the Cl atom resides in the (x, z) plane. The third state has A′′

spatial symmetry; in this state, the Cl atom’s p-orbital hole is
aligned with the y-axis.

The two A′ adiabatic electronic states, which we label
1A′ and 2A′ in order of increasing energy, can be viewed
as linear combinations of diabatic states associated with the
Slater determinants Px and Pz. The mixing angle θ defines
these linear combinations [2, 9, 11]:

∣
∣1A′

〉 = sin θ|Px〉 + cos θ|Pz〉, (20)
∣
∣2A′

〉 = cos θ|Px〉 − sin θ|Pz〉. (21)

The mixing angle can be computed by applying an approxi-
mate diabatization procedure to the adiabatic A′ electronic
wave functions obtained from a conventional ab initio
calculation [2, 9, 11, 12].

When the H2 polar angle α is either α = 0 or α =
π/2, then symmetry considerations make the electronic states
corresponding to the Px and Pz Slater determinants good
adiabatic electronic states of the Cl–H2 system. For these
geometries, the mixing angle θ must be either θ = 0 or
θ = π/2. For θ = 0, the Pz state is lower in energy than the Px
state, while for θ = π/2, the Px state is lower in energy than
the Pz state. In Figure 1, we show how the Cl–H2 interaction
energy obtained in [9] for these two adiabatic states depends
on the Cl–H2 distance R, both for geometries with α = 0 (in
which the H–H bond is collinear with the Cl–H2 distance)
and for geometries with α = π/2 (in which the H–H bond is
perpendicular to the Cl–H2 distance). In these plots, the H–
H covalent bond length is held fixed at r = 1.449a0, its v = 0
vibrationally averaged value.

Note that for collinear approach of the H2 molecule, the
adiabatic Px and Pz states undergo a crossing near R = 6.1a0.
At that point, the mixing angle θ changes discontinuously
from θ = π/2 at large R to θ = 0 at small R. We can
explain this behavior using a simple picture of the Cl–H2

interaction based on electrostatic and overlap contributions.
At large R, it is more favorable for the “hole” in the Cl
atom’s 3p subshell to be oriented at right angles to the
covalent bond of the incoming H2 molecule; this leads to the
most favorable quadrupole-quadrupole interaction between
the H2 molecule and the Cl atom. At small R, however,
repulsive overlap interactions become more important; these
are minimized if the Cl atom’s hole orients itself along the
axis that connects the Cl nucleus and the H2 center of mass.

Now we investigate how the Cl–H2 interaction changes
as the H2 molecule rotates from α = 0 to α = π/2, with
both R and r held fixed. As before, we neglect SO coupling
and we set r to its v = 0 vibrationally averaged value of
r = 1.449a0. Figure 2(a) shows, for the two A′ adiabatic
electronic states, how the Cl–H2 interaction energy depends
on α at R = 7a0. In Figure 2(b) we plot, as functions of α, the
contributions that the Px and Pz diabatic states make to the
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Figure 1: (a) Adiabatic Cl–H2 potential energy surfaces, as
functions of the Cl–H2 distanceR, for (a) collinear and (b) T-shaped
C2v geometries. Solid lines indicate the potential energy for the Cl
electronic configuration in which the 3p hole is aligned with the
space-fixed z-axis; dashed lines indicate the potential energy for the
Cl electronic configuration in which the 3p hole is aligned with the
space-fixed x-axis. In both panels, r is held fixed at r = 1.449a0.

1A′ adiabatic state; as we see from (20), these contributions
are simply sin2θ and cos2θ. Figure 2(b) demonstrates that for
the 1A′ state, the hole in the Cl atom’s 3p subshell rotates in
space as α changes so that the Cl atom maintains a favorable
electrostatic interaction with the H2 quadrupole.

3.2. Electronic-Rotational Coupling in Cl–H2 Dimers. Now
we lift the restriction that β = 0 and investigate how the
rotational energy levels of the H2 molecule are perturbed by
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Figure 2: (a) Adiabatic A′ potential energy surfaces for planar Cl–
H2 geometries shown as functions of the H2 polar angle α for R =
7a0 and r = 1.449a0. (b) Contributions made by the Cl atom’s Px
(dashed line) and Pz (solid line) Slater determinants to the lowest-
energy 1A′ electronic state shown as functions of the H2 polar angle
α for R = 7a0 and r = 1.449a0.

its interaction with the Cl atom. We continue to neglect SO
coupling in the Cl atom.

