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We analyze the symmetry properties of the focal plane distribution when light is focused with an element characterized by a
periodic angular dependent phase, sin (m¢) or cos (m¢). The majority of wave aberrations can be described using the said phase
function. The focal distribution is analytically shown to be a real function at odd values of m, which provides a simple technique
for generating designed wave aberrations by means of binary diffractive optical elements. Such a possibility may prove useful in
tight focusing, as the presence of definite wave aberrations allows the focal spot size to be decreased. The analytical computations
are illustrated by the numerical simulation, which shows that by varying the radial parameters the focal spot configuration can be
varied, whereas the central part symmetry is mainly determined by the parity of m: for even the symmetry order is 2mm and for odd

is m.

1. Introduction

Various aberrations in the focusing system are known to
result in a wider, distorted focal spot with disturbed axial
symmetry [1]. Such an effect is normally considered to be
a negative factor.

However, it has been shown [2, 3] that some types of
wave aberrations enable the central focal spot size to be
decreased, providing tight focusing. Note that while only
primary (axisymmetric) aberrations were dealt with in [2],
aberrations associated with vortex phase components on the
basis of Zernike polynomials were also discussed in [3].

In Zernike polynomials, the radius dependence is poly-
nomial and the angle dependence is trigonometric (peri-
odic). Optical elements characterized by periodic angular
changes were considered in [4, 5]. In [4], such an element
was shown to form the zero central intensity, whereas [5] also
looked into diffraction-free properties of the generated light
beams.

Based on the decomposition of a cosine angular depen-
dent phase function in terms of angular harmonics, the
transmission function exp{iacos(mg)} was shown [5] to
produce a diffraction pattern composed of 2m light spots
arranged on a circumference. The coaxial interference of two
vortex beams with identical topological charges and opposite
signs was shown to produce a similar result [6, 7].

At the same time, the odd-order aberrations, such as
distortion and coma, have been known to appear in distri-
bution patterns with odd symmetry [1, 8, 9]. In particular,
the presence of coma (m = 3) results in distributions with
the third-order symmetry [10], similar to the 2D Airy beams
[11].

It was also shown that the product of three 1D Airy
functions, rotated by the angle of 120° relative to each other
and characterized by the third-order symmetry, was trans-
formed in the spectral plane into a function proportional to
exp{iar® sin(3¢)} [12].



Notice, the phase mask with sine but nonperiodic angu-
lar dependence [13] breaking symmetry can be used for
selective edge enhancement.

In this paper, we analyze symmetry properties of the
distribution formed in the focal plane by an optical ele-
ment characterized by a periodic angular dependent phase
function in the form of sin(mg) or cos(me). Based on this
phase relation, it is possible to describe the majority of
wave aberrations, which then can be represented [14] as the
decomposition in terms of Zernike functions [1].

The focal distribution is analytically shown to be de-
scribed by a real function at odd values of m. Analytical esti-
mates of the central part of the focal distribution are derived
for an input circular aperture.

The analytical computations are illustrated by the nu-
merical simulation, which shows that by varying the radial
parameters the focal spot configuration can be varied, where-
as the central part symmetry is manily determined by the
even value of the angular parameter m.

2. Fourier Transform of a Complex Distribution
with Periodic Angular Dependence

Assume a complex distribution with periodic angular depen-
dence of the general form:

f(r,e) = W(r)exp[iﬁ(ar)q{zir:qz))}], (1)

where y(r) is an axisymmetric function, m is integer, q is a
positive real number, and «, f are real parameters (with «
having the dimension of mm™!).

Note that various combinations of the functions sin(m¢)
and cos(meg) in the phase function of (1) can be represented
as a product of functions given by (1).

The complex distribution in (1) can describe the majority
of wave aberrations, which, then, can be represented [14] by
the decomposition in terms of Zernike functions [1].

For the sake of specificity, choose sin(m¢) in (1). Note
that for the cos(m¢) function the results will be analogous.

