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The language tools offered in common word processors use dictionaries and simple grammatical rules. They cannot detect errors
such as a wrong preposition, interchanged words, or typos that result in a dictionary word. However, by comparing the user’s text
to a large repository, it is possible to detect many of these errors and also to suggest alternatives. By looking at full sentences, it is
often possible to get the correct context. This is important in detecting errors and in order to offer valuable suggestions. These ideas
have been implemented in a prototype system. We present examples in English and Norwegian, but the method, that of following
a “majority vote,” can be applied to any written language.

1. Introduction

A semantic understanding of natural language is not easy
to achieve. It is painfully clear that both dictionaries and
grammar descriptions are far from being complete. New
words emerge on a daily basis, and old words are changing
their meaning. Even works of famous authors have sentence
structures that violate grammatical rules. Thus, natural lan-
guage computer systems based on dictionaries and grammar
structures can only take us part of the way. Many have argued
that one needs to be a human being in order to understand
natural language, that is, to grasp all the underlying context
information that is so important in getting the right
interpretation. “See you at lunch” may be clear to a coworker,
while the computer will ask: when, where, what, and why?

Still we have language tools that aid us in proofreading.
A simple spelling checker that looks up every word in a
dictionary finds many typos and misspellings. A grammar
checker, even with current limitations, is an aid when we
write in a foreign language. For example, the English gram-
mar checker in Microsoft Word may find some of my is/are
and has/have errors, but not all. It detects “Apples and
oranges is used as dessert” but not “Apples and oranges, the
latter imported from Spain, is used as dessert.” And, of
course, since these tools only work on a lexical and a simple
syntactical level, they will not catch subtle syntactic errors,

nor semantic errors. Thus, the sentence “They lived at Lon-
don” stands uncorrected, just as “A forest has many threes”
and “I have a far.” To be able to find these errors we need
smarter systems, that is, systems that can detect semantic
errors [1].

To achieve this we need to give systems some of the
understanding that we have as humans, which is so impor-
tant when working with natural language. A simple method
is to compare our text with that of others. That is, we can
achieve some sense of semantics by comparing the user’s
sentences to those in large repositories. If the occurrence of
“I live in London” is more common than “I live at London,”
then the system could suggest a change.

This idea of following the majority is, of course, not new.
On a way to a soccer match in London I managed to get
on the right train. From then on it was not necessary to
ask for directions, I just followed the crowd. We also use
this sort of “cumulative knowledge” when we follow trails,
where the aggregate of many feet is manifested as a dent in
the vegetation. In all these cases there may be individuals
that leave the trail, do not follow the crowd to the stadium,
or write differently, but these will not make a statistically
significant impression [2].

That is, while it is difficult to use the wisdom of indi-
viduals, we may find an aggregate wisdom of all. This is what
Brian Christian calls a “human paste” in his book on the
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Turing test [3]. This “paste” offers surprisingly good results
in many situations. Bots, robot programs that act as if they
were humans, use this technique to give the answer to a
question as a human would have done. A common method
for mimicking humans is to store previously encountered
answers, all the input the bot has received from users, in a
large database. By using statistics they can often give (i.e.,
“choose”) surprisingly good answers. By maintaining the
conversation with a user, the bot will get new feedback that
will improve its repository of answers.

Natural language translation started out by implement-
ing dictionaries and grammar, but Google astonished the
competition when they presented a cut and paste solution.
Google uses large repositories of text that are available in
many languages. Good sources are the UN and EU, where
humans translate the same source document into multiple
languages. In short, what Google has to do is to compare the
user’s text to these documents and then find the appropriate
translation.

While these shortcuts to intelligent natural language
processing can offer good results in many situations we need
to be aware of the pitfalls. The cut and paste solution, or
choosing an answer from statistics, does not really catch the
semantics. Thus, bots work on a sentence-by-sentence basis,
but do not “understand” the progress of the conversation.
Brian Christian offers an example:

User: Do you have a boyfriend?

Bot: Not at the moment, but I hope to find one soon.

User: I would like to be your boyfriend.

Bot: That would be difficult, since I’m happily
married.

Similarly, Google translation, as any other automatic natural
language system, is far from guaranteeing correct results.

However, using majority vote for proofreading should
be easier since the user has provided at least a first version
of the sentence structure. While proofreading has many
implications and can include everything from correcting a
few commas and spelling mistakes to include advice and
corrections on subject knowledge and organization [4], we
will here concentrate on spelling, grammar, and the correct
use of words, that is, enhancing the functionality of current
spelling and grammar checkers. Such an application will
be especially advantageous for users that write in a foreign
language.