We construct a basis set for the coupled rotational and
electronic degrees of freedom of the Cl–H2 dimer that
is a direct product of functions describing the Cl atom’s
electronic state and functions describing the H2 molecule’s
rotation. For the electronic portion of the direct product
basis, we use the six Slater determinants defined in (1)
through (6); this will simplify the subsequent incorporation
of SO coupling. For the rotational portion of the direct
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product basis, we use the spherical harmonics Yj,mj (α,β)
with even values of the H2 rotational quantum number j.

In this work, we limit the possible j values to j = 0
and j = 2; this leads to a basis set with 36 orthonormal
direct product electronic-rotational basis functions. In the
absence of SO coupling, however, the 36 × 36 Hamiltonian
matrix splits into two uncoupled 18 × 18 blocks that are,
respectively, associated with the spin-up and spin-down
Slater determinants. The two 18× 18 blocks have a common
set of eigenvalues.

We could exploit the cylindrical symmetry of the Cl–
H2 system to further factorize the Hamiltonian matrix. This
would involve rewriting the electronic portion of the basis set
in terms of complex linear combinations of Px and Py that are

eigenfunctions of the L̂z operator, with eigenvalues �λz:

(

Px + iPy
)

√
2

−→ λz = +1, (22)

(

Px − iPy
)

√
2

−→ λz = −1. (23)

Because of the system’s cylindrical symmetry, the quantum
number Λ = λz +mj , which, after multiplication by �, is the
z-axis projection of the sum of the electronic orbital angular
momentum and the H2 rotational angular momentum,
is rigorously good in the absence of SO coupling. If we
were to express the SO-free Hamiltonian matrix in terms
of the complex basis functions of (22) and (23), the two
18 × 18 blocks of the matrix would therefore factor into
uncoupled subblocks corresponding to the allowed values
of Λ. Although we do not employ this approach here, we
will use Λ to classify the overall symmetry of the SO-free
Cl–H2 wave functions. For the basis set employed here, Λ
ranges from −3 to +3 in steps of one. In analogy with the
nomenclature for diatomic molecules, we will denote Cl–H2

wave functions with |Λ| = 0, 1, 2, or 3 as σ , π, δ, or φ states,
respectively.

For a fixed value of the Cl–H2 distance R, the elements of
the 36× 36 electronic-rotational Hamiltonian matrix can be
written as

〈

PqYj,mj

∣
∣
∣V̂
(

α,β;R
)

+
(
B

�2

)

Ĵ2
∣
∣
∣Pq′Yj′,m′j

〉

, (24)

where q and q′ represent space-fixed Cartesian directions, B
is the H2 rotational constant (here taken to have the value
59.06 cm−1), and V̂(α,β;R) describes the Cl–H2 interaction.
The analogous matrix element in which the electronic
portions of the basis functions are represented by Pq and Pq′
has the same value as the matrix element in (24). Matrix
elements that involve a spin-up and a spin-down Slater
determinant are zero in the absence of SO coupling.

Because the Slater determinants Pq and Pq′ are orthogo-
nal unless q = q′, the kinetic energy portion of (24) can be
evaluated quite easily; it is given by

B j
(

j + 1
)

δq,q′δj, j′δmj ,m′j . (25)

After writing out explicitly the integration over the H2 angles
α and β, the potential energy portion of (24) becomes
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(
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Here, we compute the integrals in (26) by numerical
quadrature, using the 240-point spherical t-design specified
in [13].

To evaluate Fq,q′(α,β;R), we introduce a rotated system
of Cartesian axes, which we denote (u, v, z). The u and v axes
rotate in the space-fixed (x, y) plane as the H2 azimuthal
angle β changes, so that the H2 molecule always resides
in the (u, z) plane. The Slater determinants Px and Py ,
defined in the space-fixed coordinate system, are related to
their analogues Pu and Pv, defined in the rotated coordinate
system, through

Px = Pu cosβ − Pv sinβ, (28)

Py = Pu sinβ + Pv cosβ. (29)

Equipped with this relationship, we can now evaluate
Fq,q′(α,β;R), where q and q′ are directions in the space-fixed
coordinate system, in terms of integrals over Pu, Pv, and Pz.
Doing this, we obtain
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α,β;R
) = cosβ

〈
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∣Pz

〉

, (33)
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α,β;R
) = sinβ

〈
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∣
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∣V̂
∣
∣
∣Pz

〉

, (34)

where, for the sake of brevity, we have suppressed the (α,β;R)
dependence of V̂ . Note that 〈Pu|V̂ |Pv〉 and 〈Pv|V̂ |Pz〉 are
both zero by reasons of symmetry.