The spatial Fourier spectrum for the function (1) is given
by

ik exp(ik f)

F(P)e):_ 27Tf

X J: W(T){J:ﬂ exp[—if(ar)? sinme)

X exp [—i;rp cos(0 — q))] do }rdr,
(2)

where k = 27/ is the wave number, A is the wavelength of
laser light, f is the focal length, (r, ¢) and (p, 0) are the polar
coordinates in the input and output planes, respectively.
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Let us analyze the integral over the angle in braces in (2):

@ (p,0,7)

= LG exp[—iB(ar)? sinmg] exp [—i;rp cos(6 — (p)} dg.
3)

The axial distribution of light (p = 0) is described by the
relation independent of m:

®(0,0;7) = Jzn exp[—iB(ar)?sinmelde = 2r)o[Bar)?].
0
(4)
Designating

_ krp
f

and following the transformation in (3) at m = 1

a=par)?, b (5)

asing+bcos(p — 0) = (a+bsin6)sing + (bcosH) cos ¢

= Va2 + b? + 2absin cos(¢ — ),
(6)

where 0" = arctg[(a + bsin 6)/b cos 0], we obtain

®(p,6;r)

=21y (J B(ar)* + ("J’f’)Z +2p(ar)? (k}p> sin 9).

(7)

Replacing sin ¢ in (1) by cos ¢ (at m = 1) yields an analogous
relation to (7), following the relevant substitutions.

Let us consider a more general case of integer m. The first
term in (3) can be decomposed as

exp(—iasinmg) = Jo(a) + 2> Jrp(a) cos(2pme)
p=1

- ZiZ]sz(a) sin((2p + 1) me).

p=0
(8)
Equation (8) employs the following relations [15]:
cos(zsint) = Jo(z) + 2> Jrp(z) cos(2pt),  (9a)
p=1

sin(zsint) = 2> Jpi1(2) sin[ (2p + 1)]. (9b)
p=1

To calculate the integral in (3), we can employ the well-
known relations:

7 (cos me .
J {Sinmgo}exp[—zbcos(@—go)]d(p

' (10)
- m(—:’)’"{c‘” ’”e}ww.

sin m6
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Thus, we obtain
®(p,0;r) = 21Jo(a)]o(b)

+ 47> (=1)""]2p(@)]apm(b) cos(2pmb)
p=1

—4mi Y (=D ()" Tapr1(@)] 2ps1ym(D)
p=0

xsin((2p + 1)m 6).
(11)

It should be noted that for the odd values of m1, (11) is a real
function, because the coefficients in the third sum i(—i)" =
(—i)™ ! are real at odd m.

Taking cos mg in (1), we obtain an analogous relation:

exp(—iacosmg) = Jo(a) +2> (—1)"]»,(a) cos(2pmg)
p=1

[

- Ziz (_1)p]2p+1(a) cos((2p + 1)mg),
p=0
(12)

which utilizes the relations [15]:

cos(zcost) = Jo(z) + 22 (=DP]rp(2) cos(2pt),  (13a)
p=1

sin(zcost) = ZZ (_l)p]Zerl (z)cos[(2p + 1)t].  (13b)
p=1

Thus,

2
J exp(—ia cos mg) exp[—ibcos(0 — ¢) |dg
0

= 21Jo(@)Jo(b) + 47 > (= 1)P" VL, (a) ]2 pm(b) cos (2pmb)
p=1

—4mi Y (1" (=) o (@) 2ps 1ym (b)
p=0
x cos((2p + 1)m0).
(14)

For the odd values of m, the function in (14) is real.