We shall present a prototype system that applies this
technique. It works on all languages but is presented here
with repositories in English and Norwegian.

2. Proofreading Using Text Repositories

In a 2004 paper [5] we described how Google could be used
as an oracle for getting feedback on correct spelling and
grammar, also on a semantic level. The idea was that instead
of finding another person that could help, we would ask
Google, that is, ask millions for advice. For example, we may
wonder if it is “in,” “on,” or “at” “the west coast.” By offering

Figure 1: Using a wild card (∗) in Google.

the alternatives to Google, using exclamation marks to get a
frequency count for the complete phrase we will find

(i) “we live at the west coast”—2 occurrences.

(ii) “we live on the west coast”—4,240,000 occurrences.

(iii) “we live in the west coast”—7,680,000 occurrences.

In this case we can conclude that both “in” and “on” can be
used here but may end up with “in” since this seems to be the
most common preposition in this context.

If the alternatives are unknown, a wild card may be used
in the query. An example is offered in Figure 1. The possible
alternatives can then be extracted from the search engine
result pages, and the method described above applied to get
the number of occurrences with each alternative word in the
sentence. This is a tedious process to perform manually. In
addition, we have to find the phrases where we are uncertain.
Many write “we had ice cream for desert” and are quite happy
with their spelling.

In this paper we shall describe a prototype system that
automates this process. That is, we will present a system that
will find and offer suggestions for corrections for many types
of errors, from spelling mistakes to semantic errors. Instead
of using Google or another search engine, we will build our
own text repository. This has the advantage that we have
full control over the underlying data, for example, to correct
punctuation and numerical errors. Also, Google and other
search engines often block programmable access.

2.1. Statistical Methods. The method that we describe here
has much in common with statistical models based on the
probability that one word follows another or that a word
precedes another. These probabilities may help to detect if
a word is used in a strange context and to suggest more
common alternatives.

Statistical models work on sequences of two words
(bigrams), three words (trigrams), or N words (N-grams),
for example, see [6] or [7]. The basic probabilities are
computed from a text corpus. Mudge [8] uses this method to
offer proofreading as a software service using bigrams and,
to some extent, trigrams; Asonov [9] uses bigrams to detect
typographical errors while Guo et al. apply N-grams to sen-
tence realization [10]. The statistical method has the advan-
tage that some of the processing, that is, finding the prob-
ability values, can be performed up front. However, most
statistical methods work on sequences of only two or three
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words while the method that we propose here works on
full sentences. However, note that the two methods will be
similar if all words, all punctuation, and complete sentences
from the sources are stored in the repository.

2.2. Working Directly on the Text Repository. The advantage
of working directly on the text repository, instead of going
via statistical methods with a limited number of word com-
binations, is that the more of the context that is considered,
the better suggestions for improvement that can be made.
While most statistical methods work on two- or three-word
combinations, we can now consider the complete sentence
given by the user. Another advantage of working directly on
the repository is that, in principle, new text can be added
consecutively, for example by a spider that traverses the Web
or bibliographical databases.

The disadvantages of this approach are that we need large
repositories in order to find data on the complete sentence,
or large parts of this. Demands for processing during the
analysis phase will, of course, be much higher since we do
not perform any significant preprocessing. Instead of looking
up words and word combinations in a database we will need
to process large parts of the repository, at least large index
structures. However, this can be tackled by modern computer
technology as demonstrated by Google and other search
engines. With multimillion clusters of computers they can
handle complex searches in just a few seconds and, as we have
seen, also language translation that requires traversal of large
text or index repositories.

3. The Prototype

In order to test our ideas we have developed a simple
prototype system (Figure 2). This consists of three parts:

(1) a spider that creates the text repository,

(2) a builder that creates the indexes we need for fast
processing,

(3) an analyzer that analyzes the sentence offered by the
user, suggesting improvements.

The spider is given a seed of several Web addresses, to the
sites of universities, newspapers, government institutions,
and so forth. It will then download everything from each
address, retaining the text part and “clean” the text by
removing formatting commands. The spider will also collect
all the links that it finds on a page. These are stored for
later processing so that we avoid making too high demands
on one site at a time. The final product is a collection of
sentences that are stored in sequential numbered files in the
repository, each of one megabyte. The one megabyte size was
determined by an estimate based on the time to parse the file
and the size of the index structures. Larger files take longer
times to parse, but will also limit the size of the indexes.