The quantities 〈Pu|V̂ |Pu〉, 〈Pv|V̂ |Pv〉, and 〈Pu|V̂ |Pz〉 are
the same as those in (2) through (4) of [9]. They depend on
α and R but are independent of β. As a consequence, Cl–
H2 electronic-rotational basis functions with different values
of mj are coupled only by the trigonometric functions of β
that are shown explicitly in (30) through (34). Fx,x and Fy,y

couple H2 rotational states with |mj − m′j| = 0 or 2, Fx,y

couples H2 rotational states with |mj − m′j| = 2, and Fx,z

and Fy,z couple H2 rotational states with |mj −m′j| = 1. Fz,z

has no dependence on β and therefore does not couple basis
functions with different mj values.

Constructing and diagonalizing the 36 × 36 electronic-
rotational Hamiltonian matrix at a series of R values gives
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the Cl–H2 curves shown in Figure 3, which we now discuss in
some detail. The curves fall into three distinct groups, labeled
as A, B, and C. The two curves in group A correlate smoothly
with the j = 0 rotational level of the H2 molecule as R → ∞,
while those in groups B and C correlate with j = 2 states of
the H2 molecule in this limit. All of the B curves, at large
R, correlate with electronic-rotational basis functions that
involve the Cl atom’s Pz Slater determinant. The C curves, on
the other hand, correlate at large R with electronic-rotational
basis functions involving the Px and Py Slater determinants
of the Cl atom.

We begin by considering the two curves (one σ and one
π) in group A. Both curves are attractive at long range, but
the minimum of the σ curve is deeper and occurs at a smaller
R value. The minimum for the σ curve occurs at Rmin =
5.85a0, where E = −15.9 meV. The minimum for the π curve
is at Rmin = 7.08a0, where E = −6.5 meV. The σ curve
correlates at large R with the Pz Slater determinant of the Cl
atom’s 3p subshell; for this Slater determinant, the 3p hole of
the Cl atom is oriented along the space-fixed z axis, which is
the direction of approach of the incoming H2 molecule. The
π curve, by contrast, correlates at large R values with the Px
and Py Slater determinants, for which the Cl atom’s 3p hole
is oriented in the (x, y) plane. The σ curve thus minimizes
short-range repulsive overlap interactions between Cl and H2

and permits closer approach of the incoming H2 molecule.
Group B includes three curves: one σ , one π, and one

δ. These curves all correlate smoothly with the Pz Slater
determinant as R → ∞, so the Cl atom’s 3p hole is aligned
with the space-fixed z axis for large R. For the δ curve, the H2

rotational state at large R corresponds to the ( j = 2, mj =
± 2) spherical harmonic. In this state, the H2 molecule can
be viewed classically as rotating in the (x, y) plane. This
orientation of the rotating H2 molecule both maximizes its
attractive electrostatic quadrupole-quadrupole interaction
with the Cl atom and minimizes short-range Cl–H2 repulsive
interactions at small R values. Consequently, of the three
group B curves, the δ curve has the deepest minimum.

The π curve from group B correlates at large R with
electronic-rotational basis functions that are direct products
of the H2 ( j = 2, mj = ± 1) spherical harmonics and the
Cl atom’s Pz Slater determinant. As R → ∞, therefore, the
π character of this curve is associated with the rotational
motion of the H2 molecule. Figure 3 shows, however, that
this curve undergoes an avoided crossing with the group A
π curve near R = 5.5a0.

To understand the nature of this avoided crossing in more
detail, we project the wave function for the group A π curve
onto two pairs of electronic-rotational direct product basis
functions: (1) the two functions |Px Y0,0〉 and |Py Y0,0〉 and
(2) the two functions |Pz Y2,1〉 and |Pz Y2,−1〉. The first pair
of functions describes the group A π curve at large R values,
while the second pair of functions describes the group B π
curve at large R values. Figure 4 shows the R dependence of
the contributions that these two pairs of basis functions make
to the π curve of group A.