3
Substitute (11) in (2):
Fip,6) = = ' exp(ikf)
X J: W(T){fo [Blar)?]]o (;rp>
= 2i(=)" 1 [ Blar)?]]m
X (;rp) sin(m0)
+2(=D"L[B(ar)?] am
X (fcrp) cos(2m@) — - - - }rdr.
(15)

Equation (15) can be rearranged as follows:

F(P’ 6) = - %exp(ikf) {‘{-’0 (P) _ 2(_1-)14171\1,,1 (P) sin(m0)
+2(=1)"¥,(p) cos(2mB) — - - - }’
(16)
where

¥y (p) = Lw v(r)]p[Bar) ] Tpm (;rp) rdr. (17)

Let us obtain approximate estimates of the integrals in
(17), putting

w(r)=<{é’ :fg’ (18)
and assuming Jy(2) = 1 — 22/4, J.(2) = (2/2)"/n!.
Then,
R
¥o(p) = L ]O[ﬁ(m’)q]h('];rp)rdr
R 2 2
~ ,[0 [1 B ﬁZ(T) - (]Zfz) ]rdr (19a)
R (BR*(aR)™  [(kpR? :
T2 8(g+1)  \ 4f )°
R g k
¥p(p) = || JoLBlar) Vpn  Fro ) rar
o1 RTBar)? 1Pk \™
Np!(pm)!Jo [ 2 } <2frp) rdr
ﬂPaPQ(kP)Pm Rp(q+m)+2 p -0,

T plpm)2e (2f) plgtm) +2°
(19b)
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TaBLE 1: Simulated focusing results for simple functions ¥(r) and different parameters.
Parameters Input (phase) distribution Light distribution in the focal plane (intensity and phase), 0.5 X 0.5 mm
m=1,
y(r) from (18), L —
g=0,a=1mm", A
B =27 4 }
b .

y(r) from (18), " x -

- .

fanh

q=0,a=1mm},
B=5 ‘

m =3,

y(r) is the Gaussian —

beam,

qg=0,a=1mm7, PAY

- fi\

i

m =3,

y(r) is the Gaussian

beam, '

qg=3a=3mm},

p=1

m =4, - ‘...' ’

y(r) from (18), o

qg=0,a=1mm, ,o. ..‘
’ »

B=3 f a2

It can be seen from (19a) and (19b) that the major contri-
bution to the central part of the focal plane (at p — 0) is
provided by the terms with lower-order p. Truncating (16)
at the first two terms, the intensity in the central part of the
focal plane can be estimated for the even values of m as

|F(p,6)]* = (;) [¥2(p) + 4% (p)sin’(mB)],  (200)

and for odd m as
2
Epo (%) [¥5(p) + 093 p)sin’)

—4(=1)m 2y, (p)¥1(p) sin(m@)],
(20b)

with the first term being independent of the angle and the
second term resulting in 2m uniformly distributed intensity
peaks of equal height (at sin(mf) = =1). The third term
is only present for odd m, introducing corrections into the
peaks: depending on the sign of the term containing sin(m0),
half of the peaks are enhanced, while the other half are
suppressed, which results in m clearly expressed maximums.

Thus, (20a) and (20b) suggest that the symmetry of the
central part of the focal distribution is determined by the
parity of m: for even m, the symmetry order is 2m, for odd
m, the symmetry order is m.

By varying the parameters f3, a, ¢, and m, the values of the
coefficients in (20a) and (20b) can be varied, thus changing
the symmetry of the intensity pattern in the focus.
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TaBLE 2: Simulation results for different parameters and the form of the y(r, ¢) function, g = 0.

Parameters Input distribution (intensity and phase) Focal distribution (intensity and phase), 0.5 X 0.5 mm
m=1,
y(r) describes the -

Laguerre-Gaussian mode
(3,0), 0 = 0.2mm

m =3,

y(r) describes the ™
Laguerre-Gaussian mode

(3,0), 0 = 0.2mm

D

e
~

4
.
\

-
-_—
-

-

=of)
A\

m=1,

y(r, ¢) describes the
Laguerre-Gaussian mode
(3,1),0 = 0.2mm

m=3,

y(r, ¢) describes the
Laguerre-Gaussian mode
(3,3),0 = 0.2mm

©) @

/)
<
. .
- .\‘

m =3,

y(r) = Jo(yr), .
y=10MM™!

m=1,

v(r, @) = Ji(yr) exp(ig),

y=10MM™!