Each link (URL) is represented by a hash value. These
are stored in a table of visited sites. If the same URL comes
up in another setting, we can avoid a second parsing of the
site. The spider worked for several weeks to collect a 2.5
gigabyte repository in English (.com-, .uk-, .org-, .edu-sites)

Table 1: Index structure (example).

(a)

Word Occurrence in file

Ice 4, 17, 54, . . .

Cream 17, 98, 109, . . .

Dessert 2, 17, 234, . . .

· · ·
(b)

File no. Word Occurrence in lines

4 Ice 967, 1201

· · · · · ·
17 Desert 32, 2378

17 Cream 567, 1201, 1456

17 Dessert 1201

and a 1 gigabyte repository in Norwegian (.no) sites. A better
alternative than to use extensions would have been to detect
language automatically. That is, we may find text in other
languages than English on .com sites and other languages
than Norwegian on .no sites. However, the occurrence of this
“noise” is seldom statistically significant.

Since we only had one PC available for this research
project it became necessary to create an index structure
for fast access to the repository. As seen from Table 1 we
maintain a table with all words found in the repository,
giving a list of files where each word is found. Each line
in the table, that is, word and file references, is stored in a
simple .txt file, using the word as the file name. Then, for
each file and word, a new table offers a list of the sentences
within the file where the word appears. These references are
also stored as simple files.

For the Norwegian version all words were stored in the
index, giving a number of approximately 600.000 words.
Note that this includes typos, names, and word combinations
(in Norwegian, words are often tied together, such as in
“skistaver”-ski poles). In an effort to avoid spelling mistakes
in the English version, we only stored words that had
an occurrence frequency greater than ten. This gave us
approximately 226.000 words in English.

The idea is that when the user offers a sentence with N
words the analyzer can limit parsing to the files and sentences
where all these words occur. However, since we also try to
find alternatives, we actually have to parse all sentences where
N minus one of the words occur. We implement this by
replacing the first word in the sentence by a wild card, collect
all alternatives that may be used for this word, do the same
with the second word, and so forth.

An example of this analyzing process is presented in
Figure 3. The user’s sentence is “I live at London.” From the
intermediate part we see that the analyzer has found zero
occurrences of this sentence but has found four where “in”
replaces “at.” Note that only words that are similar to what
offered by the user are considered. The idea is that users often
exchange words with a similar spelling. We use Hirschberg’s
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Figure 2: Spider, index builder, and the analyzer.

Figure 3: Screen shot of the analyzer (example 1).

algorithm to compute this score value [11]. In addition,
since many users interchange prepositions, these are also
considered “similar.”

The difference of occurrence of the “at” and “in” alter-
native is great enough (0 to 4) for the analyzer to propose the
results “I live in London” with a high confidence.

In another example, Figure 4, the analyzer finds the cor-
rect spelling, changing “desert” to “dessert,” but since the
dessert variant only occurs twice in the repository, the confi-
dence is marked as low.

The prototype handles many different types of errors. It
corrects prepositions, typos, interchanged words, and facts.
Still, it has several drawbacks. Computing time for the
analysis process, even with the elaborate index structure, may
be everything from a few seconds to more than a minute.

It also becomes clear that the repositories are too small.
This is especially the case for the one gigabyte Norwegian
database. For example, it corrects “Jeg bor på Oslo” (I live
at Oslo), but not “Vi bor på Oslo” (We live at Oslo), since
it cannot find sufficient data on this variant. But even the
2.5 gigabyte English database is way too small. There are
constructs that are not found at all and others where the
frequencies are too low to give significant results. We also find
that the Web is not a good source for finding quality text.
Even when we eliminate all words that have a frequency of
occurrence less than ten, we end up with a lot of spelling
mistakes and typos.

A product version of the proofreader would have to use
a large cluster of machines, where each single computer
could parse only a fraction of the database, perhaps only one

file [12–14]. By working directly on the repository, indexes
can be avoided. To improve the quality of the repositories,
a better alternative is to start with quality documents, for
example, the UN and EU sources that Google use. In addi-
tion, bibliographical databases with books, reports, scientific
papers, and so forth could be useful. However, it is a problem
that we need really huge repositories.

We can envision such a tool as a site where we can
upload documents for proofreading. Better, the tool should
be integrated with the word processor and offer concurrent
advice, just as contemporary spelling and grammar checkers.