It is clear that, for the entire range of R values shown in
Figure 4, the makeup of the group A π curve is dominated
by these two pairs of basis functions; summed together, their
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Figure 3: Coupled electronic-rotational Cl–H2 energy curves that
correlate with the j = 0 and j = 2 states of H2 shown as functions
of the Cl–H2 distance R. Spin-orbit effects are neglected, and the H2

bond length is held fixed at r = 1.449a0.

contributions represent over 99% of the curve’s character.
At large R values, the curve can be described entirely
by the |Px Y0,0〉 and |Py Y0,0〉 direct product functions,
demonstrating that the π character of the state arises from
the Cl atom’s 3p subshell. At small R values, however, the
curve is described entirely by the |Pz Y2,1〉 and |Pz Y2,−1〉
direct product functions; here, the π character of the state
arises from the rotational motion of the H2 molecule. The
crossover in the description of the π curve of group A reflects
a strong interaction between these two zero-order states, an
interaction that arises from the Fx,z and Fy,z functions of
(33) and (34). The result is to strongly couple the electronic
and rotational degrees of freedom of the Cl–H2 dimer near
R = 5.5a0.

We have also taken the group A σ curve and projected it
onto the direct product basis function |Pz Y0,0〉 to assess the
contribution that this zero-order state makes to the curve.
Figure 4 indicates that this zero-order state provides a very
good description of the group A σ curve, accounting for
more than 90% of its character over the entire range of R
values shown there. This demonstrates that the group A σ
curve can be closely approximated by the interaction between
a pure j = 0 para-H2 molecule and a Cl atom described by
the Pz Slater determinant.

4. Cl–H2 Including Spin-Orbit Coupling

Now we ask how the results summarized in Figures 3 and 4
change when we include the effects of SO coupling. To do
this, we simply add the appropriate matrix elements of the
SO operator (see (8)) to the 36 × 36 Hamiltonian matrix
expressed in the direct product basis set, and then compute
the eigenvalues of the new matrix at a series of R values. The
calculations of [9] indicate that, in the Cl–H2 van der Waals
region, the triatomic system’s SO matrix elements are nearly
independent of the Cl–H2 geometry and have values nearly
identical to those for an isolated Cl atom. This justifies the
approximation implicit in our calculations, namely that the
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Table 1: Combinations ( jz,mj) of azimuthal angular momentum
quantum numbers that can couple together to produce a given
positive Ω value.

Ω = 1/2 Ω = 3/2 Ω = 5/2 Ω = 7/2

(+3/2, −1) (+3/2, 0) (+3/2, +1) (+3/2, +2)

(+1/2, 0) (+1/2, +1) (+1/2, +2)

(−1/2, +1) (−1/2, +2)

(−3/2, +2)

VSO matrix for the free Cl atom is a good approximation of
the effects of SO coupling in the Cl–H2 dimer. For a given
value of R, and in the absence of accidental degeneracies, the
new Hamiltonian matrix has 18 distinct doubly degenerate
eigenvalues. Kramers [14] explained that a system with a
single unpaired electron would always, in the absence of an
external magnetic field, have doubly degenerate energy levels;
the two states that make up a single doubly degenerate energy
level are sometimes called a Kramers pair.

As before, the system’s cylindrical symmetry introduces a
rigorously good quantum number that, when multiplied by
�, gives the z-axis projection of the system’s total (electronic
spin plus electronic orbital plus H2 rotational) angular
momentum. Here we call this quantum number Ω; its value
is given by Ω = jz + mj , and for the basis set employed
here, the possible values of Ω range from −7/2 to 7/2 in
steps of one. Although we have not exploited the system’s
cylindrical symmetry to block-diagonalize the Hamiltonian
matrix, we use Ω to classify the symmetry of the Cl–H2 wave
functions and to gain some physical insight into the shapes
of the system’s energy curves E(R).
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Figure 5: Coupled electronic-rotational Cl–H2 energy curves that
correlate with the j = 0 rotational state of H2 shown as functions of
the Cl–H2 distance R. Spin-orbit effects are included; the horizontal
dashed lines indicate the asymptotic energies of the Cl–H2 dimer as
R → ∞ for the lower and upper spin-orbit levels of the Cl atom.