R EGREIOT
=
e,

3. Numerical Simulation

The numerical simulation based on (2) was conducted for
the following parameters: wavelength of incident light, A =
633 nm, focal length, f = 100 mm.

Table 1 gives the simulation results based on (1), for
sin(mg), for different values of m and different parameter’s

values of «, 8, and ¢, with the y(r) function being given
by (18), describing a circular diaphragm of radius R =
I mm, and a Gaussian beam exp(—r?/0?) of waist radius
o = 0.5mm.

Notice that the input phase distributions (shown in the
second column of the table) have the same values in opposite
points on diameter line for even m and negative values for



odd m. It is easy to confirm by sin(2(x + 7)) = sin(2x),
sin(x + ) = —sin(x). Both of cases differ from a situation
with a spiral phase exp(im¢) where a phase difference at a
symmetric position is mzm [13], so the spiral phase is used
for the radial Hilbert transform of mth order. In our case
a phase difference in symmetric points can explain focal
distribution. Since at odd m in focus there are identical
phases with opposite sign the field will be real valued
(exp(iy) + exp(—iy) ~ cos(y)). For even m, identical values
are summarized, therefore the phase structure is regenerated
in focal domain.

Table 2 presents the focusing results for g = 0 and 8 = 5,
with the values of m and y/(r) being varied.

The effect of replacing the axisymmetric function y(r)
with a more general function y(r, ¢) with a harmonic angle
dependence, exp(ilp), was also studied.

The four top lines are for the function w(r,¢) de-
scribed by the Fourier-transform-invariant Laguerre-Gaus-
sian modes [15] of different orders (n,l), including those
with a vortex function exp(ilg). It is noteworthy that the
vortex angle component does not exert such an essential
influence on the focal pattern structure as the periodic
function in question sin(m¢) does. The comparison of lines
1 and 3 shows that a phase vortex introduced in the input
plane results in a similar pattern in the focal plane, without
changing the major distribution structure (except for the
zero intensity in the singular point).

When m = 1, the resulting distribution is similar to that
associated with the coma-type aberration introduced in the
focusing system; when m = 3, the distribution is described
by the product of three 1D Airy functions, rotated relative
to each other [12]. Note, however, that in the latter case
the product is actually composed of somewhat different
functions.

In two bottom lines of Table 2, the function y(r,¢) is
given by the Bessel modes J;(yr) exp(ilg), which produce a
Fourier spectrum in the form of a narrow ring of radius
proportional to y. The simulation results show that the annu-
lar focal structure produced by the Bessel modes undergoes
essential variations caused by the periodic angle change.

4. Conclusions

We have analyzed symmetry properties of the light distribu-
tion generated in the focal plane by focusing the light beam
with a periodic angular dependent phase given by sin(m¢) or
cos(me).

The focal distribution of light is analytically shown to
be a real function when the value of m is odd. Thus, in
a way similar to [12], phase distributions associated with
the corresponding specified aberration types can be formed
in the focal plane of a conventional spherical lens with the
aid of binary diffractive optical elements. Such a possibility
may prove useful in tight focusing, where the presence of
certain wave aberrations enables the focal spot size to be
reduced [2, 3]. In particular, for a circularly polarized beam
the spot size can be reduced by the presence of coma (m =
3), corresponding to the 2D superpositions of Airy beams
(11, 12].
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The analytical computations have been illustrated by the
numerical simulation, which has shown that by varying the
radial parameters, the focal distribution configuration can
be varied; meanwhile, the central part symmetry is mainly
determined by the parity of the angle parameter m: when m is
even, the central part has the 2m-order symmetry, and when
m is odd—the symmetry is m order. Note that although the
introduced vortex component exp(il) is preserved in the
focal plane, it does not have an essential effect on the focal
distribution structure when compared with the periodic
function in question sin(mg).
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