4. Semantics by Following the Majority

Statistically we make a “paste” of all the examples in the
repository, following the majority vote. Is this what we
want? The answer will be dependent of the user’s aims and
knowledge. If we are proficient writers, a system such as
this may help us to find some typos, but apart from that
it could be annoying-underlining sentences that it found
suspect, indicating errors that may not be there. However,
when we write in a foreign language the idea of following
the majority will be great for most of us, especially if this
can aid in avoiding blunders. From the simple tests we have
performed on the prototype it is clearly of help to nonnative
writers, finding errors similar to the examples that have been
presented here, that is, if one has patience with the processing
and repository limitations of the prototype.

What all current proofreading systems, including the sys-
tem we have presented here, really do is to move experience
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Figure 4: Screen shot of the analyzer (example 2).

of writing to that of reading, that is, moving from recall to
recognition [15]. Since most of us are better readers than
writers, we may be able to determine which suggestions to
follow. If the sentence provided by the user has a zero or
low frequency in the repository, the system may come up
with another choice for alternatives that occur more often,
especially if the words have a similar spelling. For example,
“I visited New Fork” (a ghost town in Wyoming, USA) may
be suggested to change to “I visited New York.” Thus we must
rely on the user to ignore these false indications, comparable
to being on the train that takes supporters to a soccer game,
but where we have a different destination. This is, of course,
crucial to all language aids. We depend on the user to make
the right choice.

To get the correct meaning of the user’s sentence we
should use as much of the sentence as possible. If we study
only one word at a time, there may be many different inter-
pretations of each word. With more words, especially full
sentences, the context becomes well defined and it becomes
easier both to find errors and to offer valuable suggestions.
Since nobody (in the repository) “has a red far,” we may
suggest “car.” But “we live at the West Coast” may look like
an error, until we unveil the next word in the user’s sentence
that may be “hotels,” that is, “we live at the West Coast hotels”
is correct. The problem is, of course, that if we analyze long
sentences there may not be any occurrences of the complete
sentence in the repository. We then have to look at parts, but
with the danger of loosing context.

The prototype analyzes a sentence at a time. It may look
into parts if the repository cannot provide data on the com-
plete sentence. However, a product version may also need to
analyze more than one sentence at a time. For example, this
will be necessary to catch the reference error here: “The house
was sold. He went for a million.” There may be types of errors
that require the proofreading system to look into whole
paragraphs, perhaps the complete text to make valuable sug-
gestions. For example, as we have seen a nonnative English
speaker may easily exchange “desert” or “dessert.” While the
sentence in question may be “The desert was impressive,” we
may need to analyze more of the text to see if we are in a

“desert” or “dessert” context. These cases can also be solved
statistically, for example, by studying how other words in the
text go together with each of these alternatives. Hopefully, the
user writes about deserts or desserts, not both at the same
time.

5. Future Work

A limitation of the current version of the prototype is that
it tries to replace one word with others. However, often
the problem may be that there are unnecessary words in a
sentence offered by the user. As an example, consider “All
the information is sent to PayPal and they are who manage
the collection.” An abbreviated version is better: “The
information is sent to PayPal, which manage the collection.”
This functionality, that of removing words or replacing a
set of words with one word, would be cumbersome for the
prototype due to a limited repository but should be quite easy
to implement in a product version.

It is expected that the user provides a sentence that has
a reasonable well-formed structure. The system may suggest
alternative words and remove words, with the functionality
discussed above, but cannot change the structure using the
simple comparison method that we have suggested here. This
may limit the value of the system for nonnative writers that
often mess up the correct order of words. As a consequence
of this we may also find that there may be no data in the
repository for the incorrectly structured sentence, thus even
limiting the systems capabilities of correcting single words.

As an example, consider “We can see in the figure the
class diagram for the website,” written by a student using
English as a second language. Clearly, a better alternative
would be “The figure shows the class diagram for the
website” or “The class diagram for the website is shown in
the figure.” However, in both of these improved sentences the
superfluous word “we” have been removed, in addition to a
new sequencing of words. It is outside the scope of this paper
to find solutions to this problem and is therefore offered
as an interesting topic for future research. An option could
be to provide alternative sentences from the repository that
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had a large fraction of the words from the initial sentence.
However, superfluous words, such as the “we” above, may be
an obstruction.

6. Conclusion

We have presented an idea and a prototype implementation,
of a proofreading system that can find and suggest correc-
tions for many types of errors, also semantic errors. The idea
is to compare the user’s text to a large repository, ideally
trying to find better variants for each word where the original
sentence is not found in the repository. Thus, it is possible to
catch the right context.

While the prototype works on limited repositories and
is too slow with its one computer installation, a produc-
tion system needs large, high-quality repositories and a
multicomputer setup. In order to be able to improve also
the structure of the sentence provided by the user, an
enhancement of the basic method is needed.
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