In Table 1, we list the combinations of the jz and mj

quantum numbers that can generate each of the four positive
allowed Ω values. The corresponding negative Ω values can
be obtained by reversing the sign of both jz and mj . In the
following discussion, we consider only the states that have
positive Ω values, as the states with negative Ω values have
identical energies. We will refer to this table and to the charge
densities of the two SO levels of an isolated Cl atom ((17)
through (19)), as we discuss the role that SO coupling has on
the Cl–H2 energy curves.

As Table 1 indicates, the j = 0 state of the H2 molecule,
which has mj = 0 as well, can either (1) form a Cl–H2

state with Ω = 3/2 by combining with the ψg,+3/2 state
of the Cl atom or (2) form a Cl–H2 state with Ω = 1/2
by combining with the ψg,+1/2 state or the ψe,+1/2 state of
the Cl atom. Consequently, there are three distinct Cl–H2

curves that correlate as R → ∞ with the j = 0 ground
rotational state of the H2 molecule. Two of the three curves
are associated with the Cl atom’s lower SO energy level, and
one is associated with the atom’s upper SO energy level.
These curves, shown in Figure 5, are the most important
ones for understanding the interaction between Cl and an
approaching para-H2 molecule.

All three curves exhibit relatively shallow van der Waals
minima. The Ω = 1/2 state that correlates with the Cl atom’s
lower SO energy level has the deepest minimum, which
occurs at R = 6.46a0. At this R value, the depth of the Cl–
H2 curve, measured with respect to the R = ∞ asymptote,
is 10.0 meV. The other two states have shallower minima,
which occur at larger R values: the minimum for the Ω = 1/2
state that correlates with the upper SO energy level is at
R = 6.89a0, while that for the Ω = 3/2 state is at R = 7.09a0.
The depths of these minima, measured with respect to the
R = ∞ asymptotes, are, respectively, 7.3 meV and 6.5 meV.
The relative locations and depths of the three minima can
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be understood by examining the charge densities of the Cl
electronic states that are associated with each curve.

For the Ω = 1/2 curve that correlates with the lower SO
energy level, the Cl atom is described at large R by the ψg,+1/2

electronic wave function. This Cl atomic state has a depletion
of electron density along the z axis (see (18)), which is
the direction of approach of the incoming H2 molecule.
Consequently, of the three curves shown in Figure 5, this
curve allows the H2 molecule to approach the Cl atom most
closely. For the Ω = 3/2 curve, on the other hand, the Cl
atom is described at large R by the ψg,+3/2 electronic wave
function; as (17) shows, the electron density for this state
of the Cl atom is depleted in the (x, y) plane and built up
along the z axis. Of the three curves shown in Figure 5, this
curve has its minimum at the largest R value. Finally, for the
Ω = 1/2 curve that correlates with the upper SO energy level,
the Cl atom’s large-R character is that of the ψe,+1/2 state. In
this state, the atom’s 3p “hole” is completely orientationally
delocalized (see (19)). This leads to a minimum that occurs
at an R value between the minima for the two other curves.

We now ask, for the two Ω = 1/2 curves depicted in
Figure 5, how the approach of the incoming H2 molecule
distorts the electronic structure of the Cl atom. To answer
this question, we take the Cl–H2 wave functions for the
two curves and project them onto either the ψg,+1/2 (for the
lower curve) or the ψe,+1/2 (for the upper curve) Cl atomic
wave function. In computing these projections, we sum
over all of the H2 fragment’s rotational states. Figure 6(a)
shows, as a function of the Cl–H2 distance R, the fractional
contributions that these two pure atomic SO states make to
the corresponding Cl–H2 dimer wave functions. For large
R, the Cl electronic structure is essentially unperturbed by
the H2 molecule. As R decreases below about 6a0, however,
the impinging H2 molecule begins to mix some excited SO
character into the wave function of the lower curve, and some
ground SO character into the wave function of the upper
curve.

For these two Ω = 1/2 curves, Cl–H2 interactions also
perturb the rotational degrees of freedom of the H2 fragment
at small R values. This leads to a mixing of some j = 2
character into the H2 molecule’s rotational wave function. To
measure this perturbation, we project the two Cl–H2 Ω =
1/2 wave functions onto the j = 0 H2 molecular rotational
wave function. In computing these projections, we sum over
all of the Cl fragment’s SO states. Figure 6(b) shows how the
contribution that the H2 j = 0 state makes to the overall
dimer wave function changes with R. For the range of R
values shown here, the character of both Ω = 1/2 curves is
dominated by the j = 0 H2 rotational state.

Figures 7 through 9 complete our survey of the Cl–H2

energy curves associated with the lower SO energy level. In
these figures, the curves whose large-R asymptotic values
are roughly 7 meV all correlate, as R → ∞, with the H2

molecule’s j = 2 rotational energy level. For the Ω = 1/2,
5/2, and 7/2 states (Figures 7 and 9), these curves fall into two
groups distinguished mainly by the position of their short-
range repulsive walls. The curves whose repulsive walls occur
at smaller R values are associated with the Cl atom’s ψg,±1/2

states, which have a depletion of electron density along the z
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Figure 6: (a) The contribution made by the Cl atom’s respective
ψg,+1/2 or ψe,+1/2 spin-orbit electronic state to the two Ω = 1/2 curves
shown in Figure 5. (b) The contribution made by the H2 j = 0
rotational state to the Cl–H2 wave function for the two Ω = 1/2
curves shown in Figure 5.

axis. The curves whose repulsive walls occur at larger R values
are associated with the Cl atom’s ψg,±3/2 states, which do not
exhibit depleted electron density along the z axis.

The Ω = 3/2 curves depicted in Figure 8 exhibit more
complicated behavior. The uppermost curve shown there
is associated with the Cl atom’s ψg,+3/2 state, and thus its
repulsive wall begins to manifest itself at larger R values. The
other three curves, however, participate in a pair of avoided
crossings near R = 5.5a0, close to where the avoided crossing
observed in Figure 3 occurred. The unusual “kink” seen in
Figure 5 is associated with this pair of avoided crossings.

Figure 10 shows this pair of avoided crossings at higher
magnification. The three curves, in order of increasing
energy, correlate in the large R limit with (1) the ψg,+3/2 Cl
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atomic state coupled with the ( j = 0,mj = 0) rotational
state of H2; (2) the ψg,−1/2 Cl atomic state coupled with the
( j = 2, mj = 2) rotational state of H2; and (3) the ψg,+1/2

Cl atomic state coupled with the ( j = 2, mj = 1) rotational
state of H2. The pair of avoided crossings shown in Figure 10
is analogous to the avoided crossing between the group A
and group B π curves shown in Figure 3. The additional
complexity observed in Figure 10 arises from the fact that,
as Table 1 shows, three different values of the H2 molecule’s
mj quantum number can combine with an appropriate SO
level of the Cl atom to form a dimer state with Ω = 3/2.
Although the avoided crossings shown in Figure 10, like that
shown in Figure 3, demonstrate that there are regions of
configuration space where the Cl–H2 dimer exhibits strong
electronic-rotational coupling, these regions of configuration
space are at moderately high energies on the repulsive wall of
the dimer’s potential energy surface.

Finally, in Figure 11, we show all of the curves that
correlate at large R with the Cl atom’s upper SO level. Only
one of these curves, with Ω = 1/2, correlates with the j = 0
state of the H2 molecule; the others correlate with the H2

molecule’s j = 2 excited rotational state. All six curves
shown in this figure have very similar shapes; this is because
the upper SO level of the Cl atom, with its orientationally
delocalized 3p hole, appears isotropic to the incoming H2

molecule.
We close by computing the Cl–H2 interaction curves

E(R), including the effects of SO coupling, under the
assumption that the H2 molecule retains pure j = 0 character
at all values of R. We do this simply by removing all of
the direct product basis functions with j > 0 from the
basis set used to express the Cl–H2 dimer wave function;
this leads to a 6 × 6 matrix representation of the Cl–H2

Hamiltonian that has three doubly degenerate eigenvalues,
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or three Kramers pairs. These three eigenvalues represent
the interaction curves E(R) obtained using the pure j = 0
approximation for the H2 fragment. In Figure 12, we show
these three curves and compare them with the analogous
curves computed using the larger 36×36 Hamiltonian matrix
that includes j = 2 states of the H2 fragment. The three
curves obtained from the larger Hamiltonian matrix were
first shown in Figure 5.

We see from Figure 12 that the depths and positions of
the van der Waals minima for these three curves change very
little when we impose the pure j = 0 approximation for the
H fragment. For example, the depth of the Ω = 1/2 curve
that correlates with the Cl atom’s lower SO state (shown
in Figure 12(a)) changes by about 0.5% when we impose
this approximation. This is in sharp contrast to the case
for the B-H2 and Al-H2 dimers [7], for which the zero-
point-corrected binding energies change by 15% and 22%,
respectively, when the H2 fragment is frozen in its j = 0
state. It appears that the anisotropy of the underlying diabatic
potential energy surfaces is substantially larger for the B-H2

and Al-H2 systems than for the Cl–H2 system; this leads to
a greater perturbation of the H2 molecule’s rotational wave
function in the region of the van der Waals minima of the
B-H2 and Al-H2 systems.

For the two Ω = 1/2 curves shown in Figure 12, we see
that the pure j = 0 approximation reproduces the actual Cl–
H2 interaction curves very well; the main difference seems
to be that the Ω = 1/2 curve that correlates with the lower
SO level of the Cl atom has a slightly stiffer repulsive wall if
the H2 molecule is held fixed in its j = 0 rotational state.
For the Ω = 3/2 curve that correlates with the lower SO
level of the Cl atom, the pure j = 0 approximation is of
course completely incapable of reproducing the true Cl–H2

interaction for R values below R = 5.5a0; this is the region
of configuration space where strong electronic-rotational
coupling leads to the avoided crossings shown in Figure 10,
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Figure 12: A comparison of the three Cl–H2 curves that correlate
with j = 0 H2 molecules when the H2 molecule is either frozen
in its j = 0 state (dashed lines) or allowed to mix some j = 2
character into its rotational wave function (solid lines). (a) shows,
as functions of the Cl–H2 distance R, curves for the two states that
correlate with the lower spin-orbit state of the Cl atom; (b) shows
curves for the state that correlates with the upper spin-orbit state
of the Cl atom. The horizontal dashed lines show the respective
asymptotic dimer energies as R → ∞. The two curves shown in
(b) are nearly indistinguishable from one another.

and the j = 0 approximation is simply inapplicable there.
However, this region of configuration space is relatively high
on the repulsive wall of the Ω = 3/2 curve; because the
experimental studies of Cl-doped solid para-H2 are carried
out at T ≈ 2 K, it is unlikely that the Cl atom’s H2 neighbors
spend a significant portion of time exploring this portion of
the Ω = 3/2 potential energy curve.
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5. Summary

We have computed a series of one-dimensional energy
curves E(R) for the Cl–para-H2 dimer by diagonalizing the
dimer’s combined electronic-rotational Hamiltonian matrix.
We express the Hamiltonian matrix in terms of a direct
product basis set that facilitates the inclusion of SO coupling
effects. The gross features of the dimer’s E(R) curves, such
as the depths and positions of the curves’ van der Waals
minima, can be rationalized by considering the charge
densities associated with the lower and upper SO levels of
the Cl atom.

We find that electronic-rotational coupling in the Cl–
H2 dimer is strong for Cl–H2 distances near R = 5.5a0. In
the system where SO effects are ignored, this coupling gives
rise to an avoided crossing between two Cl–H2 states with
π symmetry: one that correlates at large R with the j = 0
H2 rotational level and one that correlates with the j = 2
rotational level. Once SO effects are included, this avoided
crossing becomes a pair of avoided crossings associated with
three of the Cl–H2 dimer’s Ω = 3/2 states: one of which
correlates at large R with the j = 0 H2 rotational level and
two of which correlate with the j = 2 rotational level.

By removing j = 2 H2 rotational states from the direct
product basis set used to express the Cl–H2 Hamiltonian, we
can assess how the assumption that the para-H2 fragment
retains its pure j = 0 identity might affect the shape of the
Cl–para-H2 energy curves. We find that the positions and
depths of the system’s van der Waals minima are virtually
unaffected when the H2 fragment is restricted to its pure
j = 0 rotational state. This suggests that the H2 molecules
in Cl-doped solid para-H2 can probably be treated as pure
j = 0 objects without a significant loss of accuracy.
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